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Abstract: A multiplicative Lie algebra is a group together with a “bracket function” that satisfies the basic properties

of the commutator function. This paper investigates the construction of such functions.
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1. Introduction

In his paper [1], Graham Ellis defined the concept of a multiplicative Lie algebra. According to his definition
we have the following.

Definition 1.1 A multiplicative Lie algebra consists of a group G together with a bracket function {,} : GXG —
G (called a Lie product) satisfying the following identities for oall x,y,z € G:

1. {z,z} =1,

2. {z,yz} ={x,y} a2},

3. {wy, 2} =" {y, 2H{x, 2},

4 Yoo}, 72 {21 2y H{{z 0}, Ve = 1,
5. Hayt = {"z7y}.

L [z,y] is the commutator xyz~ty~!, and (iv) is a Jacobi-Witt—Hall

In this definition, Yz is short for yxy~
type identity. The study of such properties began in the papers by MacDonald and Neumann ([2], [3]), who were
interested in the interrelationships between various commutator laws. Graham Ellis was interested in showing
that any universal commutator identity was a consequence of the identities in the above definition.

The papers by MacDonald and Neumann claimed to give a set of commutator identities from which all
universal commutator identities can be deduced. However, they assumed an identity of the form {{z,y},z} =
-1

{zyz~=ty~! 2} and they defined conjugation in terms of the commutator they had defined.
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2. Preliminaries

From [1] the results of the following theorem are easy consequences of Definition 1.1. We include the proofs for

the sake of completeness.

Theorem 2.1 Let G be a group. Then, for all z,y,z,a,b € G, we have the following:

1. {l,z} ={z,1} =1,
2. {x,y} = {y,x}_l,
3. t=vHa b} =9 {a, b} (in particular we have that {x,y} and [x,y] must commute),

b Aamhy =" {a ) and {a g7 =Y oy
5 Hz,u} 2l = A{lw, 9l 2}
Proof
1. Now 1 ={l,z} ={1-1,2} = {1,2}{1,2} = {1,2}?. Tt follows that 1 = {1,z}. Similarly, {z,1} = 1.
2. Now

1={zy,zy} =" {y,zyHz,zy}
= "y} “{y,y){z, 2} “{a,y}
) o = (o).

It follows that {y,z}{z,y} =1, giving the result.

3. For this proof we need to compute {za,yb} in two different ways. First we get

{za,yb} = “{a,yb}{z,yb}
= I({a’y} y{a7b}){x5y} y{mvb}
= "{a,y} "{a,b}{z,y} Y{x,b}.

Secondly we get

{za,yb} = {za,y} Y{za,b}
= ”C{a,y}{m,y} y(m{a,b}{x,b})
= {a,yH{a,y} ¥{a,b}{z,b}.

Canceling like terms gives
“Ha, bi{z,y} = {z,y} *"{a, b}.

Now, replacing @ by a® ¥ and b by b® ¥ gives
[Ly]{aa b}{xv y} = {l’, y}{av b}'
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Thus,
[w,y]{a’ b} —{zy} {a,b},

as required.
4. Now
L= {z'z,y} =" {,yHa "y}
It follows that {z~1,y} =* ' {z,y}~'. Similarly, {z,y~'} =¥ {z,y} L.

5. Now

{z,y},2] = {z,y} *{w,y} " and by 4
= {z,y} *{a7"y}
= {z,y} BI*# {271 4} and by 3
{,y} B2 {27y}
{z,yHzx, 2}t {27, y}{z, 2} again by 4
{z,y} “{a™t 2} "o yH{a, 2}
= {z,y} "({a7h 2} a7y (e, 2}
= {a,y} “{a7 !, 2y}{x, z}again by 4
= oty o ye e, 2}
= oy ey ey Ha 2}
= oty ey ey ey {2}
= "y layi{z, 2}
= Yy ly T 2 e, 2}

= {ayz~ly!, 2} = {[z,y], 2}, as required.

This completes the proof. O

Now let us look at some examples.

Example 2.2 Let G be a group. We can make G into a multiplicative Lie algebra by defining either for all

1

r,y € G, {x,y} =1 or for all x,y € G,{x,y} = [x,y] = xyx~'y~'. If these are the only possible Lie products

that can be defined on G, we say the trivial consequence holds for G.

Example 2.3 Any Lie algebra over Z is a multiplicative Lie algebra with {x,y} defined to be the ordinary Lie
bracket.
Example 2.4 (Ellis [1]) Let E be a group and let P = % Define an action of P on E by foru € E,x € P

(letting * = 7Z(E),7 € E),*u =7uz . Let G be the semidirect product of E by P using the above action.
Then, {(u1,x1), (uz,z2)} = ([u1Z1,u2T3]) defines a Lie product on G, which is in general different from the

usual commutator defined on G .
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Example 2.5 In general, suppose that G is a group, H < G, and f: G — H is a homomorphism so that for
all z € G,x7 ' f(x) € Ca(H) (note that if G = H x K, then mg, the projection function onto H, is such a
homomorphism). Then defining for oll z,y € G {x,y} = [f(x), f(y)] gives a Lie product on G. Furthermore,
if H<G and G = HCg(H), we can define a Lie product on G by defining for * = h1ky and y = hoke with
hi,he € H k1, ko € K, {x,y} = [h1, hs].

Example 2.6 Let G = (a) x (b) and suppose that x € G is such that |x| divides both |a| and |b| (here we
are assuming that anything will divide infinity). Now we can define a Lie product on G by {a™ b’ a®2b/2} =

piijz—izj1
Here are a few remarks.

Remark 2.7 If Q is the additive group of rational numbers, then if {,} is a Lie product defined on Q, we
must have for all x,y € Q,{z,y} =0.

Remark 2.8 Let F be any free group. Then, if {,} is a Lie product defined on F', we must have either for

1

all z,y € F,{x,y} =1 or for all z,y € F,{x,y} = zyx~'y~! = [x,y]. That is, the trivial consequence must

hold for free groups.

The results of the last two remarks could be determined directly from the definition of a Lie product,
but as they will follow from some general results given later, their proofs are omitted for now. The last remark

is actually found in [1] and in [3]. These two remarks serve to motivate the following question.

Question For which groups must the trivial consequence hold?

3. Some results

Note that any subgroup of a group that can be defined in terms of commutators will have an analog defined
by a given Lie product. We will indicate (in general) these subgroups by using script in the usual notations.
Thus, if G is a group and {, } is a Lie product of G, we define G’ := ({{z,y}| =,y € G}) and Z(G) := {y €
G| {z,y} =1 for all z € G}. Note that both G’ and Z(G) are normal subgroups of G. Also, if H and K are
subsets of G, we define {H, K} := ({{H,K}| h € H,k € K}). In particular, ¢’ = {G,G}.

The next result is a slight extension of the above remarks:

Lemma 3.1 Let G be a group with Lie product {,}. Then we must have:
1. {Ca(G'),G'} =1,
2. for all z,y € G {z,y}~[z,y] € Ca(G),
3. G'<G'Cq(g'),
4. For all a,b,c,d € G,{{a,b} " [a,b],{c,d} " [c,d]} = {{a,b}, {c, d}}[{a, b}, {c,d}]?,
5. If {Ca(G),Ca(G)} =1, then for all a,b,c,d € G, we get {{a,b},{c,d}} = [{a,b},{c,d}].
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Proof

1. From Theorem 2.1 parts 5 and 2 we know that {z, [a,b]} = [z, {a,b}] forall z,a,b € G. Now if x € C(G")
we get {z,[a,b]} = 1. The result follows.

2. This follows directly from Theorem 2.1 3.

3. This follows from 2.

4. Now

{{a, b} a,b), {e,d} e, d)} = 19 {[a, 0], {c,d} Ve, d]}{{a, b}, {e,d} Ve, d]}
= {{a,b} "', {c,d} *[e,d]} by 1 and 2

= {a, b} {e,d} 1y D {4, b} [e,d]} by Theorem 2.1 4
= a0 e b {e,dy 1t e Hab  ery By fe, d]} ! by Theorem 2.1 2

= Al e b}, {e ) LoD (b, e, d])

Now since {a, b} ![a,b] and {c,d}t[c,d] are in C(G’') we obtain

{{a, 0} Mo, 0, {e,d} e, d)y = EetH D {a, b}, {e, d}H{a, b, [e,d]}
= {{a, b}a{cvd}}{{avb}’[cvd]}71
{{a,b},{c,d}}[{a,b}, {c,d}]"* by using Theorem 2.1 5.

Note that we have used the fact from Theorem 2.1 3 that {z,y} and [z,y] must commute.

5. This follows from 4.

We can use this result to prove the remark about free groups (Remark 2.8).

Theorem 3.2 Let F be a free group. Then, if {,} is a Lie product defined on F, we must have either for all
z,y € F{x,y} =1 or for all z,y € F,{x,y} = zyz~ly~! = [z,y].

Proof The important fact that we need about (nonabelian) free groups is that the centralizer of a nontrivial
normal subgroup must be trivial. Note that Theorem 2.1 3 implies that for all a,b,z,y € F,{z,y} [z,y] €
Cs({a,b}). Hence, we must have for all z,y € F,{z,y} '[z,y] € Cr(F').

It follows that either 7' = 1 and thus for all z,y € F,{z,y} = 1 or Crp(F’) = 1 and thus for all
x,y € F,{z,y} = [z,y]. O

Theorem 3.3 Let G be a group having the following property:
forall 1 # H <G so that G < HCg(H) we must have Cq(H) =1. (*)

Then the trivial consequence must hold for G.
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Proof From Lemma 3.1 3 we have G’ < G'C(G’). The property (*) now implies that either G’ =1 and for
all z,y € G,{z,y} =1 or Cs(G’') =1, which implies, as above, for all z,y € G,{x,y} = [z,y], as required. O

The next result is a slight extension of the following results.

Theorem 3.4 Let G be a group and suppose that {, } is a Lie product defined on G. Define £ : GxG — C(G")
by for all x,y € G, {(z,y) = {x,y} '[x,y]. Then ¢ satisfies properties 1, 2, 3, and 5 of the definition of a Lie
product, Definition 1.1. Furthermore, {1 = {|c gy is a Lie product on Cg(G').

Proof We show that ¢ and ¢; satisfy the appropriate conditions.
For all z,y,z € G:

(i) U, @) = {z, 2} o, 2] = 1,
(i1) U, yz) = {w,yz} " o, y2] = (@9} o, 2) 7 ([z,9] Y[z, 2])
=V {2, 2} ({2, 9} [z, y)) Y[z, 2]

= ({z, 9} zy) ({2, 2} Hx, 2])
= £($7y) yf(x’z)’

(3.1)

(#i7) L(zy, z) =" Uy, z)l(x, z) is similar to (ii),
(v) *Uw,y) =% ({z,y} oyl = Fa2y} ! Fayl
=0z y).

In the next part of the proof we are assuming that z,y,z € Cq(G').
(iv) Note that

Wy, 2)72) = (({y,x} " y.al " 2)
= Ny, )" 2)0{y, 2} 2)
= Uy, 2],* 2)({y, x} 717 2)
= {ly:2)." 2} My, 2).7 A {{y, 2} 7 2 {2} 7 2

= by Proposition 2.14

—1
= Q2372 ly,al,” 2] 7 {{y,2},7 2}
= by Proposition 2.14,5

= Ay 2," 2l{{y, 2}," 2}
Thus, Ly, x)," 2)0(l(x, 2),2 y)l(L(z,y),Y x) =
=l 2l," 2l{{y, z}," 2}z, 21,7 y[{{=, 23,7 y}lz 0], 7 2{{y, 23,7 2}
= Ay =" 2l 2,7 ylllz, w7 ol{{y, 2}, " 2 H{{w, 217y {{z 0 Y 2} = 1

Note that we are using the fact that if z € Cg(G’), then [[a,b],z] € Ca(G").
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Corollary 3.5 Let G be a group and suppose that {,} is a Lie product defined on G. Assume that Cg(G') is
an abelian group for which the trivial consequence must hold. (That is, we must have {Cc(G'),Cx(G")} =1.)
Then, for all x,y € Cc(G")G’, we must have {z,y} = [x,y]. Furthermore, if G is a perfect group, then for all
x,y € G, we must have {x,y} = [z,y].

Proof Since {(z,y) =1 forall z,y € C(G’), we must have for all a,b,c,d € G that {{a,b} '[a,b],{c,d} [c,d]} =
1. Some simple calculations similar to the above calculations (see Theorem 3.1 3) give that for all a,b,¢,d €
G, {{a,b},{c.d}} = [{a, b}, {c,d}].

It then follows that for all z,y € G, {z,y} = [z,y]. Now some easy calculations give that for all
x,y € Ca(G")G',{z,y} = [x,y]. The last comment follows from the fact that G’ < Cx(G')G" (Theorem 3.1 2).

O
Lemma 3.6 Suppose that G is a perfect group and Cg(G') is abelian. Then Cq(G') = Z(G).
Proof Since G is perfect, we have from Theorem 3.1 3 that G = Cg(G')G’. Tt follows that [G,Cq(G")] =
[Ca(G),Ca(G")] = 1. The result follows. 0

This result was an inspiration for the following theorem.

Theorem 3.7 Let G be a group and suppose that there is a function g : g X % — Z(G) that satisfies the

following conditions for all x,y,z € % :
1. g(zy,z) = g(z,2)9(y, 2),
2. g(x,yz) = g(x,y)g9(x, 2),
3. g(z,z) =1,
4. 9(9(y, 2)G' " y)g(g(z, 2)G' 7 y)g(9(z,y)G' Y w) = 1.

Then, for all x,y € G, we can define {x,y} = [x,ylg(xG',yG"). This defines a Lie product on G. Furthermore,
if G is a group having a Lie product such that Cq(G') = Z(QG), then the Lie product on G must have arisen in
this way.

Proof First, we will show that if g has the desired properties, then {,} does satisfy the properties to be a
Lie product.

1. {z,z} = [z, 2]g(zG",2G") =1,
2.

{zy, 2} = [zy, 2]g(xy G, 2G") = "[y, 2][z, 2]g(x G, 2G")g(yG', 2G")
“(ly, 2lg(yG', 2G")) [z, 2]g(2G', 2G") = {y, 2}{w, 2},

3. {z,yz} = {z,y} ¥{z, 2} and the proof is similar to the proof of 2.
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4. Now notice that

{y.2}." 2} = {ly,2lg(yG' G " 2} (3.2)
= {9(yG' =Gy, 2]," =} (3.3)
= WSOy, a7 2 Hg(yC 2G)," 2} (3.4)
= [y, 21" 2lg(ly. 2]G", 2G"){g (9 (yG', 2G")G'," 2G'} (3.5)
= |ly.z]," 2g(9(yG', 2G")G" .7 2G'), (3.6)

where we have used the fact that g(1,z) = 1.

Using similar reasoning we can conclude that

{y. =h" 2 {21y iz wh V2t = [y 2]," 2]g(9(yG', 2G)," 2G)
([, 2],% y]g(g(wG’ 2G'),7yG')
[z, y],Y 2]9(9(=G", yG'),¥ 2G")
= (ly,2," 2[[z, 2],* yll[z, y].,Y 7]
9(9(yG’', 2G" )G " 2G")g(g(2G', 2G")G'* G)
9(g(2G",yGG' Y xG") = 1, as required.

5. {*z,2y} = Fa,2ylg(P2G' F yG') =% ([z,y]g(xG’,yG")) =* {x,y}. Thus, we have shown that {,} has all
the properties to be a Lie product.

Now suppose that G is a group having a Lie product defined on it and so C¢(G') = Z(G). Define
¢ :GxG — Z(G) by lz,y) = {x,y} '[z,y] as in Theorem 3.4. Now by Theorem 3.4 we know that
for all z,y,2 € G we have l(x,z) = 1,4(zy,z) = l(x,2)L(y,2),(x,yz) = L(z,y)l(y,z). It follows that
lz,1) = 4(1,2) = 1 and L(z~1y) = l(z,y™') = l(z,y)~'. Hence, {(x,[y,2]) = 1. Thus, if z € G and
w € G', then {(z,w) = f(w,x) = 1.

We define g : g X g — Z(G) by saying for all x,y € G, that g(zG’,yG’) = {(z,y)~'. Note that if
2G' = 2,G’ and yG' =y, G’ , then 27w, y; 'y € G'. Tt follows that £(x1,y1) = £(x,y1) = (=, y) and hence G
is well defined. Now using the properties of ¢ and the fact that g maps into the center, it is easy to check that

g satisfies the appropriate conditions above.
Hence, for all z,y € G, g(zG’,yG')~! = l(x,y) = {z,y} " '[x,y]. It follows that {z,y} = [z,y]g(zG’,yG")

is defined as in the theorem, as required. O

Remark 3.8 If G is a dihedral group of order 2", then the function g of Theorem 3.7 can be viewed as a
homomorphism from the alternating tensor square of g & 7o X Lo into Z(G) = Zy. As the alternating tensor

square of Zo X Zo is a module over Zs of dimension 3, we can construct functions g satisfying the conditions

of Theorem 3.7. It follows that the trivial consequence can never hold for any dihedral 2 -group.

Remark 3.9 If G is an abelian group, then for all subgroups H of G we must have Co(H) = Z(G) = G.
Hence, by Theorem 3.7 all possible Lie products must arise as in the theorem. Notice that all such functions
g must factor through the alternating tensor square of G. It follows that if G is an abelian group with trivial

alternating square (such as a rank 1 group), then the trivial consequence must hold for G.
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The following corollary is a slight extension of Corollary 3.5

Corollary 3.10 Let 1 # G be a perfect group with a Lie product {,} so that Cg(G’) is abelian. Then, for all
x,y € G, we have {z,y} = [z,y].

Proof We know from Lemma 3.1 3 that G’ < C¢(G')G’. Thus, G = C¢(G')G’. Since G is perfect and C(G’)

is abelian, we must have G = G’. Hence, C(G’') = Z(G). Now the result follows from Theorem 3.7. O

The next result allows us to determine the possible Lie products for perfect groups.

Theorem 3.11 Suppose that G is a perfect group with Lie product {,}. Then there is a subgroup H of
G that is perfect so that G = HCqg(H) (that is, G is a central product), and for all z,y € G with
xr = hlk‘l,y = hgkg,hl,hg € H, kl,k‘Q S C(;(H), we have {Z‘,y} = [hl,hg} .

Proof Let H =G K = Cg(G’'). As above, since G is perfect, G = HK . Note that H', K’ < G, and since
% is abelian, we get G = H'K’. Now for z,y € G, we can write x = hi1ky,y = hoky with hi,ho € H' and
k1,ko € K'. This gives:

{z,y} = {hik1, hoko} = " {k1, hoko}{h1, hoko}

by Lemma 3.1 = {hy, hoko}
= {h1, ha} "2 {k1, ka}
again by Lemma 3.1 = {hy,ha}.

Notice that we have from Theorem 2.1 5 that {[z,y], he} = [{z,y}, he] € H' and so it follows that in
the above equations {hy,he} € H'. Thus, for all z,y € G, we have {z,y} € H'. Hence, H = H' and H is
perfect. Also note that {,} defines a Lie product on the group H and with respect to this Lie product that
H' ={H,H} = H. It follows that Cy(H') = Z(H). Now by Corollary 3.10 we must have for all z,y € H,
that {z,y} = [z,vy], as required. O

We give one more result and a few corollaries. This next result gives further information about the
structure of Cg(G’) for a group with a Lie product. In this result we again let Z(G) = {g € G| {g,2} =
1, for all z € G}.

Theorem 3.12 Let G be a group with Lie product {,}. Then Cg((gg)/) is isomorphic to a subgroup of

11 (Ca(G)NCe(G")). In particular, Cg((gg)/) must be nilpotent of class < 2.
yeG

Proof Note that for all a,b,y € G,z € Cc(G’), we have by Theorem 2.1 5 that [{y,z}, [a,b]] = {[y, 2], [a,b]} =
[ly,z],{a,b}] = 1, as [y,z] € Cg(G’). It follows that {y,z} € Ce(G’). Furthermore, {y,z2} € Cg(G’) since
both [y,z] and {z,y} ![z,y] € Cc(G’), by Lemma 3.1 2. Now we can define for all y € G, T, : C(G') —
Ca(G)NCe(G) by T,(z) = {y,z}. Note that for all y € G we have T, (z122) = {y, z122} = {y, z1} “{y, 2} =

{y, 1 Hy, z2} and we have that each T} is a homomorphism. Notice that

N kex(T,) = {z € Ca(@)| {y.a} = 1, for all y € G} = Z(G).
yeG
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Note that it is clear that Z(G) < Cg(G’). The result now follows as Cg(G’) is nilpotent of class < 2. O
Corollary 3.13 Let G be a group having a Lie product {,} so that Cq(G') N Cq(G’') = 1. Then for all
x € G,y €§', we must have {z,y} = [z,y].

Proof By Theorem 3.12 we have Cq(G') = Z(G). It follows that for all a, b, c € G we have {{a,b} *[a,b],c} =
1. Thus, we obtain

1 = {{%b}_l[aab]ac}
= {7 a,0], c}H{{a, b} L ¢}
by lemma 2.1 4 = {a’b}il{[a,b]w} {a’b}il{{%b}ﬂ}_l
= B ({(a,b], e} {{a, b}, e} ),

It follows that {[a,b],c} = {{a,b},c}. Now using Lemma 2.1 5 we get

[{aa b}vc] = {[a’ bLC}.

The result now follows from a simple calculation. O
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