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Abstract: A variational study of finding critical points of the total squared torsion functional for curves in Euclidean
3−spaces is presented. Critical points of this functional also known as one of the natural Hamiltonians of curves are
characterized by two Euler−Lagrange equations in terms of curvature and torsion of a curve. To solve these balance
equations, the curvature of the critical curve is expressed by its torsion so that equations are completely solved by
quadratures. Then two Killing fields along the critical curve are found for integrating the structural equations of the
critical curve and this curve is expressed by quadratures in a system of cylindrical coordinate. Finally, the problem is
generalized to finding extremals of total squared torsion functional for nonnull curves in Minkowski 3−space.
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1. Introduction
The mechanics of thin rods have a long history, and are used to tackle a number of problems from different fields
today. Finding the equilibrium position of these structures is a mechanical problem and the balance equations
can be reached using classical differential geometry techniques. These models often give rise to variational
problems on curves in a form that is invariant under Euclidean motions. The corresponding equilibrium
equations are usually expressed in abstract geometrical form and do not seem to be widely known in the
physics and mechanics literature [15].

Consider that γ is a unit speed curve in Euclidean 3−space R3 . Let {T,N,B} denote the Frenet frame
of γ at the point γ(s). Then, the Frenet formulas for the curve γ are given byT ′

N ′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B

 , (1.1)

where
κ = ∥γ′′∥ and τ =< N ′, B > (1.2)

are the curvature and the torsion of γ, respectively [11]. If the curvature κ > 0 and the torsion τ of a curve
are known, then the curve can be completely characterized. Moreover, the Hamiltonian for curves of the form
H =

∫
f(κ, τ, κ′, τ ′, ...)ds is defined by curvature and torsion of a curve. Such Hamiltonians play a role both

in static and kinematic description of curves. A simple model for these Hamiltonians is in the form
∫
f(κ)ds
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which depends on the curvature (see [2]). Especially, a natural Hamiltonian
∫
κ2ds generated by < T ′, T ′ >

is known as a bending energy functional and critical points of this functional under suitable conditions are
called as elastic curves proposed by Daniel Bernoulli to Leonhard Euler in 1744 (see, [1, 2, 13]). Elastic curves
and their generalization which are the critical points of the functional of a form

∫
p(κ)ds, where p(κ) is a

polynomial of κ with degree ≥ 2 under given first order boundary data have been worked and developed by
many authors up to now and are being continued to be developed see for example [1, 3, 5–9, 16]. Although the
natural Hamiltonian in this form has been extensively studied, there is not much work on natural Hamiltonians
produced by < N ′, N ′ > and < B′, B′ > which are

∫
κ2 + τ2ds and

∫
τ2ds. In [2], Capovilla et al. examine

local reparametrization invariant Hamiltonians for curves of the form H =
∫
f(κ, τ)ds and show that a pure

torsion Hamiltonian also leads to integrable equilibrium conditions as well as a pure bending Hamiltonian.
Moreover, they derive Euler−Lagrange equations for the form bending and torsion and obtain equilibrium
equations by using the theory of deformations of a curve tailored to the Frenet-Serret frame. This method used
by Capovilla et al. to characterize the natural Hamiltonians differs from that of the Langer and Singer (see
[6–9, 13], which is often used to minimize pure curvature functionals. The idea is that Langer and Singer’s
approach can also be useful to minimize pure torsion functional. The critical points of pure torsion functional
in Euclidean and Minkowski 3−spaces are investigated using that approach in this paper. This problem now
offers a pure mathematical flavor, but considering the role of variational calculus in geometric control theory,
the results of this paper are believed to be a good reference to new research studies in this concept.

To sum up, the natural Hamiltonian variational problem which is produced by inner multiplication of a
binormal derivative of a Frenet curve is considered with a different approach (the Langer and Singer’s approach)
in this paper. Equilibrium configurations for the natural Hamiltonian with appropriate boundary conditions
both in Euclidean and in Minkowski 3−spaces are investigated. The geometrical state of the balance equations
characterized by its curvature and torsion is obtained and solved by quadratures in both spaces. Two Killing
fields, introduced by Langer and Singer [8], are constructed along the critical curves. By using these Killing
fields, a cylindrical coordinate system is constructed. Finally, critical curves are expressed in R3 and R3

1 by
quadratures in these cylindrical coordinates, respectively.

2. Critical points of the torsion energy action in Euclidean 3-space
In this section, information about the structure of a curve in Euclidean 3−space is given. Some variational
conditions are presented. Then, the main problem which is finding critical points of the total squared torsion
functional under some boundary conditions in Euclidean 3−space are constructed and solutions are studied.

2.1. Variational formulas
In this subsection, basic facts for the Euclidean curves and a geometrical construction that will be needed in
Subsection 2.2 are given.

Let γ = γ(s) : I ⊂ R → R3 be a unit speed curve in Euclidean 3−space R3 . T = T (s) = γ′ denotes the

unit tangent vector field of γ , N = γ′′

∥γ′′∥ the principle unit normal vector field and B = T ×N the binormal

vector field. Then {T,N,B} is the Frenet frame along the curve γ, and Frenet equations are given by the
equations (1.1) with the curvature and the torsion (1.2).

To find the extremals of the total squared torsion functional, its first variation must be computed.
Consider a map γ: (−ε, ε)× I → R3 so that (w, t) → γ (w, t) = γw (t) and the curve γw (t) goes throughout
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γ provided that γ(0, t) = γ(t). Then γw (t) is known as a variation of γ. Two vector fields V (w, t) = ∂γ(w,t)
∂t

and W (w, t) = ∂γ(w,t)
∂w are defined such that V (0, t) = γ′ (t) . Furthermore, W (t) = W (0, t) is a variational

vector field along γ(t) so that ∂γ(w,t)
∂w

∣∣∣
w=0

= W (t) [1, 13 ] . If s denotes the arc length parameter, then γ(s) ,

κ2(w, s) , V (s) , etc. can be written for the corresponding reparametrizations, where s ∈ [0, ℓ] and ℓ is arc
length of γ.

The following lemma is needed for some variational calculations in Section 2.2.

Lemma 2.1 (see [6, 7 ]) . Let γ(w, t) be a variation of a curve γ ∈ R3 . Then the following formulas are
satisfied;

i) [W,V ] = 0,

ii) W (v) =< W ′, T > v,

iii) W (κ) =< W ′′, N > −2κ < W ′, T >

iv) W (τ2) = 2τ
(
1
κ < W ′′, B >

)′ − 2τ < W ′, (τT − κB) > .

2.2. Finding critical Euclidean curves for the natural Hamiltonian

Suppose that L is the space of smooth curves γ : [0, ℓ] ⊂ R → R3 satisfying

γ (iℓ) = pi, γ′ (iℓ) = vi

for pi ∈ R3 and vi ∈ Tpi
R3, i = 0, 1. Then, a natural Hamiltonian generated by the inner product of derivative

of binormal of a curve, i.e. < B′, B′ > is defined as

F : L → [0,∞)

γ → F (γ) = Fγ =
∫ ℓ

0
τ2ds =

∫ 1

0
τ2vdt,

(2.1)

where τ is the torsion of the curve and v = ∥γ′ (t)∥ = ds
dt ̸= 0 is the speed function. In this section, the critical

points of the functional (2.1) are investigated.
Let γ be a critical point of the functional F . Then for a variation γw associated with a variation vector

field W along γ , the following equations are obtained from Lemma 2.1.

δFγ(W ) =
1∫
0

(W (τ2)v + τ2W (v))dt,

=
ℓ∫
0

(2 τ
κ < W ′′′, B > +2τ < W ′′,

(
1
κB
)′

> −2τ < W ′, (τT − κB) > +τ2 < W ′, T >)ds.

By the integrating by parts, we get

δFγ(W ) =
ℓ∫
0

< E[γ],W > ds+ (S[γ,W ])|
ℓ

0

where

E[γ] =

(
3τ2κ+ 2

(τ ′)
2

κ + 4τ
(

τ ′

κ

)′)
N + 2

(
τ ′ τ

2

κ − (τκ)
′ −
(

τ ′

κ

)′′)
B
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and

(S[γ,W ])|
ℓ

0
=< 2

τ

κ
B,W ′′ > − < 2

τ ′

κ
B,W ′ > + < −τ2T − 2τ ′

τ

κ
N + 2

(
τκ+

(
τ ′

κ

)′
)
B,W >

∣∣∣∣∣
ℓ

0

If γ is a critical point of the functional F , then E[γ] vanishes identically [4 ]. Then, the first variation reduces
to

δFγ(W ) = (S[γ,W ])|
ℓ

0

= < 2
τ

κ
B,W ′′ > − < 2

τ ′

κ
B,W ′ > + < J,W >|

ℓ

0
, (2.2)

where

J = −τ2T − 2τ ′
τ

κ
N + 2

(
τκ+

(
τ ′

κ

)′
)
B.

According to the Noether theorem, the first variation of Fγ is zero for the constant vector field W (see [4, 13]),
this means that Eq. (2.2) is equal to zero. One can easily see that J is constant along a critical point of the
functional (2.1) because of

J ′ = (−2ττ ′ + 2ττ ′)T +

(
−τ2κ−

(
2τ ′

τ

κ

)′
− 2τ

(
τκ+

(
τ ′

κ

)′
))

N + 2

((
τκ+

(
τ ′

κ

)′
)′

− τ ′
τ2

κ

)
B

= −

(
−3τ2κ− 2

(τ ′)
2

κ
− 4τ

(
τ ′

κ

)′
)
N − 2

(
τ ′
τ2

κ
− (τκ)

′ −
(
τ ′

κ

)′′
)
B

= −E[γ] = 0.

Then we have

∥J∥2 = τ4 + 4 (τ ′)
2 τ2

κ2
+ 4

(
τκ+

(
τ ′

κ

)′
)2

=
a2

4
, (2.3)

where a is a constant. On the other hand, since E[γ] = 0 , we have

3τ2κ+ 2
(τ ′)

2

κ
+ 4τ

(
τ ′

κ

)′

= 0 (2.4)

and
1

3κ

(
τ3
)′ − (τκ)

′ −
(
τ ′

κ

)′′

= 0. (2.5)

Theorem 2.2 The critical points of the total squared torsion functional are characterized by the Euler−Lagrange
equations (2.4) and (2.5).
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If the curve γ is a critical point of the functional (2.1) and W is an infinitesimal symmetry, then (S[γ,W ])

is a constant. On the other hand, if W is the restriction of a rotational field, then it can be written as

W = γ ×W0 (2.6)

for constant W0 in [4, 13 ]. Substituting the first and second derivatives of Eq. (8) into (S[γ,W ]) and using
Frenet equations (1.1) yield

const. = (S[γ,W ]) =< 2
τ

κ
B,W ′′ > − < 2

τ ′

κ
B,W ′ > + < J,W >

= 2
τ

κ
< B, γ′′ ×W0 > −2

τ ′

κ
< B, γ′ ×W0 > + < J, γ ×W0 >

= 2τ < B,N ×W0 > −2
τ ′

κ
< B, T ×W0 > + < J × γ,W0 >

= < −2τT − 2
τ ′

κ
N + J × γ,W0 >

which gives

−2τT − 2
τ ′

κ
N + J × γ = A,

where A is a constant vector field. Then the vector field

I = −2τT − 2
τ ′

κ
N = A+ γ × J

is the restriction of an isometry to the curve γ. These equations and Euler−Lagrange equations (2.4) and (2.5)
show that I and J are Killing fields along the critical curve γ of the functional (2.1) (see [8]). Observe that

< I, J >=< A, J >= 2τ3 + 4 (τ ′)
2 τ

κ2
= c, (2.7)

where c is a constant. Multiplying τ
κ of Eq. (2.4) and substituting (2.7) into the obtained equation,(2.4)

reduces to (
τ ′

κ

)′

= − κ

4τ2

(
2τ3 +

c

2

)
. (2.8)

From Eqs. (2.7) and (2.3), Eqs. (2.4) and (2.5) are solved for κ as a function of τ :

κ2 =
4τ8 − 4cτ5 + a2τ4(

2τ3 − c
2

)2 . (2.9)

Substituting (2.9) into (2.7), the following equation is obtained

(τ ′)
2
=

(
2τ3 − c

)(
2τ3 − c

2

)2 (−τ7 + cτ4 − a2

4
τ3
)
.

Thus, the torsion τ (s) can be expressed by quadratures

±
∫ (

2τ3 − c
2

)√
(2τ3 − c)

(
−τ7 + cτ4 − a2

4 τ3
)dτ =

∫
ds.

2935



ÖZKAN TÜKEL /Turk J Math

This gives rise to the following theorem.

Theorem 2.3 Euler−Lagrange equations (2.4) and (2.5) of the functional (2.1) can be completely solved by
quadratures.

Now motivated by [8], Euler-Lagrange equations of the functional (2.1) could be solved. A preferred
cylindrical coordinate system (r, θ, z) can be constructed by using Killing fields I and J. Since J ′ = 0 in
R3, the Killing field J is a translation vector field, so one coordinate field is obtained as ∂

∂z = J
∥J∥ . Because

of < I, J >= c, the Killing field I defines a rotation along z−direction. J1 = J −
(
1
c

)
∥J∥2 I is a rotation

field perpendicular to J. Thus, for a normalization factor Q = c
∥J∥3 , the second coordinate field is given by

∂
∂θ = QJ1. Then ∂

∂r is given in terms of a cross product ∂
∂r = J×B

∥J×B∥ .

In the cylindrical coordinate system, the unit tangent vector T can be written as T = rs
∂
∂r +θs

∂
∂θ +zs

∂
∂z .

Taking inner product T with ∂
∂r , ∂

∂θ and ∂
∂z , one can easily obtain

rs = < T,
∂

∂r
>= − 2τ ′√

τ2κ2 + 4 (τ ′)
2
,

θs =
1∥∥ ∂

∂θ

∥∥2 < T,
∂

∂θ
>=

a
(
τ − 2c

a2 τ
2
)

4
(
τ2 + (τ ′)2

κ2 − c2

a2

) ,
zs = < T,

∂

∂z
>= −2

a
τ2. (2.10)

Therefore, the following theorem can be given.

Theorem 2.4 Let (r, θ, z) be cylindrical coordinates whose coordinate fields defined above. Consider that
γ (s) = (r (s) , θ (s) , z (s)) is a critical point of the functional (2.1). Then the equalities (12) are satisfied.

3. Critical Points of the Functional in Minkowski 3-space

Let R3
1 denote Minkowski 3−space with symmetric, bilinear and non-degenerate metric ⟨, ⟩ such that for vectors

x = (x1, x2, x3) and y = (y1, y2, y3) in R3
1

⟨x, y⟩ = −x1y1 + x2y2 + x3y3.

There are three families of curves depending on their causal character in Minkowski 3−space. A curve
γ : I ⊂ R → R3

1 is a spacelike, timelike or null (lightlike) at t in I if its velocity vector γ′(t) is a spacelike,
timelike or null, respectively [10, 12]. In this section, the basic facts for regular nonnull curves and geometrical
set up are given. Then, extremals of the functional produced by a binormal derivative of a regular non-null
curve are studied in Subsection 3.2.

3.1. Variational formulas for nonnull curves with nonnull normal vector field
Consider γ = γ(s) : I ⊂ R → R3

1 be a nonnull unit-speed curve in Minkowski 3−space R3
1 . At a point γ(s)

of γ , let T = γ
′
(s) denote the unit tangent vector field to γ , N(s) the unit principal normal vector field.
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Then ε2B(s) = T (s) × N(s) is the unit binormal vector field, where ε2 =< B,B > . Then {T,N,B} is an
orthonormal basis known as the Frenet frame along γ for all vectors at γ(s) on γ . The derivative equations of
Frenet frame {T,N,B} are given by

 T ′

N ′

B′

 =

 0 ε1κ 0
−ε0κ 0 ε2τ
0 −ε1τ 0

 T
N
B

 , (3.1)

where ε0 =< T, T > and ε1 =< N,N > . Also κ > 0 and τ are the curvature and torsion of γ , respectively
[10, 12].

Assume W is a variational vector field along γ, then the following lemma is needed for some variatianol
calculations in Section 3.2.

Lemma 3.1 (see [7, 14] ). Let γ(w, t) be a variation of a curve γ ∈ R3
1 . Then the following formulas are

satisfied;
i) [W,V ] = 0,

ii) W (v) = ε0 < W ′, T > v,

iii) W (κ) =< W ′′, N > −2ε0κ < W ′, T >

iv) W (τ2) = 2ε1τ
(
1
κ < W ′′, B >

)′ − 2ε0τ < W ′, (τT − κB) > .

3.2. Finding critical curves for the natural Hamiltonian in Minkowski 3-space

In this subsection, critical points of the functional Fγ =
∫
γ
ε1τ

2ds which is a natural Hamiltonian generated by

the inner product of the binormal derivative of a curve, i.e. < B′, B′ >= ε1τ
2, among a family of curves length

ℓ in R3
1 with fixed end points and directions are investigated. For this purpose, making similar calculations as

in Euclidean 3−space, but using the Frenet equations (3.1) and Lemma 3.1, the first variation of Fγ is found
as follows

δFγ(W ) =

ℓ∫
0

< E[γ],W > ds+ (S[γ,W ])|
ℓ

0

where

E[γ] =

(
3ε0τ

2κ+ 2ε1
(τ ′)

2

κ + 4ε1τ
(

τ ′

κ

)′)
N + 2

(
ε1ε2τ

′ τ2

κ − ε0ε1 (τκ)
′ −
(

τ ′

κ

)′′)
B

and

(S[γ,W ])|
ℓ

0
=< 2

τ

κ
B,W ′′ > − < 2

τ ′

κ
B,W ′ > + < −ε0ε1τ

2T − 2ε1τ
′ τ

κ
N + 2

(
ε0ε1τκ+

(
τ ′

κ

)′
)
B,W >

∣∣∣∣∣
ℓ

0

.

According to the Noether theorem (see [4]), the first variation of Fγ is zero for the constant vector field W,

so J = −ε0ε1τ
2T − 2ε1τ

′ τ
κN + 2

(
ε0ε1τκ+

(
τ ′

κ

)′)
B is constant along a critical point of the functional Fγ
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because of J ′ = −E[γ] = 0. One can see that

∥J∥2 = ε0τ
4 + 4ε1 (τ

′)
2 τ2

κ2
+ 4ε2

(
ε0ε1τκ+

(
τ ′

κ

)′
)2

=
a2

4
, (3.2)

where a is a constant . Moreover, the following equations are obtained

3ε0τ
2κ+ 2ε1

(τ ′)
2

κ
+ 4ε1τ

(
τ ′

κ

)′

= 0 (3.3)

and
ε1ε2
3κ

(
τ3
)′ − ε0ε1 (τκ)

′ −
(
τ ′

κ

)′′

= 0. (3.4)

Theorem 3.2 The critical points of the total squared torsion functional Fγ in Minkowski 3−space are char-
acterized by the Euler−Lagrange equations (3.3) and (3.4).

Observe that

I = −2ε0ε1τT − 2ε1
τ ′

κ
N = A+ γ × J

and J are the Killing fields along the curve γ of the functional Fγ . Thus, the following equation is found

< I, J >=< A, J >= 2ε0τ
3 + 4ε1 (τ

′)
2 τ

κ2
= c, (3.5)

where c is a constant. From (3.5), Euler−Lagrange equations (3.3) and (3.4) are solved for κ as a function of
τ :

κ2 =
4ε0ε1τ

8 − 4ε2cτ
5 + ε2a

2τ4(
(4− 2ε1ε2) τ3 − ε1

c
2

)2 .

These equations show that the torsion τ (s) can be expressed by quadratures

±
∫ (

(4− 2ε1ε2) τ
3 − ε1

c
2

)√
(2ε0τ3 − c)

(
−ε0ε1ε2τ7 + ε1ε2cτ4 − ε1ε2

α2

4 τ3
)dτ =

∫
ds.

This gives rise to the following theorem.

Theorem 3.3 Euler−Lagrange equations (15) and (16) of the functional Fγ in Minkowski 3−space can be
completely solved by quadratures.

These Euler−Lagrange equations could be solved similarly as Euclidean 3−space. Killing fields I and
J can be used to construct a system of cylindrical coordinates. Then the coordinates are obtained as ∂

∂z = J
∥J∥ ,

∂
∂θ = c

∥J∥3 (J −
(
1
c

)
∥J∥2 I) and ∂

∂r = J×B
∥J×B∥ (see[7, 8 ]) .
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The unit tangent vector T can be written as T = rs
∂
∂r + θs

∂
∂θ + zs

∂
∂z . Taking inner product T with ∂

∂r ,
∂
∂θ and ∂

∂z , one can easily obtain

rs = − 2ε1τ
′√∣∣∣ε1τ2κ2 + 4ε0 (τ ′)

2
∣∣∣ ,

θs =
ε1a

(
τ − 2c

a2 τ
2
)

4
(
ε0τ2 + ε1

(τ ′)2

κ2 − c2

a2

) , (3.6)

zs = −2

a
ε1τ

2.

Therefore, the following theorem can be given.

Theorem 3.4 Let (r, θ, z) be cylindrical coordinates whose coordinate fields defined above in Minkowski
3−space. Consider that γ (s) = (r (s) , θ (s) , z (s)) is a critical point of the functional Fγ . Then the equal-
ities (3.6) are satisfied.
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