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Abstract: Levinson and Montgomery proved that the Riemann zeta-function ζ(s) and its derivative have approximately
the same number of nonreal zeros left of the critical line. Spira showed that ζ′(1/2+ it) = 0 implies that ζ(1/2+ it) = 0 .
Here we obtain that in small areas located to the left of the critical line and near it the functions ζ(s) and ζ′(s) have
the same number of zeros. We prove our result for more general zeta-functions from the extended Selberg class S . We
also consider zero trajectories of a certain family of zeta-functions from S .

Key words: Riemann zeta-function, extended Selberg class, nontrivial zeros, Speiser’s equivalent for the Riemann
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1. Introduction
Let s = σ + it . In this paper, T always tends to plus infinity.

Speiser [17] showed that the Riemann hypothesis (RH) is equivalent to the absence of nonreal zeros of
the derivative of the Riemann zeta-function ζ(s) left of the critical line σ = 1/2 . Later on, Levinson and
Montgomery [11] obtained the quantitative version of the Speiser’s result:

Theorem 1.1 (Levinson-Montgomery) Let N−(T ) be the number of zeros of ζ(s) in R : 0 < t < T, 0 < σ <

1/2 . Let N−
1 (T ) be the number of zeros of ζ ′(s) in R . Then N−

1 (T ) = N(T ) +O(log T ).

Unless N−(T ) > T/2 for all large T there exists a sequence {Tj} , Tj → ∞ as j → ∞ such that
N−

1 (Tj) = N−(Tj).

Here we prove the following theorem.

Theorem 1.2 There is an absolute constant T0 > 0 such that, for any T > T0 and any A > 0.17 , there is a
radius r ,

exp(−TA) ≤ r ≤ exp(−TA−0.17),

such that in the region

{s : |s− (1/2 + iT )| ≤ r and σ < 1/2}

the functions ζ(s) and ζ ′(s) have the same number of zeros.
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Nonreal zeros of ζ(s) lie symmetrically with respect to the critical line. In this sense, the result of Spira [18,
Corollary 3] that ζ(1/2 + it) = 0 if ζ ′(1/2 + it) = 0 can be regarded as a border case of the above theorem
when r = 0 .

Note that for both ζ(s) and ζ ′(s) the average gap between zeros is 2π/ log T around height T (Titch-
marsh [21, Section 9.4] and Berndt [2]). This is much larger than the radius r in Theorem 1.2.

In Theorem 1.2, the constant 0.17 is related to the number of zeros of ζ(s) in the strip |t − T | ≤ 1/T .
For details see Section 3 which contains the proof of Theorem 1.2. Moreover, in Section 2 we consider a more
general version of Theorem 1.2 devoted to the extended Selberg class S . The extended Selberg class contains
most of the classical L -functions (Kaczorowski [7]). This class also includes zeta-functions for which RH is not
true, a well-known example being the Davenport-Heilbronn zeta-function, which is defined as a suitable linear
combination of two Dirichlet L -functions (Titchmarsh [21, Section 10.25], see also Kaczorowski and Kulas [8]).
In the next section we also investigate zero trajectories of the following family of zeta-functions from S :

f(s, τ) := (1− τ)(1 +
√
5/5s)ζ(s) + τL(s, ψ), (1.1)

where τ ∈ [0, 1] and L(s, ψ) is the Dirichlet L -function with the Dirichlet character ψ mod 5 , ψ(2) = −1 .

2. Extended Selberg class
We consider Theorem 1.2 in the broader context of the extended Selberg class. Note that Levinson and
Montgomery’s [11, Theorem 1] approach, which is used here, usually works for zeta-functions having nontrivial
zeros distributed symmetrically with respect to the critical line. See Yıldırım [23] for Dirichlet L -functions;
Šleževičienė [20] for the Selberg class; Luo [12], Garunkštis [3], Minamide [13–15], Jorgenson and Smailović [6]
for Selberg zeta-functions and related functions; Garunkštis and Šimėnas [5] for the extended Selberg class. In
Garunkštis and Tamošiūnas [4] the Levinson and Montgomery result was generalized to the Lerch zeta-function
with equal parameters. Such function has an almost symmetrical distribution of nontrivial zeros with respect
to the line σ = 1/2 . Insights which helped to overcome difficulties raised by “almost symmetricity” in [4] led
to Theorem 1.2 of this paper, although ζ(s) has a strictly symmetrical zero-distribution.

We recall the definition of the extended Selberg class (see [7, 9, 19]). A not identically vanishing Dirichlet
series

F (s) =

∞∑
n=1

an
ns
,

which converges absolutely for σ > 1 , belongs to the extended Selberg class S if

(i) (Meromorphic continuation) There exists k ∈ N such that (s − 1)kF (s) is an entire function of finite
order.

(ii) (Functional equation) F (s) satisfies the functional equation:

Φ(s) = ωΦ(1− s), (2.1)

where Φ(s) := F (s)Qs
∏r

j=1 Γ(λjs+ µj) , with Q > 0 , λj > 0 , ℜ(µj) ≥ 0 and |ω| = 1 .

The data Q , λj , µj , and ω of the functional equation are not uniquely determined by F , but the value
dF = 2

∑r
j=1 λj is an invariant. It is called the degree of F .
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If the element of S also satisfies the Ramanujan hypothesis (an ≪ε n
ε for any ε > 0) and has a certain

Euler product, then it belongs to the Selberg class introduced by Selberg [16].
We collect several properties of F (s) ∈ S . The functional equation (2.1) gives, for F (1/2 + it) ̸= 0 ,

ℜF
′

F
(1/2 + it) = −ℜ

r∑
j=1

λj
Γ′

Γ
(λj(1/2 + it) + µj)− logQ.

Then by the formula
Γ′

Γ
(s) = log s+O

(
|s|−1

)
(ℜ(s) ≥ 0, |s| → ∞)

we get, for F (1/2 + it) ̸= 0 and dF > 0 ,

ℜF
′

F
(1/2 + it) = −dF

2
log t− logQ+O

(
1

t

)
(t→ ∞), (2.2)

where the implied constant may depend only on λj , µj , j = 1, . . . , r .
Every F ∈ S has a zero-free half-plane, say σ > σF . By the functional equation, F (s) has no zeros for

σ < −σF , apart from possible trivial zeros coming from the poles of the Γ -factors. Let ρ = β + iγ denote a
generic zero of F (s) and

NF (T ) = # {ρ : F (ρ) = 0, |β| ≤ σF , |γ| < T} .

Then (Kaczorowski and Perelli [9, Section 2])

NF (T ) =
dF
π
T log T + cFT +O(log T ) (2.3)

with a certain constant cF , for any fixed F ∈ S with dF > 0 .
From the Dirichlet series expression for F we see that there are constants σ1 = σ1(F ) > 1 and

c = c(σ1, F ) > 0 such that
|F (σ1 + it)| ≥ c, t ∈ R. (2.4)

It is known (Garunkštis and Šimėnas [5, formula (12)]) that there is B = B(F, σ1) > 0 such that

|F (σ + iT )| < TB , (T > 10), (2.5)

for σ ≥ −4σ1 . The specific constant −4σ1 will be useful in the proof of Theorem 2.1 below.
In view of above, for given positive constants σ1 , c , B , ε , δ , T̄ , λj , and complex constants µj

(ℜ(µj) > 0 , j = 1, . . . , r ), we define a subclass S̄ ⊂ S as follows: it consists of functions satisfying (2.4),
(2.5), (2.1), with any |ω| = 1 ; we require that any function from S̄ has no more than

ε

log(2 + δ)
log T − 2 (2.6)

zeros in the area |t − T | ≤ 1/T , T > T̄ . For each function from S the Riemann-von Mangoldt type formula
(2.3) yields the existence of ε , δ , and T̄ such that the zero number bound (2.6) is fulfilled.

Theorem 1.2 will be derived from the following more general statement.
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Theorem 2.1 Let F (s) be an element of S̄ with dF > 0 . Then there is a constant T0 = T0(S̄) > 0 for which
the following statement is true.

If A and s0 = σ0 + iT satisfy the inequalities

A > ε, T > T0, 1/2− exp(−TA) < σ0 ≤ 1/2, (2.7)

then there is a radius r = r(F ) ,
exp(−TA) ≤ r ≤ exp(−TA−ε),

such that in the area
{s : |s− s0| ≤ r and σ < 1/2} (2.8)

functions F (s) and F ′(s) have the same number of zeros.

Note that in Theorem 2.1 the constant T0 is independent of A and σ0 . This will be important in the proof of
Theorem 2.2 below.

In [5] zeta-functions f(s, τ) defined by (1.1) were considered. By Kaczorowski and Kulas [8, Theorem 2]
we have that for any 0<τ<1 and any interval (a, b) ⊂ (1/2, 1) the function f(s, τ) has infinitely many zeros in
the half-strip a < σ < b , t > 0 . Let θ > 0 and let

ρ : (τ0 − θ, τ0 + θ) → C

be a continuous function such that f(ρ(τ), τ) = 0 for τ ∈ (τ0 − θ, τ0 + θ) . We say that ρ(τ) is a zero trajectory
of the function f(s, τ) . Analogously we define a zero trajectory ρ̃(τ) of the derivative f ′s(s, τ) . See also the
discussion below the formula (6) in [5]. In [5] several zero trajectories ρ(τ) of f(s, τ) and ρ̃(τ) of f ′s(s, τ)
were computed. The behavior of these zero trajectories correspond well to Theorem 2.1. Computations in [5]
should be considered as heuristic because the accuracy was not controlled explicitly. Next we present a rigorous
statement concerning zero trajectories of f(s, τ) and f ′s(s, τ) .

Theorem 2.2 Let τ0 ∈ [0, 1] . Let s = ρ0 be a second-order zero of f(s) = f(s, τ0) with ℜ(ρ0) = 1/2 and
sufficiently large ℑ(ρ0) . Then the following two statements are equivalent.

1) There is a zero trajectory ρ(τ) , τ ∈ (τ0 − θ, τ0 + θ) , θ > 0 , of f(s, τ) such that

(i) ρ(τ0) = ρ0 ;

(ii) ℜ(ρ(τ)) = 1/2 if τ < τ0 ;

(iii) ℜ(ρ(τ)) < 1/2 , if τ > τ0 .

2) There is a zero trajectory ρ̃(τ) , τ ∈ (τ0 − η, τ0 + η) , η > 0 , of f ′s(s, τ) such that

(i) ρ̃(τ0) = ρ0 ;

(ii) ℜ(ρ̃(τ)) > 1/2 if τ < τ0 ;

(iii) ℜ(ρ̃(τ)) < 1/2 , if τ > τ0 .

From the proof we see that Theorem 2.2 remains true if all inequalities τ < τ0 and τ > τ0 are simultaneously
replaced by opposite inequalities.
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According to computations of [5] there are 1452 zero trajectories ρ(τ) of f(s, τ) with 0 < ℑρ(0) ≤ 1500 ,
1166 of these trajectories stay on the critical line, while the remaining 286 leave it. The points at which
mentioned trajectories leave the critical line are double zeros of f(s) = f(s, τ) (see also a discussion at the end
of Section 3 in Balanzario and Sánchez-Ortiz [1]). In view of this we expect that the family f(s, τ) , τ ∈ [0, 1]

has infinitely many double zeros lying on the line σ = 1/2 . Moreover, we think that the similar statement to
Theorem 2.2 can also be proved in the case where s = ρ is a higher order zero of f(s) = f(s, τ) with ℜρ = 1/2 ;
however, there is no evidence that such zeros exist.

The next section is devoted to the proofs of Theorems 1.2, 2.1, and 2.2.

3. Proofs
Proof of Theorem 2.1 is based on the next lemma. Recall that the subclass S̄ depends on constants σ1 , c , B ,
ε , δ , T̄ , λj , µj , (j = 1, . . . , r ).

Lemma 3.1 Let F (s) be an element of S̄ with dF > 0 . Suppose that s0 = σ0 + iT satisfies the inequality
1/2− exp(−TA) < σ0 ≤ 1/2 , where T > T̄ and A > ε . Then there is a radius r = r(F ) ,

exp(−TA) ≤ r ≤ exp(−TA−ε), (3.1)

such that, for |s− s0| = r , σ ≤ 1/2 ,

ℜF
′

F
(s) ≤ −dF

2
log T − logQ+O

(
1

T

)
, (3.2)

uniformly for F (s) ∈ S̄ .

Proof We repeat the steps of the proof of Proposition 4 in [4]. Contrary to Proposition 4, here we do not
need the upper bound for ε (see (2.6)). This is because the “symmetric” functional equation (2.1) leads to
the convenient formula (2.2), while the “almost symmetric” functional equation of the Lerch zeta-function with
equal parameters in [4] leads to a more restricted version of (2.2) (see [4, Lemma 3]).

Let T > T̄ and rk = exp
(
−(2 + δ)−kTA

)
, k = 1, . . . , [ ε

log(2+δ) log T ] . By (2.6) and Dirichlet’s box

principle there is j = j(F ) ∈ {2, . . . , [ ε
log(2+δ) log T ]} such that the region

rj−1 < |s− s0| ≤ rj (3.3)

has no zeros of F (s) . Then the auxiliary function

g(s) :=
F ′

F
(s)−

∑
ρ : |ρ−s0|≤rj−1

1

s− ρ
(3.4)

is analytic in the disc |s− s0| ≤ rj and in this disc we have

g(s) =

∞∑
n=0

an(s− s0)
n and an =

1

2πi

∫
|s−s0|=rj

g(s)ds

(s− s0)n+1
. (3.5)
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In view of bounds (2.4) and (2.5), Lemma α from Titchmarsh [21, Section 3.9] gives that, for |s−s0| ≤ rj ,

F ′

F
(s) =

∑
ρ : |ρ−(σ1+iT )|≤2σ1

1

s− ρ
+O(log T ).

Recall that σ1 was defined before (2.4). Here and elsewhere in this proof the constants in big-O and ≪
notations may only depend on the subclass S̄ . By the last equality, the zero-free region (3.3), and (3.4) we get

g(s) =
∑

ρ : |ρ−(σ1+iT )|≤2σ1 and
|ρ−s0|>rj

1

s− ρ
+O(log T ).

Using this expression in the integral for an we obtain that

an ≪ r−n
j log T (n ≥ 1). (3.6)

Let us choose

r = r
1+δ/3
j .

Clearly, the bounds (3.1) are satisfied. By (3.5) and (3.6), for |s− s0| = r , we have

g(s) = a0 +O
(
r
δ/3
j log T

)
.

Hence, for |s− s0| = r , the expression (3.4) gives

ℜF
′

F
(s) = ℜa0 +

∑
ρ : |ρ−s0|≤rj−1

σ − β

|s− ρ|2
+O

(
r
δ/3
j log T

)
. (3.7)

For |ρ−s0| ≤ rj−1 , |s−s0| = r , 1/2− (ℜs0−1/2+rj−1) ≤ σ ≤ 1/2 , and large T , we have that |σ−β| ≤ 4rj−1

and |s− ρ|2 > r
2+2δ/3
j /2. Then by (2.6) we get

∑
ρ : |ρ−s0|≤rj−1

σ − β

|s− ρ|2
≪ r

δ/3
j log T.

Consequently, by (3.7),

ℜF
′

F
(s) = ℜa0 +O

(
r
δ/3
j log T

)
. (3.8)

The region (3.3) is zero-free. Thus, F (s) does not vanish on the circle |s − s0| = r . By instantiating
(2.2) and (3.8) to a single s on the intersection of |s− s0| = r and σ = 1/2 we obtain that

ℜa0 = −dF
2

log T − logQ+O

(
1

T

)
+O

(
r
δ/3
j log T

)
. (3.9)

Hence, for |s− s0| = r and 1/2− (ℜs0 − 1/2 + rj−1) ≤ σ ≤ 1/2 ,

ℜF
′

F
(s) = −dF

2
log T − logQ+O

(
1

T

)
. (3.10)
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If |s− s0| = r and σ < 1/2− (ℜs0 − 1/2 + rj−1) , then

∑
ρ : |ρ−s0|≤rj−1

σ − β

|s− ρ|2
≤ 0

and, in view of formulas (3.7), (3.9),

ℜF
′

F
(s) ≤ −dF

2
log T − logQ+O

(
1

T

)
. (3.11)

The expressions (3.10) and (3.11), together with the zero-free region (3.3), prove Lemma 3.1. 2

Proof of Theorem 2.1 Let

R = {s : |s− s0| ≤ r and σ < 1/2},

where r is from Lemma 3.1. To prove the theorem, it is enough to consider the difference in the number of
zeros of F (s) and F ′(s) in the region R .

We consider the change of argF ′/F (s) along the appropriately indented boundary R′ of the region R .
More precisely, the left side of R′ coincides with the circle segment {s : |s − s0| = r, σ ≤ 1/2} . To obtain the
right-hand side of the contour of R′ , we take the right-hand side boundary of R and deform it to bypass the
zeros of F (1/2+ it) by left semicircles with an arbitrarily small radius. In [5, proof of Theorem 1.2] it is showed
that on the right-hand side of R′ the inequality

ℜF
′

F
(s) < 0 (3.12)

is true. Then, in view of Lemma 3.1, we have that the inequality (3.12) is valid on the whole contour R′ .
Therefore, the change of argF ′/F (s) along the contour R′ is less than π . This proves Theorem 2.1. 2

Proof of Theorem 1.2 The Riemann zeta-function is an element of degree 1 of the extended Selberg class
(Kaczorowski [7]). By Trudgian [22, Corollary 1] we see that, for large T , the Riemann zeta-function has less
than 0.225 log T zeros in the strip |t− T | ≤ 1/T . Thus, in the formula (2.6) we choose ε = 0.17 and δ = 0.1 .
Then Theorem 1.2 follows from Theorem 2.1. 2

Proof of Theorem 2.2 We will use Theorem 2.1. Next we show that there is a subclass S̄ such that
f(s, τ) ∈ S̄ for all τ ∈ [0, 1] . In view of the definition (1.1) of f(s, τ) we see that there are constants c , B , and
σ1 independent of τ for which the bounds (2.4) and (2.5) are valid. By this and Jensen’s theorem, similarly
as in Titchmarsh [21, Theorem 9.2], we get that there are constants ε , δ , and T̄ independent of τ for which
the zero number bound (2.6) is true. The function f(s) = f(s, τ) satisfies the functional equation ([5, formula
(3)])

f(s) = 5−s+1/22(2π)s−1Γ(1− s) sin
(πs

2

)
f(1− s) (3.13)

which is independent of τ ; thus, the constants λj , µj are also independent of τ . This proves the existence of
required S̄ . Therefore, in Theorem 2.1 with F (s) = f(s, τ) it is possible to choose T0 , which is independent of
τ . Further in this proof we assume that ℑ(ρ0) > T0 + 10 .
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We consider a zero trajectory ρ(τ) of f(s, τ) which satisfies ρ(τ0) = ρ0 . The two variable function f(s, z)

is holomorphic in a neighborhood of any

(s, z) ∈ C2 \ {(1, z) : z ∈ C}.

By conditions of the theorem we have that ρ0 ̸= 1 , f(ρ0, τ0) = 0 ,

∂f(ρ0, τ0)

∂s
= 0, and ∂2f(ρ0, τ0)

∂s2
̸= 0. (3.14)

By (3.14) and by the Weierstrass preparation theorem (Krantz and Parks [10, Theorem 5.1.3]) there exists a
polynomial

p(s, τ) = s2 + a1(τ)s+ a0(τ),

where each aj(τ) is a holomorphic function in a neighborhood of τ = τ0 that vanishes at τ = τ0 , and there is
a function u(s, τ) holomorphic and nonvanishing in some neighborhood N of (ρ0, τ0) such that

f(s, τ) = u(s, τ)p(s, τ) (3.15)

holds in N . Solving s2 + a1(τ)s+ a0(τ) = 0 we get

s1,2 = s1,2(τ) =
−a1(τ)±

√
a1(τ)2 − 4a0(τ)

2
, (3.16)

where for the square-root we choose the branch defined by
√
1 = 1 . Note that in the neighborhood N the

function f(s, τ) has no other zeros except those described by (3.16).
Assume that the statement 1) of Theorem 2.2 is true. Then in some neighborhood U of τ = τ0 the first

part of trajectory ρ(τ) consists either of {s1(τ) : τ < τ0, τ ∈ U} or of {s2(τ) : τ < τ0, τ ∈ U} . Similarly, the
remaining part of trajectory ρ(τ) consists either of {s1(τ) : τ > τ0, τ ∈ U} or of {s2(τ) : τ > τ0, τ ∈ U} .

If ℜs1(τ) ̸= 1/2 or ℜs2(τ) ̸= 1/2 for some τ , then by the functional equation (3.13) we see that
s2(τ) = 1− s1(τ) . This and the condition (iii) give that

s1(τ) ̸= s2(τ), if τ > 0, τ ∈ U. (3.17)

Thus, a1(τ)2−4a0(τ) ̸= 0 if τ > 0 , τ ∈ U . By the condition (i) we see that ρ(τ0) = s1(τ0) = s2(τ0) is a double
zero of P (s) = P (s, τ) ; therefore, a1(τ0)2 − 4a0(τ0) = 0 . Hence, a1(τ)2 − 4a0(τ) is a nonconstant holomorphic
function. Then there is a neighborhood of τ = τ0 , where

s1(τ) ̸= s2(τ), if τ < 0. (3.18)

In view of formulas (3.14), the implicit function theorem ([10, Theorem 2.4.1])) yields the existence of
η > 0 and of a continuous function

ρ̃ : (τ0 − η, τ0 + η) → C,

such that ρ̃(τ0) = ρ(τ0) = 0 and f ′s(ρ̃(τ), τ) = 0 . By this we get condition (a) of the second statement.
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We assume that η > 0 is such that the set

{(ρ̃(τ), τ) : τ ∈ (τ0 − η, τ0]}

is a subset of the neighborhood N (defined by (3.15)). We have ([5, Proposition 1.4]) that f ′s(1/2 + it, τ) = 0

implies f(1/2+ it, τ) = 0 . Then in view of (3.18) we obtain that ℜρ̃(τ) ̸= 1/2 if τ ∈ (τ0 − η, τ0) . By condition
(ii) and by above there is a neighborhood of (ρ0, τ0) , where f(s, τ) ̸= 0 if τ < τ0 . Then condition (b) follows
from Theorem 2.1.

Theorem 2.1 and condition (iii) lead to ℜ(ρ̃(τ)) < 1/2 if τ ∈ (τ0, τ0 + η) and η > 0 is sufficiently small.
We get condition (c). By this we proved that the statement 1) implies the statement 2).

Assume the second statement of Theorem 2.2. Then by applying Theorem 2.1 and reasoning similarly
as above, we see that from the trajectories defined by (3.16) we can construct a trajectory ρ(τ) which satisfies
conditions of the first statement. 2
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