Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2019) 43: 2888 - 2897
© TÜBİTAK
doi:10.3906/mat-1904-55

Multiplicative Lie algebras

Gary L. WALLS* ${ }^{(1)}$
Department of Mathematics, Southeastern Louisiana University Hammond, Louisiana, USA

Received: 08.04.2019

- Accepted/Published Online: 15.10.2019

Final Version: 22.11.2019

Abstract

A multiplicative Lie algebra is a group together with a "bracket function" that satisfies the basic properties of the commutator function. This paper investigates the construction of such functions.

Key words: Lie algebra, perfect group, Lie product

1. Introduction

In his paper [1], Graham Ellis defined the concept of a multiplicative Lie algebra. According to his definition we have the following.

Definition 1.1 A multiplicative Lie algebra consists of a group G together with a bracket function $\{\}:, G \times G \rightarrow$ G (called a Lie product) satisfying the following identities for all $x, y, z \in G$:

1. $\{x, x\}=1$,
2. $\{x, y z\}=\{x, y\}^{y}\{x, z\}$,
3. $\{x y, z\}={ }^{x}\{y, z\}\{x, z\}$,
4. $\left\{\{y, x\},{ }^{x} z\right\}\left\{\{x, z\},{ }^{z} y\right\}\left\{\{z, y\},{ }^{y} x\right\}=1$,
5. ${ }^{z}\{x, y\}=\left\{{ }^{z} x,{ }^{z} y\right\}$.

In this definition, ${ }^{y} x$ is short for $y x y^{-1},[x, y]$ is the commutator $x y x^{-1} y^{-1}$, and $(i v)$ is a Jacobi-Witt-Hall type identity. The study of such properties began in the papers by MacDonald and Neumann ([2], [3]), who were interested in the interrelationships between various commutator laws. Graham Ellis was interested in showing that any universal commutator identity was a consequence of the identities in the above definition.

The papers by MacDonald and Neumann claimed to give a set of commutator identities from which all universal commutator identities can be deduced. However, they assumed an identity of the form $\{\{x, y\}, z\}=$ $\left\{x y x^{-1} y^{-1}, z\right\}$ and they defined conjugation in terms of the commutator they had defined.

[^0]
WALLS/Turk J Math

2. Preliminaries

From [1] the results of the following theorem are easy consequences of Definition 1.1. We include the proofs for the sake of completeness.

Theorem 2.1 Let G be a group. Then, for all $x, y, z, a, b \in G$, we have the following:

1. $\{1, x\}=\{x, 1\}=1$,
2. $\{x, y\}=\{y, x\}^{-1}$,
3. $\{x, y\}\{a, b\}={ }^{[x, y]}\{a, b\}$ (in particular we have that $\{x, y\}$ and $[x, y]$ must commute),
4. $\left\{x^{-1}, y\right\}={ }^{x^{-1}}\{x, y\}^{-1}$ and $\left\{x, y^{-1}\right\}=y^{y^{-1}}\{x, y\}^{-1}$,
5. $[\{x, y\}, z]=\{[x, y], z\}$.

Proof

1. Now $1=\{1, x\}=\{1 \cdot 1, x\}={ }^{1}\{1, x\}\{1, x\}=\{1, x\}^{2}$. It follows that $1=\{1, x\}$. Similarly, $\{x, 1\}=1$.
2. Now

$$
\begin{aligned}
1=\{x y, x y\} & ={ }^{x} \quad\{y, x y\}\{x, x y\} \\
& ={ }^{x}\left(\{y, x\}^{x}\{y, y\}\right)\{x, x\}{ }^{x}\{x, y\} \\
& ={ }^{x}\{y, x\}^{x}\{x, y\}=^{x}(\{y, x\}\{x, y\}) .
\end{aligned}
$$

It follows that $\{y, x\}\{x, y\}=1$, giving the result.
3. For this proof we need to compute $\{x a, y b\}$ in two different ways. First we get

$$
\begin{aligned}
\{x a, y b\} & ={ }^{x}\{a, y b\}\{x, y b\} \\
& ={ }^{x}\left(\{a, y\}^{y}\{a, b\}\right)\{x, y\}^{y}\{x, b\} \\
& ={ }^{x}\{a, y\}^{x y}\{a, b\}\{x, y\}^{y}\{x, b\}
\end{aligned}
$$

Secondly we get

$$
\begin{aligned}
\{x a, y b\} & =\{x a, y\}^{y}\{x a, b\} \\
& ={ }^{x}\{a, y\}\{x, y\}^{y}\left(^{x}\{a, b\}\{x, b\}\right) \\
& ={ }^{x}\{a, y\}\{x, y\}^{y x}\{a, b\}^{y}\{x, b\} .
\end{aligned}
$$

Canceling like terms gives

$$
{ }^{x y}\{a, b\}\{x, y\}=\{x, y\}^{y x}\{a, b\} .
$$

Now, replacing a by $a^{x^{-1} y^{-1}}$ and b by $b^{x^{-1} y^{-1}}$ gives

$$
{ }^{[x, y]}\{a, b\}\{x, y\}=\{x, y\}\{a, b\}
$$

Thus,

$$
{ }^{[x, y]}\{a, b\}={ }^{\{x, y\}}\{a, b\}
$$

as required.
4. Now

$$
1=\left\{x^{-1} x, y\right\}=^{x^{-1}}\{x, y\}\left\{x^{-1}, y\right\}
$$

It follows that $\left\{x^{-1}, y\right\}=x^{x^{-1}}\{x, y\}^{-1}$. Similarly, $\left\{x, y^{-1}\right\}=y^{y^{-1}}\{x, y\}^{-1}$.
5. Now

$$
\begin{aligned}
{[\{x, y\}, z] } & =\{x, y\}^{z}\{x, y\}^{-1} \text { and by } 4 \\
& =\{x, y\}^{z x}\left\{x^{-1}, y\right\} \\
& =\{x, y\}^{[z, x] x z}\left\{x^{-1}, y\right\} \text { and by } 3 \\
& =\{x, y\}^{\{z, x\} x z}\left\{x^{-1}, y\right\} \\
& =\{x, y\}\{x, z\}^{-1} x z\left\{x^{-1}, y\right\}\{x, z\} \text { again by } 4 \\
& =\{x, y\}^{x}\left\{x^{-1}, z\right\}^{x z}\left\{x^{-1}, y\right\}\{x, z\} \\
& =\{x, y\}^{x}\left(\left\{x^{-1}, z\right\}^{z}\left\{x^{-1}, y\right\}\right)\{x, z\} \\
& =\{x, y\}^{x}\left\{x^{-1}, z y\right\}\{x, z\} \text { again by } 4 \\
& ={ }^{x}\left\{x^{-1}, y\right\}^{-1} x\left\{x^{-1}, y z\right\}\{x, z\} \\
& ={ }^{x}\left\{x^{-1}, y\right\}^{-1} x\left\{x^{-1}, y\left(y^{-1} z y\right)\right\}\{x, z\} \\
& ={ }^{x}\left\{x^{-1}, y\right\}^{x}\left(\left\{x^{-1}, y\right\}^{y}\left\{x^{-1}, y^{-1} z y\right\}\right)\{x, z\} \\
& ={ }^{x y}\left\{x^{-1}, y^{-1} z y\right\}\{x, z\} \\
& ={ }^{x}\left\{y x^{-1} y^{-1}, z\right\}\{x, z\} \\
& =\left\{x y x^{-1} y^{-1}, z\right\}=\{[x, y], z\}, \text { as required. }
\end{aligned}
$$

This completes the proof.
Now let us look at some examples.

Example 2.2 Let G be a group. We can make G into a multiplicative Lie algebra by defining either for all $x, y \in G,\{x, y\}=1$ or for all $x, y \in G,\{x, y\}=[x, y]=x y x^{-1} y^{-1}$. If these are the only possible Lie products that can be defined on G, we say the trivial consequence holds for G.

Example 2.3 Any Lie algebra over \mathbb{Z} is a multiplicative Lie algebra with $\{x, y\}$ defined to be the ordinary Lie bracket.

Example 2.4 (Ellis [1]) Let E be a group and let $P=\frac{E}{Z(E)}$. Define an action of P on E by for $u \in E, x \in P$ (letting $x=\bar{x} Z(E), \bar{x} \in E),{ }^{x} u=\bar{x} u \bar{x}^{-1}$. Let G be the semidirect product of E by P using the above action. Then, $\left\{\left(u_{1}, x_{1}\right),\left(u_{2}, x_{2}\right)\right\}=\left(\left[u_{1} \overline{x_{1}}, u_{2} \overline{x_{2}}\right]\right)$ defines a Lie product on G, which is in general different from the usual commutator defined on G.

Example 2.5 In general, suppose that G is a group, $H \leq G$, and $f: G \rightarrow H$ is a homomorphism so that for all $x \in G, x^{-1} f(x) \in C_{G}(H)$ (note that if $G=H \times K$, then π_{H}, the projection function onto H, is such a homomorphism). Then defining for all $x, y \in G\{x, y\}=[f(x), f(y)]$ gives a Lie product on G. Furthermore, if $H \leq G$ and $G=H C_{G}(H)$, we can define a Lie product on G by defining for $x=h_{1} k_{1}$ and $y=h_{2} k_{2}$ with $h_{1}, h_{2} \in H, k_{1}, k_{2} \in K,\{x, y\}=\left[h_{1}, h_{2}\right]$.

Example 2.6 Let $G=\langle a\rangle \times\langle b\rangle$ and suppose that $x \in G$ is such that $|x|$ divides both $|a|$ and $|b|$ (here we are assuming that anything will divide infinity). Now we can define a Lie product on G by $\left\{a^{i_{1}} b^{j_{1}}, a^{i_{2}} b^{j_{2}}\right\}=$ $x^{i_{1} j_{2}-i_{2} j_{1}}$.

Here are a few remarks.

Remark 2.7 If \mathbb{Q} is the additive group of rational numbers, then if $\{$,$\} is a Lie product defined on \mathbb{Q}$, we must have for all $x, y \in \mathbb{Q},\{x, y\}=0$.

Remark 2.8 Let F be any free group. Then, if $\{$,$\} is a Lie product defined on F$, we must have either for all $x, y \in F,\{x, y\}=1$ or for all $x, y \in F,\{x, y\}=x y x^{-1} y^{-1}=[x, y]$. That is, the trivial consequence must hold for free groups.

The results of the last two remarks could be determined directly from the definition of a Lie product, but as they will follow from some general results given later, their proofs are omitted for now. The last remark is actually found in [1] and in [3]. These two remarks serve to motivate the following question.

Question For which groups must the trivial consequence hold?

3. Some results

Note that any subgroup of a group that can be defined in terms of commutators will have an analog defined by a given Lie product. We will indicate (in general) these subgroups by using script in the usual notations. Thus, if G is a group and $\{$,$\} is a Lie product of G$, we define $\mathcal{G}^{\prime}:=\langle\{\{x, y\} \mid x, y \in G\}\rangle$ and $\mathcal{Z}(G):=\{y \in$ $G \mid\{x, y\}=1$ for all $x \in G\}$. Note that both \mathcal{G}^{\prime} and $\mathcal{Z}(G)$ are normal subgroups of G. Also, if H and K are subsets of G, we define $\{H, K\}:=\langle\{\{H, K\} \mid h \in H, k \in K\}\rangle$. In particular, $\mathcal{G}^{\prime}=\{G, G\}$.

The next result is a slight extension of the above remarks:

Lemma 3.1 Let G be a group with Lie product $\{$,$\} . Then we must have:$

1. $\left\{C_{G}\left(\mathcal{G}^{\prime}\right), G^{\prime}\right\}=1$,
2. for all $x, y \in G\{x, y\}^{-1}[x, y] \in C_{G}\left(\mathcal{G}^{\prime}\right)$,
3. $G^{\prime} \leq \mathcal{G}^{\prime} C_{G}\left(\mathcal{G}^{\prime}\right)$,
4. For all $a, b, c, d \in G,\left\{\{a, b\}^{-1}[a, b],\{c, d\}^{-1}[c, d]\right\}=\{\{a, b\},\{c, d\}\}[\{a, b\},\{c, d\}]^{-1}$,
5. If $\left\{C_{G}(\mathcal{G}), C_{G}(\mathcal{G})\right\}=1$, then for all $a, b, c, d \in G$, we get $\{\{a, b\},\{c, d\}\}=[\{a, b\},\{c, d\}]$.

WALLS/Turk J Math

Proof

1. From Theorem 2.1 parts 5 and 2 we know that $\{x,[a, b]\}=[x,\{a, b\}]$ for all $x, a, b \in G$. Now if $x \in C_{G}\left(\mathcal{G}^{\prime}\right)$ we get $\{x,[a, b]\}=1$. The result follows.
2. This follows directly from Theorem 2.13.
3. This follows from 2 .
4. Now

$$
\begin{aligned}
\left\{\{a, b\}^{-1}[a, b],\{c, d\}^{-1}[c, d]\right\} & =\{a, b\}^{-1}\left\{[a, b],\{c, d\}^{-1}[c, d]\right\}\left\{\{a, b\}^{-1},\{c, d\}^{-1}[c, d]\right\} \\
& =\left\{\{a, b\}^{-1},\{c, d\}^{-1}[c, d]\right\} \text { by } 1 \text { and } 2 \\
& =\left\{\{a, b\}^{-1},\{c, d\}^{-1}\right\}^{\{c, d\}^{-1}\left\{\{a, b\}^{-1},[c, d]\right\} \text { by Theorem } 2.14} \\
& =\{a, b\}^{-1}\left\{\{a, b\},\{c, d\}^{-1}\right\}^{-1}\{c, d\}^{-1}\{a, b\}^{-1}\{\{a, b\},[c, d]\}^{-1} \text { by Theorem 2.12 } \\
& =\{a, b\}^{-1}\{c, d\}^{-1}\{\{a, b\},\{c, d\}\}\{c, d\}^{-1}\{a, b\}^{-1}\{\{a, b\},[c, d]\}^{-1} .
\end{aligned}
$$

Now since $\{a, b\}^{-1}[a, b]$ and $\{c, d\}^{-1}[c, d]$ are in $C_{G}\left(\mathcal{G}^{\prime}\right)$ we obtain

$$
\begin{aligned}
\left\{\{a, b\}^{-1}[a, b],\{c, d\}^{-1}[c, d]\right\} & =[\{a, b\},\{c, d\}]\{\{a, b\},\{c, d\}\}\{\{a, b\},[c, d]\}^{-1} \\
& =\{\{a, b\},\{c, d\}\}\{\{a, b\},[c, d]\}^{-1} \\
& =\{\{a, b\},\{c, d\}\}[\{a, b\},\{c, d\}]^{-1} \text { by using Theorem } 2.15
\end{aligned}
$$

Note that we have used the fact from Theorem 2.13 that $\{x, y\}$ and $[x, y]$ must commute.
5. This follows from 4.

We can use this result to prove the remark about free groups (Remark 2.8).

Theorem 3.2 Let F be a free group. Then, if $\{$,$\} is a Lie product defined on F$, we must have either for all $x, y \in F,\{x, y\}=1$ or for all $x, y \in F,\{x, y\}=x y x^{-1} y^{-1}=[x, y]$.

Proof The important fact that we need about (nonabelian) free groups is that the centralizer of a nontrivial normal subgroup must be trivial. Note that Theorem 2.13 implies that for all $a, b, x, y \in F,\{x, y\}^{-1}[x, y] \in$ $C_{G}(\{a, b\})$. Hence, we must have for all $x, y \in F,\{x, y\}^{-1}[x, y] \in C_{F}\left(\mathcal{F}^{\prime}\right)$.

It follows that either $\mathcal{F}^{\prime}=1$ and thus for all $x, y \in F,\{x, y\}=1$ or $C_{F}\left(\mathcal{F}^{\prime}\right)=1$ and thus for all $x, y \in F,\{x, y\}=[x, y]$.

Theorem 3.3 Let G be a group having the following property:
for all $1 \neq H \triangleleft G$ so that $G^{\prime} \leq H C_{G}(H)$ we must have $C_{G}(H)=1 . \quad\left({ }^{*}\right)$
Then the trivial consequence must hold for G.

WALLS/Turk J Math

Proof From Lemma 3.13 we have $G^{\prime} \leq \mathcal{G}^{\prime} C_{G}\left(\mathcal{G}^{\prime}\right)$. The property $\left(^{*}\right)$ now implies that either $\mathcal{G}^{\prime}=1$ and for all $x, y \in G,\{x, y\}=1$ or $C_{G}\left(\mathcal{G}^{\prime}\right)=1$, which implies, as above, for all $x, y \in G,\{x, y\}=[x, y]$, as required.

The next result is a slight extension of the following results.

Theorem 3.4 Let G be a group and suppose that $\{$,$\} is a Lie product defined on G$. Define $\ell: G \times G \rightarrow C_{G}\left(\mathcal{G}^{\prime}\right)$ by for all $x, y \in G, \ell(x, y)=\{x, y\}^{-1}[x, y]$. Then ℓ satisfies properties 1, 2, 3, and 5 of the definition of a Lie product, Definition 1.1. Furthermore, $\ell_{1}=\left.\ell\right|_{C_{G}\left(\mathcal{G}^{\prime}\right)}$ is a Lie product on $C_{G}\left(\mathcal{G}^{\prime}\right)$.

Proof We show that ℓ and ℓ_{1} satisfy the appropriate conditions.
For all $x, y, z \in G$:
(i) $\ell(x, x)=\{x, x\}^{-1}[x, x]=1$,
(ii) $\ell(x, y z)=\{x, y z\}^{-1}[x, y z]=\left(\{x, y\}^{y}\{x, z\}\right)^{-1}\left([x, y]^{y}[x, z]\right)$

$$
={ }^{y}\{x, z\}^{-1}\left(\{x, y\}^{-1}[x, y]\right)^{y}[x, z]
$$

$$
\begin{equation*}
=\left(\{x, y\}^{-1}[x, y]\right)^{y}\left(\{x, z\}^{-1}[x, z]\right) \tag{3.1}
\end{equation*}
$$

$$
=\ell(x, y)^{y} \ell(x, z)
$$

(iii) $\ell(x y, z)=^{x} \ell(y, z) \ell(x, z)$ is similar to (ii),

$$
(v)^{z} \ell(x, y)=^{z}\left(\{x, y\}^{-1}[x, y]\right)=\left\{^{z} x,^{z} y\right\}^{-1}\left[{ }^{z} x,{ }^{z} y\right]
$$

$$
=\ell\left({ }^{z} x,{ }^{z} y\right)
$$

In the next part of the proof we are assuming that $x, y, z \in C_{G}\left(\mathcal{G}^{\prime}\right)$.
(iv) Note that

$$
\begin{aligned}
\ell\left(\ell(y, x),{ }^{x} z\right) & =\ell\left(\{y, x\}^{-1}[y, x],,^{x} z\right) \\
& =\{y, x\}^{-1} \ell\left([y, x],{ }^{x} z\right) \ell\left(\{y, x\}^{-1},,^{x} z\right) \\
& =\ell\left([y, x],,^{x} z\right) \ell\left(\{y, x\}^{-1},{ }^{x} z\right) \\
& =\left\{[y, x],{ }^{x} z\right\}^{-1}\left[[y, x],,^{x} z\right]\left\{\{y, x\}^{-1},{ }^{x} z\right\}\left[\{y, x\}^{-1},,^{x} z\right] \\
= & \text { by Proposition } 2.14 \\
= & {\left[\{y, x\},{ }^{x} z\right]^{-1}\left[[y, x],,^{x} z\right]\{y, x\}^{-1}\left\{\{y, x\},{ }^{x} z\right\} } \\
= & \text { by Proposition } 2.14,5 \\
= & {\left[[y, x],,^{x} z\right]\left\{\{y, x\},{ }^{x} z\right\} . } \\
& \ell\left(\ell(y, x),{ }^{x} z\right) \ell\left(\ell(x, z),{ }^{z} y\right) \ell\left(\ell(z, y),{ }^{y} x\right)= \\
\text { Thus, } & =\left[[y, x],{ }^{x} z\right]\left\{\{y, x\},{ }^{x} z\right\}\left[[x, z],{ }^{z} y\right]\left\{\{x, z\},{ }^{z} y\right\}\left[[z, y],{ }^{x} z\right]\left\{\{y, x\},{ }^{x} z\right\} \\
= & {\left[[y, x],{ }^{x} z\right]\left[[x, z],{ }^{z} y\right]\left[[z, y],{ }^{z} y\right]\left\{\{y, x\},{ }^{x} z\right\}\left\{\{x, z\},{ }^{z} y\right\}\left\{\{z, y\},{ }^{y} x\right\}=1 . }
\end{aligned}
$$

Note that we are using the fact that if $x \in C_{G}\left(\mathcal{G}^{\prime}\right)$, then $[[a, b], x] \in C_{G}\left(\mathcal{G}^{\prime}\right)$.

WALLS/Turk J Math

Corollary 3.5 Let G be a group and suppose that $\{$,$\} is a Lie product defined on G$. Assume that $C_{G}\left(\mathcal{G}^{\prime}\right)$ is an abelian group for which the trivial consequence must hold. (That is, we must have $\left\{C_{G}\left(\mathcal{G}^{\prime}\right), C_{G}\left(\mathcal{G}^{\prime}\right)\right\}=1$.) Then, for all $x, y \in C_{G}\left(\mathcal{G}^{\prime}\right) \mathcal{G}^{\prime}$, we must have $\{x, y\}=[x, y]$. Furthermore, if G is a perfect group, then for all $x, y \in G$, we must have $\{x, y\}=[x, y]$.

Proof Since $\ell(x, y)=1$ for all $x, y \in C\left(\mathcal{G}^{\prime}\right)$, we must have for all $a, b, c, d \in G$ that $\left\{\{a, b\}^{-1}[a, b],\{c, d\}^{-1}[c, d]\right\}=$ 1. Some simple calculations similar to the above calculations (see Theorem 3.13) give that for all $a, b, c, d \in$ $G,\{\{a, b\},\{c, d\}\}=[\{a, b\},\{c, d\}]$.

It then follows that for all $x, y \in \mathcal{G}^{\prime},\{x, y\}=[x, y]$. Now some easy calculations give that for all $x, y \in C_{G}\left(\mathcal{G}^{\prime}\right) \mathcal{G}^{\prime},\{x, y\}=[x, y]$. The last comment follows from the fact that $G^{\prime} \leq C_{G}\left(\mathcal{G}^{\prime}\right) \mathcal{G}^{\prime}$ (Theorem 3.12).

Lemma 3.6 Suppose that G is a perfect group and $C_{G}\left(\mathcal{G}^{\prime}\right)$ is abelian. Then $C_{G}\left(\mathcal{G}^{\prime}\right)=Z(G)$.
Proof Since G is perfect, we have from Theorem 3.13 that $G=C_{G}\left(\mathcal{G}^{\prime}\right) \mathcal{G}^{\prime}$. It follows that $\left[G, C_{G}\left(\mathcal{G}^{\prime}\right)\right]=$ $\left[C_{G}\left(\mathcal{G}^{\prime}\right), C_{G}\left(\mathcal{G}^{\prime}\right)\right]=1$. The result follows.
This result was an inspiration for the following theorem.

Theorem 3.7 Let G be a group and suppose that there is a function $g: \frac{G}{G^{\prime}} \times \frac{G}{G^{\prime}} \rightarrow Z(G)$ that satisfies the following conditions for all $x, y, z \in \frac{G}{G^{\prime}}$:

1. $g(x y, z)=g(x, z) g(y, z)$,
2. $g(x, y z)=g(x, y) g(x, z)$,
3. $g(x, x)=1$,
4. $g\left(g(y, x) G^{\prime},^{x} y\right) g\left(g(x, z) G^{\prime},{ }^{z} y\right) g\left(g(z, y) G^{\prime},{ }^{y} x\right)=1$.

Then, for all $x, y \in G$, we can define $\{x, y\}=[x, y] g\left(x G^{\prime}, y G^{\prime}\right)$. This defines a Lie product on G. Furthermore, if G is a group having a Lie product such that $C_{G}\left(\mathcal{G}^{\prime}\right)=Z(G)$, then the Lie product on G must have arisen in this way.

Proof First, we will show that if g has the desired properties, then $\{$,$\} does satisfy the properties to be a$ Lie product.

1. $\{x, x\}=[x, x] g\left(x G^{\prime}, x G^{\prime}\right)=1$,
2.

$$
\begin{aligned}
\{x y, z\}=[x y, z] g\left(x y G^{\prime}, z G^{\prime}\right) & ={ }^{x}[y, z][x, z] g\left(x G^{\prime}, z G^{\prime}\right) g\left(y G^{\prime}, z G^{\prime}\right) \\
& ={ }^{x}\left([y, z] g\left(y G^{\prime}, z G^{\prime}\right)\right)[x, z] g\left(x G^{\prime}, z G^{\prime}\right)={ }^{x}\{y, z\}\{x, z\}
\end{aligned}
$$

3. $\{x, y z\}=\{x, y\}^{y}\{x, z\}$ and the proof is similar to the proof of 2.

WALLS/Turk J Math

4. Now notice that

$$
\begin{align*}
\left\{\{y, x\},^{x} z\right\} & =\left\{[y, x] g\left(y G^{\prime}, x G^{\prime},{ }^{x} z\right\}\right. \tag{3.2}\\
& =\left\{g\left(y G^{\prime}, x G^{\prime}\right)[y, x],{ }^{x} z\right\} \tag{3.3}\\
& =g\left(y G^{\prime}, x G^{\prime}\right)\left\{[y, x],{ }^{x} z\right\}\left\{g\left(y G^{\prime}, x G^{\prime}\right),{ }^{x} z\right\} \tag{3.4}\\
& =\left[[y, x],{ }^{x} z\right] g\left([y, x] G^{\prime}, z G^{\prime}\right)\left\{g\left(g\left(y G^{\prime}, x G^{\prime}\right) G^{\prime},^{x} z G^{\prime}\right\}\right. \tag{3.5}\\
& =\left[[y, x],{ }^{x} z\right] g\left(g\left(y G^{\prime}, x G^{\prime}\right) G^{\prime},^{x} z G^{\prime}\right) \tag{3.6}
\end{align*}
$$

where we have used the fact that $g(1, x)=1$.
Using similar reasoning we can conclude that

$$
\begin{aligned}
\left\{\{y, x\},{ }^{x} z\right\}\left\{\{x, z\},{ }^{x} y\right\}\left\{\{z, y\},{ }^{y} x\right\}= & {\left[[y, x],{ }^{x} z\right] g\left(g\left(y G^{\prime}, x G^{\prime}\right),{ }^{x} z G^{\prime}\right) } \\
& {\left[[x, z],{ }^{z} y\right] g\left(g\left(x G^{\prime}, z G^{\prime}\right),{ }^{z} y G^{\prime}\right) } \\
& {\left[[z, y],{ }^{y} x\right] g\left(g\left(z G^{\prime}, y G^{\prime}\right),{ }^{y} x G^{\prime}\right) } \\
= & {\left[[y, x],{ }^{x} z\right]\left[[x, z],{ }^{z} y\right]\left[[z, y],{ }^{y} x\right] } \\
& g\left(g\left(y G^{\prime}, x G^{\prime}\right) G^{\prime}, x z G^{\prime}\right) g\left(g\left(x G^{\prime}, z G^{\prime}\right) G^{\prime},{ }^{z} G^{\prime}\right) \\
& g\left(g\left(z G^{\prime}, y G^{\prime}\right) G^{\prime},{ }^{y} x G^{\prime}\right)=1, \text { as required. }
\end{aligned}
$$

5. $\left\{{ }^{z} x,{ }^{z} y\right\}=\left[{ }^{z} x,{ }^{z} y\right] g\left({ }^{z} x G^{\prime},{ }^{z} y G^{\prime}\right)={ }^{z}\left([x, y] g\left(x G^{\prime}, y G^{\prime}\right)\right)={ }^{x}\{x, y\}$. Thus, we have shown that $\{$,$\} has all$ the properties to be a Lie product.

Now suppose that G is a group having a Lie product defined on it and so $C_{G}\left(\mathcal{G}^{\prime}\right)=Z(G)$. Define $\ell: G \times G \rightarrow Z(G)$ by $\ell(x, y)=\{x, y\}^{-1}[x, y]$ as in Theorem 3.4. Now by Theorem 3.4 we know that for all $x, y, z \in G$ we have $\ell(x, x)=1, \ell(x y, z)=\ell(x, z) \ell(y, z), \ell(x, y z)=\ell(x, y) \ell(y, z)$. It follows that $\ell(x, 1)=\ell(1, x)=1$ and $\ell\left(x^{-1}, y\right)=\ell\left(x, y^{-1}\right)=\ell(x, y)^{-1}$. Hence, $\ell(x,[y, z])=1$. Thus, if $x \in G$ and $w \in G^{\prime}$, then $\ell(x, w)=\ell(w, x)=1$.

We define $g: \frac{G}{G^{\prime}} \times \frac{G}{G^{\prime}} \rightarrow Z(G)$ by saying for all $x, y \in G$, that $g\left(x G^{\prime}, y G^{\prime}\right)=\ell(x, y)^{-1}$. Note that if $x G^{\prime}=x_{1} G^{\prime}$ and $y G^{\prime}=y_{1} G^{\prime}$, then $x_{1}^{-1} x, y_{1}^{-1} y \in G^{\prime}$. It follows that $\ell\left(x_{1}, y_{1}\right)=\ell\left(x, y_{1}\right)=\ell(x, y)$ and hence G is well defined. Now using the properties of ℓ and the fact that g maps into the center, it is easy to check that g satisfies the appropriate conditions above.

Hence, for all $x, y \in G, g\left(x G^{\prime}, y G^{\prime}\right)^{-1}=\ell(x, y)=\{x, y\}^{-1}[x, y]$. It follows that $\{x, y\}=[x, y] g\left(x G^{\prime}, y G^{\prime}\right)$ is defined as in the theorem, as required.

Remark 3.8 If G is a dihedral group of order 2^{n}, then the function g of Theorem 3.7 can be viewed as a homomorphism from the alternating tensor square of $\frac{G}{G^{\prime}} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ into $Z(G) \cong \mathbb{Z}_{2}$. As the alternating tensor square of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is a module over \mathbb{Z}_{2} of dimension 3 , we can construct functions g satisfying the conditions of Theorem 3.7. It follows that the trivial consequence can never hold for any dihedral 2-group.

Remark 3.9 If G is an abelian group, then for all subgroups H of G we must have $C_{G}(H)=Z(G)=G$. Hence, by Theorem 3.7 all possible Lie products must arise as in the theorem. Notice that all such functions g must factor through the alternating tensor square of G. It follows that if G is an abelian group with trivial alternating square (such as a rank 1 group), then the trivial consequence must hold for G.

WALLS/Turk J Math

The following corollary is a slight extension of Corollary 3.5
Corollary 3.10 Let $1 \neq G$ be a perfect group with a Lie product $\{$,$\} so that C_{G}\left(\mathcal{G}^{\prime}\right)$ is abelian. Then, for all $x, y \in G$, we have $\{x, y\}=[x, y]$.

Proof We know from Lemma 3.13 that $G^{\prime} \leq C_{G}\left(\mathcal{G}^{\prime}\right) \mathcal{G}^{\prime}$. Thus, $G=C_{G}\left(\mathcal{G}^{\prime}\right) \mathcal{G}^{\prime}$. Since G is perfect and $C_{G}\left(\mathcal{G}^{\prime}\right)$ is abelian, we must have $G=\mathcal{G}^{\prime}$. Hence, $C_{G}\left(\mathcal{G}^{\prime}\right)=Z(G)$. Now the result follows from Theorem 3.7.

The next result allows us to determine the possible Lie products for perfect groups.
Theorem 3.11 Suppose that G is a perfect group with Lie product $\{$,$\} . Then there is a subgroup H$ of G that is perfect so that $G=H C_{G}(H)$ (that is, G is a central product), and for all $x, y \in G$ with $x=h_{1} k_{1}, y=h_{2} k_{2}, h_{1}, h_{2} \in H, k_{1}, k_{2} \in C_{G}(H)$, we have $\{x, y\}=\left[h_{1}, h_{2}\right]$.

Proof Let $H=\mathcal{G}^{\prime}, K=C_{G}\left(\mathcal{G}^{\prime}\right)$. As above, since G is perfect, $G=H K$. Note that $H^{\prime}, K^{\prime} \triangleleft G$, and since $\frac{G}{H^{\prime} K^{\prime}}$ is abelian, we get $G=H^{\prime} K^{\prime}$. Now for $x, y \in G$, we can write $x=h_{1} k_{1}, y=h_{2} k_{2}$ with $h_{1}, h_{2} \in H^{\prime}$ and $k_{1}, k_{2} \in K^{\prime}$. This gives:

$$
\begin{aligned}
\{x, y\}=\left\{h_{1} k_{1}, h_{2} k_{2}\right\} & =h_{1}\left\{k_{1}, h_{2} k_{2}\right\}\left\{h_{1}, h_{2} k_{2}\right\} \\
\text { by Lemma 3.1 } & =\left\{h_{1}, h_{2} k_{2}\right\} \\
& =\left\{h_{1}, h_{2}\right\}^{h_{2}}\left\{k_{1}, k_{2}\right\} \\
\text { again by Lemma 3.1 } & =\left\{h_{1}, h_{2}\right\} .
\end{aligned}
$$

Notice that we have from Theorem 2.15 that $\left\{[x, y], h_{2}\right\}=\left[\{x, y\}, h_{2}\right] \in H^{\prime}$ and so it follows that in the above equations $\left\{h_{1}, h_{2}\right\} \in H^{\prime}$. Thus, for all $x, y \in G$, we have $\{x, y\} \in H^{\prime}$. Hence, $H=H^{\prime}$ and H is perfect. Also note that $\{$,$\} defines a Lie product on the group H$ and with respect to this Lie product that $\mathcal{H}^{\prime}=\{H, H\}=H$. It follows that $C_{H}\left(\mathcal{H}^{\prime}\right)=Z(H)$. Now by Corollary 3.10 we must have for all $x, y \in H$, that $\{x, y\}=[x, y]$, as required.

We give one more result and a few corollaries. This next result gives further information about the structure of $C_{G}\left(\mathcal{G}^{\prime}\right)$ for a group with a Lie product. In this result we again let $\mathcal{Z}(\mathcal{G})=\{g \in G \mid\{g, x\}=$ 1, for all $x \in G\}$.

Theorem 3.12 Let G be a group with Lie product $\{$,$\} . Then \frac{C_{G}\left(\mathcal{G}^{\prime}\right)}{\mathcal{Z}(\mathcal{G})}$ is isomorphic to a subgroup of $\prod_{y \in G}\left(C_{G}\left(\mathcal{G}^{\prime}\right) \cap C_{G}\left(G^{\prime}\right)\right)$. In particular, $\frac{C_{G}\left(\mathcal{G}^{\prime}\right)}{\mathcal{Z}(\mathcal{G})}$ must be nilpotent of class ≤ 2.

Proof Note that for all $a, b, y \in G, x \in C_{G}\left(\mathcal{G}^{\prime}\right)$, we have by Theorem 2.15 that $[\{y, x\},[a, b]]=\{[y, x],[a, b]\}=$ $[[y, x],\{a, b\}]=1$, as $[y, x] \in C_{G}\left(\mathcal{G}^{\prime}\right)$. It follows that $\{y, x\} \in C_{G}\left(G^{\prime}\right)$. Furthermore, $\{y, x\} \in C_{G}\left(\mathcal{G}^{\prime}\right)$ since both $[y, x]$ and $\{x, y\}^{-1}[x, y] \in C_{G}\left(\mathcal{G}^{\prime}\right)$, by Lemma 3.12. Now we can define for all $y \in G, T_{y}: C_{G}\left(\mathcal{G}^{\prime}\right) \rightarrow$ $C_{G}\left(\mathcal{G}^{\prime}\right) \cap C_{G}\left(G^{\prime}\right)$ by $T_{y}(x)=\{y, x\}$. Note that for all $y \in G$ we have $T_{y}\left(x_{1} x_{2}\right)=\left\{y, x_{1} x_{2}\right\}=\left\{y, x_{1}\right\}^{x_{1}}\left\{y, x_{2}\right\}=$ $\left\{y, x_{1}\right\}\left\{y, x_{2}\right\}$ and we have that each T_{y} is a homomorphism. Notice that

$$
\bigcap_{y \in G} \operatorname{ker}\left(T_{y}\right)=\left\{x \in C_{G}\left(\mathcal{G}^{\prime}\right) \mid\{y, x\}=1, \text { for all } y \in G\right\}=\mathcal{Z}(\mathcal{G})
$$

WALLS/Turk J Math

Note that it is clear that $\mathcal{Z}(\mathcal{G}) \leq C_{G}\left(\mathcal{G}^{\prime}\right)$. The result now follows as $C_{G}\left(G^{\prime}\right)$ is nilpotent of class ≤ 2.

Corollary 3.13 Let G be a group having a Lie product $\{$,$\} so that C_{G}\left(\mathcal{G}^{\prime}\right) \cap C_{G}\left(G^{\prime}\right)=1$. Then for all $x \in G, y \in \mathcal{G}^{\prime}$, we must have $\{x, y\}=[x, y]$.

Proof By Theorem 3.12 we have $C_{G}\left(\mathcal{G}^{\prime}\right)=\mathcal{Z}(\mathcal{G})$. It follows that for all $a, b, c \in G$ we have $\left\{\{a, b\}^{-1}[a, b], c\right\}=$ 1. Thus, we obtain

$$
\begin{aligned}
1 & =\left\{\{a, b\}^{-1}[a, b], c\right\} \\
& =\{a, b\}^{-1}\{[a, b], c\}\left\{\{a, b\}^{-1}, c\right\} \\
\text { by lemma } 2.14 & =\{a, b\}^{-1}\{[a, b], c\}\{a, b\}^{-1}\{\{a, b\}, c\}^{-1} \\
& =\{a, b\}^{-1}\left(\{[a, b], c\}\{\{a, b\}, c\}^{-1}\right)
\end{aligned}
$$

It follows that $\{[a, b], c\}=\{\{a, b\}, c\}$. Now using Lemma 2.15 we get

$$
[\{a, b\}, c]=\{[a, b], c\}
$$

The result now follows from a simple calculation.

References

[1] Ellis GJ. On five well-known commutator identities. Journal of the Australian Mathematical Society 1993; 54: 1-19.
[2] MacDonald ID, Neumann BH. On commutator laws in groups. Journal of the Australian Mathematical Society 1988; 43: 95-103.
[3] MacDonald ID, Neumann BH. On commutator laws in groups, 2. Contemporary Mathematics 1990; 109: 113-129.

[^0]: *Correspondence: gary.walls@selu.edu
 2010 AMS Mathematics Subject Classification: 20F40, 20F12

