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1. Introduction
In his paper [1], Graham Ellis defined the concept of a multiplicative Lie algebra. According to his definition
we have the following.

Definition 1.1 A multiplicative Lie algebra consists of a group G together with a bracket function {, } : G×G →
G (called a Lie product) satisfying the following identities for all x, y, z ∈ G :

1. {x, x} = 1 ,

2. {x, yz} = {x, y} y{x, z} ,

3. {xy, z} =x {y, z}{x, z} ,

4. {{y, x}, xz}{{x, z}, zy}{{z, y}, yx} = 1 ,

5. z{x, y} = {zx,z y} .

In this definition, yx is short for yxy−1 , [x, y] is the commutator xyx−1y−1 , and (iv) is a Jacobi–Witt–Hall
type identity. The study of such properties began in the papers by MacDonald and Neumann ([2], [3]), who were
interested in the interrelationships between various commutator laws. Graham Ellis was interested in showing
that any universal commutator identity was a consequence of the identities in the above definition.

The papers by MacDonald and Neumann claimed to give a set of commutator identities from which all
universal commutator identities can be deduced. However, they assumed an identity of the form {{x, y}, z} =

{xyx−1y−1, z} and they defined conjugation in terms of the commutator they had defined.
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2. Preliminaries
From [1] the results of the following theorem are easy consequences of Definition 1.1. We include the proofs for
the sake of completeness.

Theorem 2.1 Let G be a group. Then, for all x, y, z, a, b ∈ G , we have the following:

1. {1, x} = {x, 1} = 1 ,

2. {x, y} = {y, x}−1 ,

3. {x,y}{a, b} =[x,y] {a, b} (in particular we have that {x, y} and [x, y] must commute),

4. {x−1, y} =x−1 {x, y}−1 and {x, y−1} =y−1 {x, y}−1 ,

5. [{x, y}, z] = {[x, y], z} .

Proof

1. Now 1 = {1, x} = {1 · 1, x} =1 {1, x}{1, x} = {1, x}2 . It follows that 1 = {1, x} . Similarly, {x, 1} = 1 .

2. Now

1 = {xy, xy} =x {y, xy}{x, xy}

= x({y, x} x{y, y}){x, x} x{x, y}

= x{y, x} x{x, y} =x ({y, x}{x, y}).

It follows that {y, x}{x, y} = 1 , giving the result.

3. For this proof we need to compute {xa, yb} in two different ways. First we get

{xa, yb} = x{a, yb}{x, yb}

= x({a, y} y{a, b}){x, y} y{x, b}

= x{a, y} xy{a, b}{x, y} y{x, b}.

Secondly we get

{xa, yb} = {xa, y} y{xa, b}

= x{a, y}{x, y} y(x{a, b}{x, b})

= x{a, y}{x, y} yx{a, b}y{x, b}.

Canceling like terms gives
xy{a, b}{x, y} = {x, y} yx{a, b}.

Now, replacing a by ax
−1y−1 and b by bx

−1y−1 gives

[x,y]{a, b}{x, y} = {x, y}{a, b}.
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Thus,
[x,y]{a, b} ={x,y} {a, b},

as required.

4. Now
1 = {x−1x, y} =x−1

{x, y}{x−1, y}.

It follows that {x−1, y} =x−1 {x, y}−1 . Similarly, {x, y−1} =y−1 {x, y}−1 .

5. Now

[{x, y}, z] = {x, y} z{x, y}−1 and by 4

= {x, y} zx{x−1, y}

= {x, y} [z,x]xz{x−1, y} and by 3

= {x, y} {z,x}xz{x−1, y}

= {x, y}{x, z}−1 xz{x−1, y}{x, z} again by 4

= {x, y} x{x−1, z} xz{x−1, y}{x, z}

= {x, y} x({x−1, z} z{x−1, y}){x, z}

= {x, y} x{x−1, zy}{x, z}again by 4

= x{x−1, y}−1 x{x−1, yz}{x, z}

= x{x−1, y}−1 x{x−1, y(y−1zy)}{x, z}

= x{x−1, y} x({x−1, y}y{x−1, y−1zy}){x, z}

= xy{x−1, y−1zy}{x, z}

= x{yx−1y−1, z}{x, z}

= {xyx−1y−1, z} = {[x, y], z}, as required.

This completes the proof. 2

Now let us look at some examples.

Example 2.2 Let G be a group. We can make G into a multiplicative Lie algebra by defining either for all
x, y ∈ G, {x, y} = 1 or for all x, y ∈ G, {x, y} = [x, y] = xyx−1y−1 . If these are the only possible Lie products
that can be defined on G , we say the trivial consequence holds for G .

Example 2.3 Any Lie algebra over Z is a multiplicative Lie algebra with {x, y} defined to be the ordinary Lie
bracket.

Example 2.4 (Ellis [1]) Let E be a group and let P = E
Z(E) . Define an action of P on E by for u ∈ E, x ∈ P

(letting x = xZ(E), x ∈ E),x u = xux−1 . Let G be the semidirect product of E by P using the above action.
Then, {(u1, x1), (u2, x2)} = ([u1x1, u2x2]) defines a Lie product on G , which is in general different from the
usual commutator defined on G .
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Example 2.5 In general, suppose that G is a group, H ≤ G , and f : G → H is a homomorphism so that for
all x ∈ G, x−1f(x) ∈ CG(H) (note that if G = H × K , then πH , the projection function onto H , is such a
homomorphism). Then defining for all x, y ∈ G {x, y} = [f(x), f(y)] gives a Lie product on G . Furthermore,
if H ≤ G and G = HCG(H) , we can define a Lie product on G by defining for x = h1k1 and y = h2k2 with
h1, h2 ∈ H, k1, k2 ∈ K, {x, y} = [h1, h2] .

Example 2.6 Let G = ⟨a⟩ × ⟨b⟩ and suppose that x ∈ G is such that |x| divides both |a| and |b| (here we
are assuming that anything will divide infinity). Now we can define a Lie product on G by {ai1bj1 , ai2bj2} =

xi1j2−i2j1 .

Here are a few remarks.

Remark 2.7 If Q is the additive group of rational numbers, then if {, } is a Lie product defined on Q , we
must have for all x, y ∈ Q, {x, y} = 0 .

Remark 2.8 Let F be any free group. Then, if {, } is a Lie product defined on F , we must have either for
all x, y ∈ F, {x, y} = 1 or for all x, y ∈ F, {x, y} = xyx−1y−1 = [x, y] . That is, the trivial consequence must
hold for free groups.

The results of the last two remarks could be determined directly from the definition of a Lie product,
but as they will follow from some general results given later, their proofs are omitted for now. The last remark
is actually found in [1] and in [3]. These two remarks serve to motivate the following question.

Question For which groups must the trivial consequence hold?

3. Some results
Note that any subgroup of a group that can be defined in terms of commutators will have an analog defined
by a given Lie product. We will indicate (in general) these subgroups by using script in the usual notations.
Thus, if G is a group and {, } is a Lie product of G , we define G′ := ⟨{{x, y}| x, y ∈ G}⟩ and Z(G) := {y ∈
G| {x, y} = 1 for all x ∈ G} . Note that both G′ and Z(G) are normal subgroups of G . Also, if H and K are
subsets of G , we define {H,K} := ⟨{{H,K}| h ∈ H, k ∈ K}⟩ . In particular, G′ = {G,G} .

The next result is a slight extension of the above remarks:

Lemma 3.1 Let G be a group with Lie product {, } . Then we must have:

1. {CG(G′), G′} = 1 ,

2. for all x, y ∈ G {x, y}−1[x, y] ∈ CG(G′),

3. G′ ≤ G′CG(G′) ,

4. For all a, b, c, d ∈ G, {{a, b}−1[a, b], {c, d}−1[c, d]} = {{a, b}, {c, d}}[{a, b}, {c, d}]−1 ,

5. If {CG(G), CG(G)} = 1 , then for all a, b, c, d ∈ G , we get {{a, b}, {c, d}} = [{a, b}, {c, d}] .
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Proof

1. From Theorem 2.1 parts 5 and 2 we know that {x, [a, b]} = [x, {a, b}] for all x, a, b ∈ G . Now if x ∈ CG(G′)

we get {x, [a, b]} = 1 . The result follows.

2. This follows directly from Theorem 2.1 3.

3. This follows from 2.

4. Now

{{a, b}−1[a, b], {c, d}−1[c, d]} = {a,b}−1

{[a, b], {c, d}−1[c, d]}{{a, b}−1, {c, d}−1[c, d]}

= {{a, b}−1, {c, d}−1[c, d]} by 1 and 2

= {{a, b}−1, {c, d}−1} {c,d}−1

{{a, b}−1, [c, d]} by Theorem 2.1 4

= {a,b}−1

{{a, b}, {c, d}−1}−1 {c,d}−1{a,b}−1

{{a, b}, [c, d]}−1 by Theorem 2.1 2

= {a,b}−1{c,d}−1

{{a, b}, {c, d}} {c,d}−1{a,b}−1

{{a, b}, [c, d]}−1.

Now since {a, b}−1[a, b] and {c, d}−1[c, d] are in CG(G′) we obtain

{{a, b}−1[a, b], {c, d}−1[c, d]} = [{a,b},{c,d}]{{a, b}, {c, d}}{{a, b}, [c, d]}−1

= {{a, b}, {c, d}}{{a, b}, [c, d]}−1

= {{a, b}, {c, d}}[{a, b}, {c, d}]−1 by using Theorem 2.1 5.

Note that we have used the fact from Theorem 2.1 3 that {x, y} and [x, y] must commute.

5. This follows from 4.

2

We can use this result to prove the remark about free groups (Remark 2.8).

Theorem 3.2 Let F be a free group. Then, if {, } is a Lie product defined on F , we must have either for all
x, y ∈ F, {x, y} = 1 or for all x, y ∈ F, {x, y} = xyx−1y−1 = [x, y] .

Proof The important fact that we need about (nonabelian) free groups is that the centralizer of a nontrivial
normal subgroup must be trivial. Note that Theorem 2.1 3 implies that for all a, b, x, y ∈ F, {x, y}−1[x, y] ∈
CG({a, b}) . Hence, we must have for all x, y ∈ F, {x, y}−1[x, y] ∈ CF (F ′) .

It follows that either F ′ = 1 and thus for all x, y ∈ F, {x, y} = 1 or CF (F ′) = 1 and thus for all
x, y ∈ F, {x, y} = [x, y] . 2

Theorem 3.3 Let G be a group having the following property:
for all 1 ̸= H ◁ G so that G′ ≤ HCG(H) we must have CG(H) = 1. (*)
Then the trivial consequence must hold for G .
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Proof From Lemma 3.1 3 we have G′ ≤ G′CG(G′) . The property (*) now implies that either G′ = 1 and for
all x, y ∈ G, {x, y} = 1 or CG(G′) = 1 , which implies, as above, for all x, y ∈ G, {x, y} = [x, y] , as required. 2

The next result is a slight extension of the following results.

Theorem 3.4 Let G be a group and suppose that {, } is a Lie product defined on G . Define ℓ : G×G → CG(G′)

by for all x, y ∈ G, ℓ(x, y) = {x, y}−1[x, y] . Then ℓ satisfies properties 1, 2, 3, and 5 of the definition of a Lie
product, Definition 1.1. Furthermore, ℓ1 = ℓ|CG(G′) is a Lie product on CG(G′) .

Proof We show that ℓ and ℓ1 satisfy the appropriate conditions.
For all x, y, z ∈ G :

(i) ℓ(x, x) = {x, x}−1[x, x] = 1,

(ii) ℓ(x, yz) = {x, yz}−1[x, yz] = ({x, y} y{x, z})−1([x, y] y[x, z])

=y {x, z}−1({x, y}−1[x, y]) y[x, z]

= ({x, y}−1[x, y]) y({x, z}−1[x, z])

= ℓ(x, y) yℓ(x, z),

(iii) ℓ(xy, z) =x ℓ(y, z)ℓ(x, z) is similar to (ii),

(v) zℓ(x, y) =z ({x, y}−1[x, y]) = {zx,z y}−1 [zx,z y]

= ℓ(zx,z y).

(3.1)

In the next part of the proof we are assuming that x, y, z ∈ CG(G′) .
(iv) Note that

ℓ(ℓ(y, x),x z) = ℓ({y, x}−1[y, x],x z)

= {y,x}−1

ℓ([y, x],x z)ℓ({y, x}−1,x z)

= ℓ([y, x],x z)ℓ({y, x}−1,x z)

= {[y, x],x z}−1[[y, x],x z]{{y, x}−1,x z}[{y, x}−1,x z]

= by Proposition 2.14

= [{y, x},x z]−1[[y, x],x z] {y,x}−1

{{y, x},x z}

= by Proposition 2.14, 5

= [[y, x],x z]{{y, x},x z}.

Thus, ℓ(ℓ(y, x),x z)ℓ(ℓ(x, z),z y)ℓ(ℓ(z, y),y x) =

= [[y, x],x z]{{y, x},x z}[[x, z],z y]{{x, z},z y}[[z, y],x z]{{y, x},x z}

= [[y, x],x z][[x, z],z y][[z, y],z y]{{y, x},x z}{{x, z},z y}{{z, y},y x} = 1.

Note that we are using the fact that if x ∈ CG(G′), then [[a, b], x] ∈ CG(G′).

2
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Corollary 3.5 Let G be a group and suppose that {, } is a Lie product defined on G . Assume that CG(G′) is
an abelian group for which the trivial consequence must hold. (That is, we must have {CG(G′), CG(G′)} = 1 .)
Then, for all x, y ∈ CG(G′)G′ , we must have {x, y} = [x, y] . Furthermore, if G is a perfect group, then for all
x, y ∈ G , we must have {x, y} = [x, y] .

Proof Since ℓ(x, y) = 1 for all x, y ∈ C(G′) , we must have for all a, b, c, d ∈ G that {{a, b}−1[a, b], {c, d}−1[c, d]} =

1 . Some simple calculations similar to the above calculations (see Theorem 3.1 3) give that for all a, b, c, d ∈
G, {{a, b}, {c, d}} = [{a, b}, {c, d}] .

It then follows that for all x, y ∈ G′, {x, y} = [x, y] . Now some easy calculations give that for all
x, y ∈ CG(G′)G′, {x, y} = [x, y] . The last comment follows from the fact that G′ ≤ CG(G′)G′ (Theorem 3.1 2).

2

Lemma 3.6 Suppose that G is a perfect group and CG(G′) is abelian. Then CG(G′) = Z(G) .

Proof Since G is perfect, we have from Theorem 3.1 3 that G = CG(G′)G′ . It follows that [G,CG(G′)] =

[CG(G′), CG(G′)] = 1 . The result follows. 2

This result was an inspiration for the following theorem.

Theorem 3.7 Let G be a group and suppose that there is a function g : G
G′ × G

G′ → Z(G) that satisfies the
following conditions for all x, y, z ∈ G

G′ :

1. g(xy, z) = g(x, z)g(y, z) ,

2. g(x, yz) = g(x, y)g(x, z) ,

3. g(x, x) = 1 ,

4. g(g(y, x)G′,x y)g(g(x, z)G′,z y)g(g(z, y)G′,y x) = 1 .

Then, for all x, y ∈ G , we can define {x, y} = [x, y]g(xG′, yG′) . This defines a Lie product on G . Furthermore,
if G is a group having a Lie product such that CG(G′) = Z(G) , then the Lie product on G must have arisen in
this way.

Proof First, we will show that if g has the desired properties, then {, } does satisfy the properties to be a
Lie product.

1. {x, x} = [x, x]g(xG′, xG′) = 1 ,

2.

{xy, z} = [xy, z]g(xyG′, zG′) = x[y, z][x, z]g(xG′, zG′)g(yG′, zG′)

= x([y, z]g(yG′, zG′))[x, z]g(xG′, zG′) =x {y, z}{x, z},

3. {x, yz} = {x, y} y{x, z} and the proof is similar to the proof of 2.
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4. Now notice that

{{y, x},x z} = {[y, x]g(yG′, xG′,x z} (3.2)

= {g(yG′, xG′)[y, x],x z} (3.3)

= g(yG′,xG′){[y, x],x z}{g(yG′, xG′),x z} (3.4)

= [[y, x],x z]g([y, x]G′, zG′){g(g(yG′, xG′)G′,x zG′} (3.5)

= [[y, x],x z]g(g(yG′, xG′)G′,x zG′), (3.6)

where we have used the fact that g(1, x) = 1 .

Using similar reasoning we can conclude that

{{y, x},x z}{{x, z},x y}{{z, y},y x} = [[y, x],x z]g(g(yG′, xG′),x zG′)

[[x, z],z y]g(g(xG′, zG′),z yG′)

[[z, y],y x]g(g(zG′, yG′),y xG′)

= [[y, x],x z][[x, z],z y][[z, y],y x]

g(g(yG′, xG′)G′,x zG′)g(g(xG′, zG′)G′,z G′)

g(g(zG′, yG′)G′,y xG′) = 1, as required.

5. {zx,z y} = [zx,z y]g(zxG′,z yG′) =z ([x, y]g(xG′, yG′)) =x {x, y} . Thus, we have shown that {, } has all
the properties to be a Lie product.

Now suppose that G is a group having a Lie product defined on it and so CG(G′) = Z(G) . Define
ℓ : G × G → Z(G) by ℓ(x, y) = {x, y}−1[x, y] as in Theorem 3.4. Now by Theorem 3.4 we know that
for all x, y, z ∈ G we have ℓ(x, x) = 1, ℓ(xy, z) = ℓ(x, z)ℓ(y, z), ℓ(x, yz) = ℓ(x, y)ℓ(y, z) . It follows that
ℓ(x, 1) = ℓ(1, x) = 1 and ℓ(x−1, y) = ℓ(x, y−1) = ℓ(x, y)−1 . Hence, ℓ(x, [y, z]) = 1 . Thus, if x ∈ G and
w ∈ G′ , then ℓ(x,w) = ℓ(w, x) = 1 .

We define g : G
G′ × G

G′ → Z(G) by saying for all x, y ∈ G , that g(xG′, yG′) = ℓ(x, y)−1 . Note that if

xG′ = x1G
′ and yG′ = y1G

′ , then x−1
1 x, y−1

1 y ∈ G′ . It follows that ℓ(x1, y1) = ℓ(x, y1) = ℓ(x, y) and hence G

is well defined. Now using the properties of ℓ and the fact that g maps into the center, it is easy to check that
g satisfies the appropriate conditions above.

Hence, for all x, y ∈ G, g(xG′, yG′)−1 = ℓ(x, y) = {x, y}−1[x, y] . It follows that {x, y} = [x, y]g(xG′, yG′)

is defined as in the theorem, as required. 2

Remark 3.8 If G is a dihedral group of order 2n , then the function g of Theorem 3.7 can be viewed as a
homomorphism from the alternating tensor square of G

G′
∼= Z2 ×Z2 into Z(G) ∼= Z2 . As the alternating tensor

square of Z2 × Z2 is a module over Z2 of dimension 3 , we can construct functions g satisfying the conditions
of Theorem 3.7. It follows that the trivial consequence can never hold for any dihedral 2-group.

Remark 3.9 If G is an abelian group, then for all subgroups H of G we must have CG(H) = Z(G) = G .
Hence, by Theorem 3.7 all possible Lie products must arise as in the theorem. Notice that all such functions
g must factor through the alternating tensor square of G . It follows that if G is an abelian group with trivial
alternating square (such as a rank 1 group), then the trivial consequence must hold for G .
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The following corollary is a slight extension of Corollary 3.5

Corollary 3.10 Let 1 ̸= G be a perfect group with a Lie product {, } so that CG(G′) is abelian. Then, for all
x, y ∈ G , we have {x, y} = [x, y] .

Proof We know from Lemma 3.1 3 that G′ ≤ CG(G′)G′ . Thus, G = CG(G′)G′ . Since G is perfect and CG(G′)

is abelian, we must have G = G′ . Hence, CG(G′) = Z(G) . Now the result follows from Theorem 3.7. 2

The next result allows us to determine the possible Lie products for perfect groups.

Theorem 3.11 Suppose that G is a perfect group with Lie product {, } . Then there is a subgroup H of
G that is perfect so that G = HCG(H) (that is, G is a central product), and for all x, y ∈ G with
x = h1k1, y = h2k2, h1, h2 ∈ H, k1, k2 ∈ CG(H) , we have {x, y} = [h1, h2] .

Proof Let H = G′,K = CG(G′) . As above, since G is perfect, G = HK . Note that H ′,K ′ � G , and since
G

H′K′ is abelian, we get G = H ′K ′ . Now for x, y ∈ G , we can write x = h1k1, y = h2k2 with h1, h2 ∈ H ′ and
k1, k2 ∈ K ′ . This gives:

{x, y} = {h1k1, h2k2} = h1{k1, h2k2}{h1, h2k2}

by Lemma 3.1 = {h1, h2k2}

= {h1, h2} h2{k1, k2}

again by Lemma 3.1 = {h1, h2}.

Notice that we have from Theorem 2.1 5 that {[x, y], h2} = [{x, y}, h2] ∈ H ′ and so it follows that in
the above equations {h1, h2} ∈ H ′ . Thus, for all x, y ∈ G , we have {x, y} ∈ H ′ . Hence, H = H ′ and H is
perfect. Also note that {, } defines a Lie product on the group H and with respect to this Lie product that
H′ = {H,H} = H . It follows that CH(H′) = Z(H) . Now by Corollary 3.10 we must have for all x, y ∈ H ,
that {x, y} = [x, y] , as required. 2

We give one more result and a few corollaries. This next result gives further information about the
structure of CG(G′) for a group with a Lie product. In this result we again let Z(G) = {g ∈ G| {g, x} =

1, for all x ∈ G} .

Theorem 3.12 Let G be a group with Lie product {, } . Then CG(G′)
Z(G) is isomorphic to a subgroup of∏

y∈G

(CG(G′) ∩ CG(G
′)) . In particular, CG(G′)

Z(G) must be nilpotent of class ≤ 2 .

Proof Note that for all a, b, y ∈ G, x ∈ CG(G′) , we have by Theorem 2.1 5 that [{y, x}, [a, b]] = {[y, x], [a, b]} =

[[y, x], {a, b}] = 1 , as [y, x] ∈ CG(G′) . It follows that {y, x} ∈ CG(G
′) . Furthermore, {y, x} ∈ CG(G′) since

both [y, x] and {x, y}−1[x, y] ∈ CG(G′) , by Lemma 3.1 2. Now we can define for all y ∈ G,Ty : CG(G′) →
CG(G′)∩CG(G

′) by Ty(x) = {y, x} . Note that for all y ∈ G we have Ty(x1x2) = {y, x1x2} = {y, x1} x1{y, x2} =

{y, x1}{y, x2} and we have that each Ty is a homomorphism. Notice that∩
y∈G

ker(Ty) = {x ∈ CG(G′)| {y, x} = 1, for all y ∈ G} = Z(G).
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Note that it is clear that Z(G) ≤ CG(G′) . The result now follows as CG(G
′) is nilpotent of class ≤ 2 . 2

Corollary 3.13 Let G be a group having a Lie product {, } so that CG(G′) ∩ CG(G
′) = 1 . Then for all

x ∈ G, y ∈ G′ , we must have {x, y} = [x, y] .

Proof By Theorem 3.12 we have CG(G′) = Z(G) . It follows that for all a, b, c ∈ G we have {{a, b}−1[a, b], c} =

1. Thus, we obtain

1 = {{a, b}−1[a, b], c}

= {a,b}−1

{[a, b], c}{{a, b}−1, c}

by lemma 2.1 4 = {a,b}−1

{[a, b], c} {a,b}−1

{{a, b}, c}−1

= {a,b}−1

({[a, b], c}{{a, b}, c}−1).

It follows that {[a, b], c} = {{a, b}, c} . Now using Lemma 2.1 5 we get

[{a, b}, c] = {[a, b], c}.

The result now follows from a simple calculation. 2
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