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Abstract: In this paper, we obtain Tauberian conditions to recover convergence of a series from its discrete power series
summability under certain conditions. As special cases of our main results, we get discrete analogues of some well-known
Tauberian theorems in the literature.
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1. Introduction and preliminaries

Let
∑∞

k=0 ak be a series of real or complex numbers and (sn) be its corresponding sequence of partial sums.
We suppose throughout this paper that (pn) is nonnegative for all n with p0 > 0 and satisfies

Pn =

n∑
k=0

pk → ∞, n → ∞. (1.1)

The weighted mean of (sn) is given by the sequence

σn =
1

Pn

n∑
k=0

pksk.

Assume that the radius of convergence of the power series p(x) =
∑∞

k=0 pkx
k is 1 . Let

ps(x) =
1

p(x)

∞∑
k=0

pkskx
k.

Now, we give definitions of some well-known summability methods which will be used in the sequel.
(i) The weighted mean method.

The series
∑∞

k=0 ak is called (N̄ , p) summable by the weighted mean method determined by the sequence
p ; in short, (N̄ , p) summable to L , if

lim
n→∞

σn = L.
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(ii) The power series method (P ) .
The series

∑∞
k=0 ak is called summable (P ) to L , if ps(x) exists for each x ∈ (0, 1) and if

lim
x→1−

ps(x) = L.

(iii) The discrete power series method (Pλ) .
Let (λn) be a strictly increasing sequence such that λ0 ≥ 1 and λn → ∞ as n → ∞ and define the

sequence (xn) by xn = 1− λ−1
n for all n . It is obvious that 0 ≤ x0 < x1 < ... < xn → 1. The series

∑∞
k=0 ak

is called summable (Pλ) to L , if ps(xn) exists for each n and if

lim
n→∞

ps(xn) = L.

As opposed to the method (P ) in which x → 1− continuously we refer to (Pλ) as a discrete method, since
xn → 1− through a sequence of numbers. The method (Pλ) reduces to the method (Aλ) (the discrete Abel
method) when pk = 1 ; to the method (Lλ) (the discrete logarithmic method) when pk = 1

k+1 .

A summability method is said to be regular, if it sums every convergent series to its ordinary sum. The
condition (1.1) assures the regularity of all three methods (N̄ , p) , (P ) and (Pλ) (see Watson [17]). Given two
summability methods A , and B , we write A ⊆ B and say B includes A if a series summable A is summable
B to the same value. If there is a series summable B but not summable A , we say B strictly includes A and
write A ⊂ B . If A ⊆ B and B ⊆ A , two methods are called equivalent and we write A ≃ B.

It is known that (N̄ , p) ⊆ (P ) (see Ishiguro [6]). Watson [17] obtained the following inclusion results for
the (Pλ) method.

Theorem 1.1 Let Eλ = {λn : n = 0, 1, 2, ...} and Eµ = {µn : n = 0, 1, 2, ...}. Then

(i) (Pλ) ⊆ (Pµ) if and only if Eµ\Eλ is a finite set,

(ii) (Pλ) ≃ (Pµ) if and only if the symmetric difference Eµ∆Eλ is a finite set,

(iii) For any λ , (P ) ⊂ (Pλ) .

Recently, conditions under which (P ) and (Pλ) methods are equivalent for bounded sequences have been
determined in our previous work [12].

The interest in summability methods is that they allow for a better understanding of divergent series.
In general, any theorem asserting the regularity of a method of summation is said to be an Abelian theorem.
The direct converse of an Abelian theorem is not always true, since if a regularity theorem for a method of
summability is reversible, then the method would be trivial because it applies just to convergent series. It is
therefore significant to get recovered forms of conditional converses to Abelian theorems, by imposing additional
restrictions. Such restrictions are called Tauberian conditions, and the conditionally converse results, Tauberian
theorems, honoring Alfred Tauber who first obtained a result of this type.

Tauberian theorems for continuous-type power series methods have a long history; see for example the
books in [5, 8] and related recent papers in [2, 4, 13, 16]. The studies for the discrete-type summability methods
began with the work of Armitage and Maddox [1] on discrete Abel means (Aλ) . Maddox [9, 10] proved
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several Tauberian theorems for the summability (Aλ) . Later, Watson [17] introduced the discrete power series
summability (Pλ) and generalized the (Aλ) method. Further, Patterson et al. [11] extended the (Pλ) method of
Watson [17] by using Bürmann series and obtained a Tauberian theorem. Çanak and Totur [3] gave a Tauberian
theorem for the discrete Mφ summability method and as a special case they obtained a Tauberian theorem for
the discrete logarithmic summability method. Furthermore, converse theorems for the discrete Bürmann power
series summability are established in our previous work [14]. In this study we present new Tauberian conditions
for the summability (Pλ) . Our main results improve some well-known Tauberian theorems in the literature.

2. Main results
In this section, we use capital letter C to denote a positive number independent from the variable under
consideration which is not necessarily the same at each occurence. We also adopt the following familiar
conventions:

(i) fn = o(gn) means fn/gn → 0 as n → ∞ ,

(ii) fn = O(gn) means |fn| ≤ Cgn for large enough n .

In [18], Watson proved the following Tauberian theorem for the (Pλ) method as a generalization of
Ishiguro’s [6] result for the summability (P ).

Theorem 2.1 Assume that
Pn

p(xn)
= O(1), n → ∞, (2.1)

0 < pn ≤ C for all n ≥ 0, (2.2)

and
λn = O(Pn). (2.3)

If
∑∞

n=0 an is summable (Pλ) to L and

an = o

(
pn

Pn−1

)
, n → ∞, (2.4)

then
∑∞

n=0 an converges to L .

Since the weighted mean method (N, p) is regular, (2.4) implies

n∑
k=0

Pk−1ak = o(Pn), (2.5)

where P−1 = 0. As
∑n

k=0 kak = o(n) is a well-known Tauberian condition for the Abel summability (Tauber’s
second theorem, [15]), one may think that (2.5) is a Tauberian condition for the (Pλ) summability. We prove
the following theorem as an extension of Tauber’s second theorem. It also generalizes Theorem 2.1.
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Theorem 2.2 Let the conditions (2.1), (2.2), and (2.3) be satisfied. If
∑∞

k=0 ak is summable (Pλ) to L and

n∑
k=0

Pk−1ak = o(Pn), n → ∞, (2.6)

then
∑∞

k=0 ak converges to L .

Proof Let

vn =
1

Pn

n∑
k=0

Pk−1ak, P−1 = 0. (2.7)

We then obtain

1

Pn

n∑
k=0

pksk =
1

Pn
{p0s0 + p1s1 + ...+ pnsn}

=
1

Pn
{p0a0 + p1(a0 + a1) + ...+ pn(a0 + a1 + ...+ an)}

=
1

Pn
{(p0 + p1 + ...+ pn)a0 + (p1 + p2 + ...+ pn)a1 + ...+ pnan}

=
1

Pn

n∑
k=0

(Pn − Pk−1)ak

= sn − 1

Pn

n∑
k=0

Pk−1ak.

Consequently, from the last identity above and (2.7) we get

σn = sn − vn. (2.8)

By (2.6) and the regularity of (Pλ) method, (vn) is summable (Pλ) to 0. Since
∑∞

k=0 ak is summable (Pλ) to
L , it follows from (2.8) that (σn) is also summable (Pλ) to L . Besides, considering (2.8) we have

Pn−1

pn
∆σn =

Pn−1

pn

1

Pn

n∑
k=0

pksk − Pn−1

pn

1

Pn−1

n−1∑
k=0

pksk

=
Pn−1

pn

1

Pn

n∑
k=0

pksk − 1

pn

n∑
k=0

pksk + sn

=
Pn−1

pn

1

Pn

n∑
k=0

pksk − Pn

pn

1

Pn

n∑
k=0

pksk + sn

= sn − 1

Pn

n∑
k=0

pksk

= vn

=
1

Pn

n∑
k=0

Pk−1ak
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Therefore, (2.6) implies that ∆σn = o

(
pn

Pn−1

)
. Now, applying Theorem 2.1 to the sequence (σn) we get

lim
n→∞

σn = L. Taking (2.6) and (2.8) into account, we conclude lim
n→∞

sn =
∑∞

k=0 ak = L. 2

Corollary 2.3 Let pk > 0 for all k = 0, 1, 2, ... and the conditions (2.1), (2.2), and (2.3) be satisfied. If∑∞
k=0 ak is summable (Pλ) to L and

n∑
k=0

|ak|p
P p
k−1

pp−1
k

= o(Pn), n → ∞, p > 1, (2.9)

then
∑∞

k=0 ak converges to L .

Proof We complete the proof by showing that (2.9) implies (2.6). Indeed∣∣∣∣∣ 1Pn

n∑
k=0

Pk−1ak

∣∣∣∣∣ ≤ 1

Pn

n∑
k=0

pk |ak|
Pk−1

pk

≤ 1

Pn

(
n∑

k=0

pk |ak|p
(
Pk−1

pk

)p
) 1

p
(

n∑
k=0

pk

) 1
q

=

(
1

Pn

n∑
k=0

|ak|p
P p
k−1

pp−1
k

) 1
p

,

where 1

p
+

1

q
= 1. Hence, condition (2.6) holds from (2.9) and Theorem 2.2. 2

In the special case of the discrete Abel method (Aλ) , we have the following theorem.

Corollary 2.4 Assume that there exist two positive numbers γ1 and γ2 such that γ1 ≤ λk

k
≤ γ2 . If

∑∞
k=0 ak

is summable (Aλ) to L and
n∑

k=0

kak = o(n), n → ∞,

then
∑∞

k=0 ak converges to L .

Next, we prove two Tauberian theorems for the summability (Pλ) . We inspired by the results in [7].

Theorem 2.5 Assume that
Pk

p(xk)
= O(1), k → ∞, (2.10)

and

λk = O

(
1

pk

)
. (2.11)
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If
∑∞

k=0 ak is summable (Pλ) to L and

ak = o

(
pk

Pk−1

)
, k → ∞, (2.12)

then
∑∞

k=0 ak converges to L .

Proof We demonstrate this theorem by showing that the difference below tends to 0 as n → ∞.

sn − ps(xn) =
1

p(xn)

∞∑
k=0

(sn − sk)pkx
k
n

=
1

p(xn)

n∑
k=0

(sn − sk)pkx
k
n +

1

p(xn)

∞∑
k=n+1

(sn − sk)pkx
k
n

= I + J.

If xn is chosen to be equal to 1− 1

λn
, we have

I = o(1) as n → ∞,

from (2.12) and the fact that (N, p) is regular (see Watson [18]).

Fix ϵ > 0 and consider J . Since ak = o

(
pk

Pk−1

)
, there exists a N ∈ N such that |ak| ≤ ϵ

pk
Pk−1

for k > N .

Suppose that k > n > N. Then, from (2.11) and (2.12) we find

|sn − sk| = |an+1 + an+2 + ...+ ak|

≤ ϵ

(
pn+1

Pn
+

pn+2

Pn+1
+ ...+

pk
Pk−1

)
≤ ϵ

Pn
(pn+1 + pn+2 + ...+ pk)

≤ ϵC

Pn

(
1

λn+1
+

1

λn+2
+ ...+

1

λk

)
≤ ϵC

Pn

k

λn
.

Considering (2.11), it yields

|J | ≤ 1

p(xn)

ϵC

Pnλn

∞∑
k=n+1

kpkx
k
n

≤ 1

p(xn)

ϵC

Pnλ2
n

∞∑
k=n+1

kxk
n

≤ Pn

p(xn)

ϵC

P 2
nλ

2
n

∞∑
k=0

kxk
n

= ϵ
Pn

p(xn)

C

P 2
n

(
1− 1

λn

)
.
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Thus, by using (2.10) we obtain J = o(1) as n → ∞ , which proves the theorem. 2

Theorem 2.6 Assume that
(pk) decreases monotonically, (2.13)

and

γ1 ≤ λk

k
≤ γ2 for some positive numbers γ1 and γ2. (2.14)

If
∑∞

k=0 ak is summable (Pλ) to L and

ak = o

(
pk

Pk−1

)
, k → ∞, (2.15)

then
∑∞

k=0 ak converges to L .

Proof As in the proof of Theorem 2.5, let

sn − ps(xn) = I + J.

We get from (2.15) and the regularity of (N, p) method that

I = o(1) as n → ∞,

when xn = 1− 1

λn
.

We shall estimate J . Firstly, for sufficiently large n we have

Pn

(
1− 1

λn

)n

<

n∑
k=0

pk

(
1− 1

λn

)k

<

∞∑
k=0

pk

(
1− 1

λn

)k

and (
1− 1

λn

)−n

>
Pn

n∑
k=0

pk

(
1− 1

λn

)k >
Pn

∞∑
k=0

pk

(
1− 1

λn

)k . (2.16)

Then, by (2.14) and (2.16), we get Pn

p(xn)
= O(1) as n → ∞ . Now, considering (2.15) and (2.13), respectively,

we obtain

|sn − sk| = |an+1 + an+2 + ...ak|

≤ ϵ

(
pn+1

Pn+1
+

pn+2

Pn+2
+ ...+

pk
Pk

)
≤ ϵ

Pn
(pn+1 + pn+2 + ...+ pk)

≤ ϵ
Pk

Pn
,
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and so

|J | ≤ 1

p(xn)

ϵ

Pn

∞∑
k=n+1

Pkpkx
k
n

≤ Pn

p(xn)

ϵpn
P 2
n

∞∑
k=n+1

Pkx
k
n

≤ ϵC
pn
P 2
n

∞∑
k=n+1

Pkx
k
n.

Defining

Qk =

∞∑
j=k

xj
n

=

∞∑
j=0

(
1− 1

λn

)j

−
k−1∑
j=0

(
1− 1

λn

)j

= λn −
1−

(
1− 1

λn

)k
1−

(
1− 1

λn

) = λn

(
1− 1

λn

)k

,

we find that
∞∑

k=n+1

Pkx
k
n =

∞∑
k=n+1

Pk (Qk −Qk+1)

= Pn+1Qn+1 +

∞∑
k=n+2

pkQk

= Pn+1λn

(
1− 1

λn

)n+1

+

∞∑
k=n+2

pkλn

(
1− 1

λn

)k

.

Thus, we observe

|J | ≤ ϵC
pn
P 2
n

Pn+1λn

(
1− 1

λn

)n+1

+ ϵC
pn
P 2
n

∞∑
k=n+2

pkλn

(
1− 1

λn

)k

= S1 + S2.

It suffices to show that S1, S2 → 0 as n → ∞. Then, by (2.13) and (2.14) we see that

0 ≤ S1 ≤ ϵC
λn

n

Pn+1

Pn

(
1− 1

λn

)n+1

≤ ϵC
λn

n

(
1 +

1

n

)(
1− 1

λn

)n+1

≤ ϵC,
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and further

0 ≤ S2 ≤ ϵC
p2n
P 2
n

λn

∞∑
k=0

(
1− 1

λn

)k

≤ ϵC

(
pnλn

Pn

)2

≤ ϵC

(
λn

n

)2

≤ ϵC.

Hence, we conclude |J | ≤ ϵC for large enough n . Therefore, letting n → ∞ , it follows lim
n→∞

sn = lim
n→∞

ps(xn) =

L , which completes the proof. 2

Remark 2.7 In previous theorems, conditions (2.12) and (2.15) may be replaced by condition (2.6).

As a special case, we can give the following Tauberian theorem for the discrete logarithmic method (Lλ) .

Corollary 2.8 Let there exist two positive numbers γ1 and γ2 such that γ1 ≤ λk

k
≤ γ2 . If

∑∞
k=0 ak is

summable (Lλ) to L and

ak = o

(
1

k log k

)
, k → ∞,

then
∑∞

k=0 ak converges to L .

3. Conclusion
Discrete power series methods of summability were presented by Watson [17] in 1998. In the same study, their
regularity and Abelian properties were developed and it was shown that each strictly includes their corresponding
power series method. Recently, conditions for the equivalence of (P ) and (Pλ) methods were examined in our
previous work [12]. In the present work, we have proved Tauberian theorems for the (Pλ) method of summability
inspired by the results in [7].
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