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Abstract: Considering the weighted concept of majorization, Sherman obtained generalization of majorization inequality
for convex functions known as Sherman’s inequality. We extend Sherman’s result to the class of n -strongly convex
functions using extended idea of convexity to the class of strongly convex functions. We also obtain upper bound
for Sherman’s inequality, called the converse Sherman inequality, and as easy consequences we get Jensen’s as well as
majorization inequality and their conversions for strongly convex functions. Obtained results are stronger versions for
analogous results for convex functions. As applications, we introduced a generalized concept of f -divergence and derived
some reverse relations for such concept.
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1. Introduction
A function f : [α, β] → R is called strongly convex with modulus c > 0 if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− cλ(1− λ)(x− y)2 (1.1)

for all x, y ∈ [α, β] and λ ∈ [0, 1].

The concept of strongly convexity has been introduced by Polyak [34]. It has a large number of appearance
in many different fields of applications, particular in many branches of mathematics as well as optimization
theory, mathematical economics and approximation theory. Strongly convex functions have many nice properties
(see [31]).

A function f that satisfies (1.1) with c = 0, i.e.

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.2)

is convex in usual sense. Specially, if the inequality in (1.2) is strict, then f is called strictly convex.
It is well known that the following implications hold:

strongly convex ⇒ strictly convex ⇒ convex.

However, the reverse implications are not true, in general.
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Example 1.1 The function f(x) = x2 is strongly convex and also strictly convex and convex. The function
g(x) = ex is strictly convex and convex but not strongly convex. The function h(x) = x is convex but neither
strictly nor strongly convex.

In the theory of convex functions, natural generalization are convex functions of higher order, i.e. n -
convex functions. The notion of n -convexity was defined in terms of divided differences by T. Popoviciu [35]
which we introduce in the sequel.

A function f : [α, β] → R is said to be n -convex if for every choice of n + 1 distinct points z0, ..., zn ∈
[α, β], the nth order divided difference is nonnegative, i.e.

[z0, z1, ..., zn; f ] ≥ 0, (1.3)

where divided difference may be formally defined by

[zi; f ] = f(zi), i = 0, ..., n

[z0, ..., zn; f ] =
[z1, ..., zn; f ]− [z0, ..., zn−1; f ]

zn − z0
.

The value [z0, ..., zn; f ] is independent of the order of the points z0, ..., zn. This definition may be extended to
include the case in which some or all the points coincide. Assuming that f (j−1)(z) exists, we define

[z, ..., z︸ ︷︷ ︸
j-times

; f ] =
f (j−1)(z)

(j − 1)!
. (1.4)

Remark 1.2 It is known that 1-convex function is increasing function and 2-convex function is just ordinary
convex function, i.e. convex in usual sense.
If f (n) exists, then f is n-convex iff f (n) ≥ 0.

Also, if f is n-convex for n ≥ 2 , then f (k) exists and f is (n − k)-convex for 1 ≤ k ≤ n − 2. For more
information see [33].

Following Gera and Nikodem [11], we say that a function f : [α, β] → R is strongly convex of order n

with modulus c > 0 (or n -strongly convex with modulus c > 0) if

[z0, ..., zn; f ] ≥ c (1.5)

for all z0, ..., zn ∈ [α, β].

Remark 1.3 Note that 2-strongly convex function with modulus c is just strongly convex function with modulus
c as given by (1.1).
For n = 2, the condition (1.5) is equivalent to

f(z0)

(z0 − z1)(z0 − z2)
+

f(z1)

(z1 − z2)(z1 − z0)
+

f(z2)

(z2 − z1)(z2 − z0)
≥ c

or

f(z1) ≤
z2 − z1
z2 − z0

f(z0) +
z1 − z0
z2 − z0

f(z2)− c(z2 − z1)(z1 − z0).
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A function f : [α, β] → R is a strongly n-convex with modulus c iff the function g(x) = f(x)−cxn is n-convex.
A function f : [α, β] → R is a strongly n-convex with modulus c iff f (n) ≥ cn!.

For more information see [11, 31, 32].

The concept of strongly convexity is a strengthening of the concept of convexity and some properties of
strongly convex functions are just stronger versions of analogous properties of convex functions.

For f : [α, β] → R strongly convex function with modulus c > 0, Jensen’s inequality

f

(
m∑
i=1

aixi

)
≤

m∑
i=1

aif(xi)− c

m∑
i=1

ai(xi − x̄)2 (1.6)

holds, where x = (x1, ..., xm) ∈ [α, β]m, a = (a1, ..., am) ∈ [0,∞)m with
∑m

i=1 ai = 1 and x̄ =
∑m

i=1 aixi (see
[22]) . On the other side, Jensen’s inequality for a classical convex function f has the form

f

(
m∑
i=1

aixi

)
≤

m∑
i=1

aif(xi). (1.7)

If we compare (1.6) with (1.7), note that the inequality (1.6) includes a better upper bound for f (
∑m

i=1 aixi)

since c
∑m

i=1 ai(xi − x̄) ≥ 0. Since specially for c = 0 the strogly convexity reduces to the ordinary convexity,
then (1.6) becomes (1.7).

Closely connected to Jensen’s inequality (1.7) is the Lah-Ribarič inequality

m∑
i=1

aif (xi) ≤
β − x̄

β − α
f(α) +

x̄− α

β − α
f(β) (1.8)

which holds for every convex function f : [α, β] → R and x = (x1, ..., xm) ∈ [α, β]m, a = (a1, ..., an) ∈ [0,∞)
m

with
∑m

i=1 ai = 1 and x̄ =
∑m

i=1 aixi (see [19]). The Lah-Ribarič inequality gives the upper bound for the
term

∑m
i=1 aif(xi) and often called the converse Jensen inequality.

2. Preliminaries
For two vectors x = (x1, ..., xm),y = (y1, ..., ym) ∈ [α, β]m, let x[i], y[i] denote their increasing order. We say
that x majorizes y or y is majorized by x and write

y ≺ x

if
k∑

i=1

y[i] ≤
k∑

i=1

x[i], k = 1, ....,m, (2.1)

with equality in (2.1) for k = m.

The term majorization is introduced in the space Rm , in which the order is not defined, to compare
and detect potential links between vectors. The majorization relation is reflexive and transitive but it is not
antisymmetric (see [21, p. 79]) and hence is a preordering not a partial ordering. The majorization preorder on
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vectors is known as vector majorization or classical majorization. This classical concept was initially studied
by Hardy et al. [20]. A superb reference on the subject is [21].

It is well known that
y ≺ x iff y = xA

for some doubly stochastic matrix A = (aij) ∈ Mmm(R) , i.e. a matrix with nonnegative entries and rows and
columns sums equal to 1 .

Moreover, y ≺ x implies
m∑
i=1

f(yi) ≤
m∑
i=1

f(xi)

for every continuous convex function f : [α, β] → R. This result, obtained by Hardy et al. [20], is well known
as majorization inequality and plays an important role in the study of majorization theory.

Sherman [37] considered the weighted concept of majorization between two vectors x = (x1, ..., xm) ∈
[α, β]m and y = (y1, ..., yl) ∈ [α, β]l with nonnegative weights a = (a1, ..., am) and b = (b1, ..., bl) . The concept
of weighted majorization is defined by assumption of existence of row stochastic matrix A = (aij) ∈ Mlm(R),
i.e. matrix with nonnegative entries and rows sums equal to 1 , such that

aj =

m∑
i=1

bjaij , j = 1, ..., l, (2.2)

yi =

l∑
j=1

xjaij , i = 1, ...,m.

Sherman proved that under conditions (2.2), the inequality

m∑
i=1

bif(yi) ≤
l∑

j=1

ajf(xj) (2.3)

holds for every convex function f : [α, β] → R .
We can write the conditions (2.2) in the matrix form

a = bA and y = xAT , (2.4)

where AT denotes transpose matrix.
In the sequel, we write

(y,b) ≺ (x,a)

and say that a pair (y,b) is weighted majorized by (x,a) if vectors x,y and corresponding weights a,b satisfy
conditions (2.2) for some row stochastic matrix A.

Sherman’s generalization contains Jensen’s as well as majorization inequality as special cases as we pointed
in the next remark.

Remark 2.1 a) For m = 1 and b = [1], Sherman’s inequality (2.3) reduces to Jensen’s inequality (2682).
b) For m = l and b = e = (1, ..., 1), because y ≺ x gives y = xAT with some doubly stochastic matrix A and
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a = bA = e , from Sherman’s inequality (2.3) we get majorization inequality

m∑
i=1

f(yi) ⩽
m∑
i=1

f(xi). (2.5)

c) When m = l, and all weights bi and aj are equal, the condition a = bA assures the stochastically on
columns, so in that case we deal with doubly stochastic matrices. Moreover, Sherman’s inequality (2.3) reduces
to

m∑
i=1

aif(yi) ⩽
m∑
i=1

aif(xi), (2.6)

known as Fuchs’ inequality (see [10]).

Recently, Sherman’s result has attracted the interest of several mathematicians (see [1–5], [12–15], [23–
30]).

This paper is organized as follows. In Section 3 we obtain the Lah-Ribarich inequality for strongly
convex functions. We deal with Sherman’s inequality and its converse for strongly convex function. As easy
consequences, we get Jensen’s and majorization inequalities and their conversions for strongly convex functions.
In Section 4, we obtain some inequalities for generalized concept of f -divergence. In the last section, we extend
Sherman’s result to the class of strongly convex functions of higher order.

3. Sherman’s type inequalities and conversions
We start with the Lah-Ribarich inequality for strongly convex functions.

Theorem 3.1 Let x = (x1, ..., xl) ∈ [α, β]l and a = (a1, ..., al) ∈ [0,∞)l with
∑l

j=1 aj = 1 and x̄ =
∑l

j=1 ajxj .

If f : [α, β] → R is strongly convex with modulus c > 0, then

l∑
j=1

ajf(xj) ≤
β − x̄

β − α
f(α) +

x̄− α

β − α
f(β)− c

l∑
j=1

aj(β − xj)(xj − α). (3.1)

Proof Since for strongly convex function we have

f(z1) ≤
z2 − z1
z2 − z0

f(z0) +
z1 − z0
z2 − z0

f(z2)− c(z2 − z1)(z1 − z0),

by substituting z1 = xj , z2 = β and z1 = α, we get

f(xj) ≤
β − xj

β − α
f(α) +

xj − α

β − α
f(β)− c(β − xj)(xj − α).

Now, multiplying with aj and summing over j we have

l∑
j=1

ajf(xj) ≤
β −

l∑
j=1

ajxj

β − α
f(α) +

l∑
j=1

ajxj − α

β − α
f(β)− c

l∑
j=1

aj(β − xj)(xj − α)

what we need to prove. 2
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Now we give Sherman’s inequality for strongly convex functions.

Theorem 3.2 Let x = (x1, ..., xl) ∈ [α, β]l, y = (y1, ..., ym) ∈ [α, β]m, a = (a1, ..., al) ∈ [0,∞)l , and
b = (b1, ..., bm) ∈ [0,∞)m be such that (y,b) ≺ (x,a). Then for every f : [α, β] → R strongly convex
with modulus c > 0, we have

m∑
i=1

bif(yi) ≤
l∑

j=1

ajf(xj)− c

 l∑
j=1

ajx
2
j −

m∑
i=1

biy
2
i

 . (3.2)

Proof Using (2.2) and applying (1.6), we have

m∑
i=1

bif(yi) =

m∑
i=1

bif

 l∑
j=1

xjaij

 (3.3)

≤
m∑
i=1

bi

 l∑
j=1

aijf(xj)− c

l∑
j=1

aij(xj − yi)
2


=

l∑
j=1

ajf(xj)− c

m∑
i=1

bi

l∑
j=1

aij(xj − yi)
2.

By an easy calculation, we get

l∑
j=1

ajf(xj)− c

m∑
i=1

bi

l∑
j=1

aij(xj − yi)
2 (3.4)

=

l∑
j=1

ajf(xj)− c

m∑
i=1

bi

l∑
j=1

aij(x
2
j − 2xjyi + y2i )

=

l∑
j=1

ajf(xj)− c

 l∑
j=1

ajx
2
j −

m∑
i=1

biy
2
i

 .

Now, combining (3.3) and (3.4), we get (3.2). 2

Remark 3.3 If we compare (3.2) with (2.3), note that the inequality (3.2) includes a better upper bound for∑m
i=1 bif(yi) since c

(∑l
j=1 ajx

2
j −

∑m
i=1 biy

2
i

)
≥ 0 because t 7→ t2 is convex function and then by Sherman’s

inequality we have
∑l

j=1 ajx
2
j −

∑m
i=1 biy

2
i ≥ 0. Moreover, we get the double inequality

m∑
i=1

bif(yi) ≤
l∑

j=1

ajf(xj)− c

 l∑
j=1

ajx
2
j −

m∑
i=1

biy
2
i

 (3.5)

≤
l∑

j=1

ajf(xj).
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a) Specially, for m = 1 and b = (1), (3.5) becomes

f

 l∑
j=1

ajxj

 ≤
l∑

j=1

ajf(xj)− c

 l∑
j=1

ajx
2
j − x̄2


=

l∑
j=1

ajf(xj)− c

l∑
j=1

aj (xj − x̄)
2

≤
l∑

j=1

ajf(xj),

where x̄ =
∑l

j=1 ajxj , i.e. we get Jensen’s inequality (1.6) for strongly convex function.
b) For m = l and b = e = (1, ..., 1), (3.5) becomes

m∑
i=1

f(yi) ≤
m∑
i=1

f(xi)− c

(
m∑
i=1

x2
i −

m∑
i=1

y2i

)

≤
m∑
i=1

f(xi),

i.e. we get majorization inequality for strongly convex function.
c) When m = l, and all weights bi and aj are equal, then (3.2) becomes

m∑
i=1

aif(yi) ≤
m∑
i=1

aif(xi)− c

(
m∑
i=1

aix
2
i −

m∑
i=1

aiy
2
i

)

≤
m∑
i=1

aif(xi),

i.e. we get Fuchs’ inequality for strongly convex function.

Next we give conversion to Sherman’s inequality for strongly convex functions.

Theorem 3.4 Let x = (x1, ..., xl) ∈ [α, β]l, y = (y1, ..., ym) ∈ [α, β]m, a = (a1, ..., al) ∈ [0,∞)l and
b = (b1, ..., bm) ∈ [0,∞)m be such that (y,b) ≺ (x,a). Let Bm =

∑m
i=1 bi. If f : [α, β] → R is strongly

convex with modulus c > 0, then
l∑

j=1

ajf (xj) ≤
Bmβ −

∑l
j=1 ajxj

β − α
f(α) +

∑l
j=1 ajxj −Bmα

β − α
f(β) (3.6)

− c

l∑
j=1

aj(β − xj)(xj − α).

Proof Using (2.2) we have

l∑
j=1

ajf (xj) =

l∑
j=1

(
m∑
i=1

bjaij

)
f (xj) =

m∑
i=1

bj

 l∑
j=1

aijf (xj)

 . (3.7)
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Applying (3.1) we get

l∑
j=1

aijf (xj) ≤
β −

∑l
j=1 aijxj

β − α
f(α) +

∑l
j=1 aijxj − α

β − α
f(β) (3.8)

− c

l∑
j=1

aij(β − xj)(xj − α).

Now, combining (3.7) and (3.8), we get (3.6). 2

Remark 3.5 a) Specially, if m = 1 and b = (1), then (3.5) and (3.6) gives the following series of inequalities

f

 l∑
j=1

ajxj

 ≤
l∑

j=1

ajf(xj)− c

l∑
j=1

aj (xj − x̄)
2

≤
l∑

j=1

ajf(xj)

≤
β −

∑l
j=1 ajxj

β − α
f(α) +

∑l
j=1 ajxj − α

β − α
f(β)

− c

l∑
j=1

aj(β − xj)(xj − α),

i.e. we get Jensen’s inequality and its conversion for strongly convex functions.
b) If m = l and b = e = (1, ..., 1), then (3.5) and (3.6) gives

m∑
i=1

f(yi) ≤
m∑
i=1

f(xi)− c

(
m∑
i=1

x2
i −

m∑
i=1

y2i

)

≤
m∑
i=1

f(xi)

≤
β −

∑l
j=1 xj

β − α
f(α) +

∑l
j=1 xj − α

β − α
f(β)

− c

l∑
j=1

(β − xj)(xj − α),

i.e. we get majorization inequality and its conversion for strongly convex functions.
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c) If m = l, and all weights bi and aj are equal, then (3.5) and (3.6) gives

m∑
i=1

aif(yi) ≤
m∑
i=1

aif(xi)− c

(
m∑
i=1

aix
2
i −

m∑
i=1

aiy
2
i

)

≤
m∑
i=1

aif(xi)

≤
Amβ −

∑m
i=1 aixi

β − α
f(α) +

∑m
i=1 aixi −Amα

β − α
f(β)

− c

m∑
i=1

ai(β − xi)(xi − α),

where
∑m

i=1 ai = Am, i.e. we get Fuchs’ inequality and its conversion for strongly convex functions.

4. Applications to f -divergences

Shannon [36] introduced a statistical concept of entropy in the theory of communication and transmission of
information, the measure of information defined by

H(p) =

n∑
i=1

pi ln
1

pi
, (4.1)

where p = (p1, ..., pn) is a positive probability distribution , i.e. pi > 0, i = 1, ..., n , with
∑n

i=1 pi = 1, for
some discrete random variable X. It satisfied the estimation:

0 ⩽ H(p) ⩽ lnn.

Shannon’s entropy quantifies the unevenness in the probability distribution p .
As a slight modification of the previous formula, we get the Kullback–Leibler divergence [18] or relative

entropy of q with respect to p defined by

KL(q,p) =

n∑
i=1

qi (ln qi − ln pi) =

n∑
i=1

qi ln

(
qi
pi

)
.

It is a measure of the difference between two positive probability distributions q and p over the same variable.
In statistics, it arises as the expected logarithm of difference between the probability q of data in the original
distribution with the approximating distribution p . It satisfies the following estimates

KL(q,p) ≥ 0.

The previous two concepts we can get as special cases of the Csiszár f -divergence functional

Df (q,p) =

n∑
i=1

pif

(
qi
pi

)
, (4.2)

where f : (0,∞) → R is a convex function and p = (p1, ..., pn), q = (q1, ..., qn) with pi, qi > 0, i = 1, ..., n (see
[6], [7]) .
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Note that

H(p) = −
n∑

i=1

pi ln pi = −Df (e,p), f(t) = − ln t,

DKL(q,p) =

m∑
i=1

qi ln
qi
pi

= Df (q,p), f(t) = t ln t.

Csiszár with Körner [7] proved Jensen’s inequality for the f -divergence functional as follows

n∑
i=1

qif


n∑

i=1

pi

n∑
i=1

qi

 ⩽ Df (q,p). (CK)

Specially, if f is normalized, i.e. f(1) = 0 and
∑n

i=1 pi =
∑n

i=1 qi, then

0 ≤ Df (q,p). (4.3)

Csiszár f -divergence functional (4.2) is widely employed in different scientic fields among which we
point out mathematical statistics and specially information theory with deep connections in topics as diverse
as artificial intelligence, statistical physics, and biological evolution. For suitable choices of the kernel f, the
general aspect of the Csiszár f -divergence functional (4.2) can be interpreted as a series of the well-known
divergencies (see [8, 16, 17]) . Here we give some examples:

• Hellinger divergence

h2(q,p) =
1

2

n∑
i=1

(
√
pi −

√
qi)

2, f(t) =
1

2

(√
t− 1

)2
,

• Variational distance

V (q,p) =
n∑

i=1

|pi − qi|, f(t) = |t− 1|,

• Harmonic divergence

DH(q,p) =

n∑
i=1

2piqi
pi + qi

, f(t) =
2t

1 + t
,

• Bhattacharya distance

DB(q,p) = −Df (q,p) =

n∑
i=1

√
piqi, f(t) = −

√
t,

• Triangular discrimination

DT (q,p) =

n∑
i=1

(pi − qi)
2

pi + qi
, f(t) =

(t− 1)2

t+ 1
,
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• Chi square distance

Dχ2(q,p) =

n∑
i=1

(qi − pi)
2

pi
, f(t) = (t− 1)2,

• Rényi α -order entropy (α > 1)

Rα(q,p) =

n∑
i=1

qαi p
1−α
i , f(t) = tα.

We extend definition of f -divergence functional (4.2) as follows.

Definition 4.1 Let f : (0,∞) → R be a strongly convex function with modulus c > 0 and p = (p1, ..., pn),

q = (q1, ..., qn) with pi, qi > 0, i = 1, ..., n. We define

D̃f (q,p) =

n∑
i=1

pif

(
qi
pi

)
. (4.4)

In this section our intention is to derive mutual bounds for the generalized f -divergence functional (4.4).
We obtain some reverse relations for the generalized f -divergence functional that correspond to the class of
strongly convex functions.

Through the rest of the paper we always assume that α, β > 0.

Corollary 4.2 Let p = (p1, ..., pl) ∈ [α, β]l, q = (q1, ..., ql) ∈ [α, β]l , and R = (rij) ∈ Mml(R) be column

stochastic matrix. Let us define 〈p, ri〉 =
∑l

j=1 pjrij > 0, 〈q, ri〉 =
∑l

j=1 qjrij , i = 1, ...,m. Then for every
f : [α, β] → R strongly convex with modulus c > 0, we have

m∑
i=1

〈p, ri〉 f
(
〈q, ri〉
〈p, ri〉

)
≤ D̃f (q,p)− c

 l∑
j=1

qj
pj

2
−

m∑
i=1

〈q, ri〉
〈p, ri〉

2
 (4.5)

≤ D̃f (q,p)

≤

m∑
i=1

〈p, ri〉β −
l∑

j=1

qj

β − α
f(α) +

l∑
j=1

qj −
m∑
i=1

〈p, ri〉α

β − α
f(β)

− c

l∑
j=1

pj

(
β − qj

pj

)(
qj
pj

− α

)
.

Proof Let us consider x = (x1, ..., xl) and y = (y1, ..., ym), such that xj =
qj
pj
, j = 1, ..., l and yi =

⟨q,ri⟩
⟨p,ri⟩ ,

i = 1, ...,m. Let aj =
m∑
i=1

bi
pjrij
⟨p,ri⟩ , j = 1, ...,m, where bi = 〈p, ri〉 , i = 1, ...,m.

We have

〈q, ri〉
〈p, ri〉

=

l∑
j=1

qjrij

l∑
j=1

pjrij

=
p1ri1
l∑

j=1

pjrij

q1
p1

+ ...+
plril
l∑

j=1

pjrij

ql
pl
, i = 1, ...,m.
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Moreover, the following identity

(
〈q, r1〉
〈p, r1〉

, ...,
〈q, rm〉
〈p, rm〉

)
=

(
q1
p1

, ...,
ql
pl

)
·


p1r11
⟨p,r1⟩ · · · p1rm1

⟨p,rm⟩
... . . . ...

plr1l
⟨p,r1⟩ · · · plrml

⟨p,rm⟩


holds for some row stochastic matrix A = (aij) ∈ Mml(R), with aij =

pjrij
⟨p,ri⟩ , i = 1, ...,m, j = 1, ..., l.

Therefore, y = xAT holds .
Furthermore, we have

aj =

m∑
i=1

〈p, ri〉
pjrij
〈p, ri〉

= pj

m∑
i=1

rij = pj , j = 1, ..., l,

i.e. a = bA. Therefore, the assumptions of Theorem 3.2 and Theorem 3.4 are fulfilled. Now applying (3.2) and
(3.6), we get

m∑
i=1

〈p, ri〉 f
(
〈q, ri〉
〈p, ri〉

)
≤

l∑
j=1

pjf

(
qj
pj

)
− c

 l∑
j=1

qj
pj

2
−

m∑
i=1

〈q, ri〉
〈p, ri〉

2


≤
l∑

j=1

pjf

(
qj
pj

)

≤

m∑
i=1

〈p, ri〉β −
l∑

j=1

qj

β − α
f(α) +

l∑
j=1

qj −
m∑
i=1

〈p, ri〉α

β − α
f(β)

− c

l∑
j=1

pj

(
β − qj

pj

)(
qj
pj

− α

)
,

which is equivalent to (4.5). 2

Specially, for m = 1, the previous result reduces to the next corollary.

Corollary 4.3 Let p = (p1, ..., pl) ∈ [α, β]l, q = (q1, ..., ql) ∈ [α, β]l and and r = (r1, ..., rl) ∈ [α, β]l . Let us

define 〈p, r〉 =
∑l

j=1 pjrj > 0, 〈q, r〉 =
∑l

j=1 qjrj . Then for every f : [α, β] → R strongly convex with modulus
c > 0, we have

〈p, r〉 f
(
〈q, r〉
〈p, r〉

)
≤ D̃f (q,p)− c

 l∑
j=1

qj
pj

2
− 〈q, r〉

〈p, r〉

2


≤ D̃f (q,p)

≤
〈p, r〉β −

l∑
j=1

qj

β − α
f(α) +

l∑
j=1

qj − 〈p, r〉α

β − α
f(β)

− c

l∑
j=1

pj

(
β − qj

pj

)(
qj
pj

− α

)
.
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If in addition r = e = (1, ..., 1) , then

l∑
j=1

pjf


l∑

j=1

qj

l∑
j=1

pj

 ≤ D̃f (q,p)− c


l∑

j=1

qj
pj

2
−

(
l∑

j=1

qj

)
l∑

j=1

pj

2


≤ D̃f (q,p)

≤

l∑
j=1

pjβ −
l∑

j=1

qj

β − α
f(α) +

l∑
j=1

qj −
l∑

j=1

pjα

β − α
f(β)

− c

l∑
j=1

pj

(
β − qj

pj

)(
qj
pj

− α

)
.

Moreover, if f is normalized, i.e. f(1) = 0 and
∑l

j=1 pj =
∑l

j=1 qj , we get

0 ≤ D̃f (q,p)− c

 l∑
j=1

qj
pj

2
−

l∑
j=1

pj


≤ D̃f (q,p)

≤

l∑
j=1

pj(β − 1)

β − α
f(α) +

l∑
j=1

pj(1− α)

β − α
f(β)− c

l∑
j=1

pj

(
β − qj

pj

)(
qj
pj

− α

)
.

5. Generalization of Sherman’s inequality for strongly n-convex function

The technique that we use in this section is based on an application of Fink’s identity [9]

f(x) =
n

β − α

∫
β
αf(t)dt−

n−1∑
w=1

n− w

w!
· f

(w−1)(α)(x− α)w − f (w−1)(β)(x− β)w

β − α

+
1

(n− 1)!(β − α)

∫
β
α(x− t)n−1k(t, x)f (n)(t)dt, (5.1)

where

k(t, x) =

{
t− α, α ≤ t ≤ x ≤ β
t− β, α ≤ x < t ≤ β

, (5.2)

which holds for every f : [α, β] → R such that f (n−1) is absolutely continuous for some n ≥ 1. The sum in
(5.1) is zero when n = 1 .

We start with an identity which is very useful for us to obtain generalizations.

Theorem 5.1 Let x = (x1, ..., xl) ∈ [α, β]l, y = (y1, ..., ym) ∈ [α, β]m, a = (a1, ..., al) ∈ [0,∞)l , and
b = (b1, ..., bm) ∈ [0,∞)m be such that (y,b) ≺ (x,a). Let k(t, ·) be defined as in (5.2). Then for every
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f : [α, β] → R , such that f (n−1) is absolutely continuous on [α, β], we have
l∑

j=1

ajf(xj)−
m∑
i=1

bif(yi) (5.3)

=
1

β − α

n−1∑
w=2

n− w

w!
· f (w−1)(β)

 l∑
j=1

aj(xj − β)w −
m∑
i=1

bi(yi − β)w


− 1

β − α

n−1∑
w=2

n− w

w!
· f (w−1)(α)

 l∑
j=1

aj(xj − α)w −
m∑
i=1

bi(yi − α)w


+

1

(n− 1)!(β − α)
×

∫ β

α

 l∑
j=1

aj(xj − t)n−1k(t, xj)−
m∑
i=1

bi(yi − t)n−1k(t, yi)

 f (n)(t)dt.

Proof Applying (5.1) to the Sherman difference
∑l

j=1 ajf(xj)−
∑m

i=1 bif(yi), we get (5.3). 2

Theorem 5.2 Let all the assumptions of Theorem 5.1 be satisfied. Additionally, let f be n-strongly convex
with modulus c > 0. If

l∑
j=1

aj(xj − t)n−1k(t, xj)−
m∑
i=1

bi(yi − t)n−1k(t, yi) ≥ 0, α ≤ t ≤ β, (5.4)

then
l∑

j=1

ajf(xj)−
m∑
i=1

bif(yi)− c

 l∑
j=1

ajx
n
j −

m∑
i=1

biy
n
i

 (5.5)

≥ 1

β − α

n−1∑
w=1

n− w

w!

·
[
f (w−1)(β)− cn(n− 1)...(n− w + 2)βn−w+2

] l∑
j=1

aj(xj − β)w −
m∑
i=1

bi(yi − β)w


− 1

β − α

n−1∑
w=1

n− w

w!

·
[
f (w−1)(α)− cn(n− 1)...(n− w + 2)αn−w+2

] l∑
j=1

aj(xj − α)w −
m∑
i=1

bi(yi − α)w

 .

If the reverse inequality in (5.4) holds, then the reverse inequality in (5.5) holds.

Proof Let us consider the function g(x) = f(x)− cxn. Since f is strongly n -convex with modulus c, then g

is n -convex. We may assume without loss of generality that f and g are n -times differentiable and g(n) ≥ 0
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on [α, β] (see [33, p. 16]) .
Applying (5.5) to g, we have

l∑
j=1

ajg(xj)−
m∑
i=1

big(yi) (5.6)

=
1

β − α

n−1∑
w=2

n− w

w!
· g(w−1)(β)

 l∑
j=1

aj(xj − β)w −
m∑
i=1

bi(yi − β)w


− 1

β − α

n−1∑
w=2

n− w

w!
· g(w−1)(α)

 l∑
j=1

aj(xj − α)w −
m∑
i=1

bi(yi − α)w


+

1

(n− 1)!(β − α)
×

∫ β

α

 l∑
j=1

aj(xj − t)n−1k(t, xj)−
m∑
i=1

bi(yi − t)n−1k(t, yi)

 g(n)(t)dt.

Moreover, if (5.4) holds, then

l∑
j=1

ajg(xj)−
m∑
i=1

big(yi) (5.7)

≥ 1

β − α

n−1∑
w=2

n− w

w!
· g(w−1)(β)

 l∑
j=1

aj(xj − β)w −
m∑
i=1

bi(yi − β)w


− 1

β − α

n−1∑
w=2

n− w

w!
· g(w−1)(α)

 l∑
j=1

aj(xj − α)w −
m∑
i=1

bi(yi − α)w


which is equivalent to (5.5).
If the reverse inequality in (5.4) holds, then the last term in (5.6) is nonpositive and then the reverse inequality
in (5.7) holds. This ends the proof. 2

Remark 5.3 Consider the function s : [α, β] → R defined by

s(x) = (x− t)n−1k(t, x) =

{
(x− t)n−1(t− α), α ≤ t ≤ x ≤ β
(x− t)n−1(t− β), α ≤ x < t ≤ β

.

We have

s′′(x) =

{
(n− 1)(n− 2)(x− t)n−3(t− α), α ≤ t ≤ x ≤ β
(n− 1)(n− 2)(x− t)n−3(t− β), α ≤ x < t ≤ β

.

Then for even n, the function s is convex and by Sherman’s theorem, we have

l∑
j=1

aj(xj − t)n−1k(t, xj)−
m∑
i=1

bi(yi − t)n−1k(t, yi) ≥ 0,
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i.e. the assumption (5.4) is immediately satisfied. Therefore, by Theorem 5.2, the inequality (5.5) holds.
Specially, for n = 2, the inequality (5.5) reduces to (3.2).
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