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Abstract: This work is an exposition on computational aspects of principal parts of a vector bundle on projective
line over the field of characteristic zero. Principal parts help determine the possibility of algebraically formalizing
infinitesimal-neighborhoods of subschemes inside some ambient scheme. The purpose of this study is to look for the
possibility of formalizing the algebraic geometric interpretation of fractional derivative. For the latter, this study follows
the approach proposed by Vasily Tarasov. The difference is that Tarasov proposed a geometric interpretation using finite-
order jet bundles from differential geometry. Present study proposes finite-order principal parts of the structure-sheaf of
real projective line as its formal algebraic geometric parallel.
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1. Introduction
1.1. Principal parts and formal completion

Let X be a smooth scheme over some field K of characteristic zero.∗ Then from X
pX← X ×X

qX→ X and the
diagonal embedding of X in X ×X (i.e. △ : X → X ×X ), we obtain the exact sequence on X ×X ,

0 −→ In△X
/In+1

△X
−→ OX×X/In+1

△X
−→ OX×X/In△X

−→ 0.

We define an n th order principal part of a vector bundle (locally free sheaf) E on X to be

Jn(E) = pX∗(OX×X/In+1
△X
⊗ q∗X(E)).

Jn(E) are vector bundles on X, ∀n ∈ N ∪ {0} [11]. On the other hand, if Y is any closed subscheme of X ,
then there exists an abstract formal account of what counts an infinitesimal neighborhood of Y in X , when
X is any noetherian scheme. If IY is the sheaf of ideals of Y in OX , then for each n ∈ N , we can obtain a
sequence of sheaves,

. . .→ OX/InY → OX/In−1
Y → · · · → OX/I2Y → OX/I1Y → 0

which form an inverse system (Yn,OX/InY )n∈N such that the topological structure of each Yn is the same
as Y .† These Yn define the n th -order infinitesimal neighborhoods of Y in X . Since category of sheaves is
∗Correspondence: hsyed.hussain@fuuast.edu.pk
2010 AMS Mathematics Subject Classification: 13C10, 14A05, 26A33

This work is licensed under a Creative Commons Attribution 4.0 International License.

∗Unless stated otherwise, all schemes in this exposition are understood to be over a characteristic zero field K , i.e. they come
equipped with a scheme morphism X → Spec(K) .

†Cf. [7] II.9 for the detail of this construction.
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closed under projective limits, we can define the infinite-order infinitesimal neighborhood (or simply infinitesimal
neighborhood) as the formal completion of X along Y which is the ringed space (X̂,OX̂) = (Y, lim←−(OX/InY )) .

X̂ which corresponds to this structure is called the formal scheme. Its topological structure is also the same
as Y . The case which is most important for us is when Y = p is a closed point. In this case X̂ = ({p}, Ôp) ,

which is just a one point scheme with structure sheaf Ôp = lim←−(Rp/I
n
p ) such that R = Γ(U,OX) , U =Spec(R) ,

Inp = pnR(p) the maximal ideal in the local ring R(p) and U is an open set from local trivialization of X which
contains p .

1.2. Noninteger fractional derivative
The derivatives of noninteger order have been proposed in many different formulations: for instance, Riemann–
Liouville, Caputo, Nishimoto. [14, 15]. These different formulations sometimes lead to different versions of
performing fractional calculus which has many significant applications in electrodynamics, fractal distribution,
hydrodynamics, rigid-body dynamics, quantum systems of different types, fields, and media with long-range
interactions [19, 21]. Much of these proposals are based upon ad hoc assumptions attested by the fact that
many have hard time in making sense of these proposals both analytically and geometrically. For instance,
generalization of the classical vector calculus in case of Riemann–Liouville fractional integral coupled with
Caputo fractional derivative has been achieved with much progress. However, similar generalization is still an
open problem in cases, for instance, Riesz, Gr ünwal-Latnikov, Weyl, Nishimito [21]. To account geometric sense
of fractional derivative, several interpretations have been proposed depending upon the formulation [2, 3, 20],
but none of these senses capitalize to become a proper framework for geometry. For instance, Adda’s geometric
interpretation ([2, 3]) which makes use of Nishimoto’s fractional derivative presents the notion of fractional
differential as a map (dαf)|x0 : R → R := (dαf)|x0(h) = Nαf(x0)

1
Γ(α+1)h

α, α ∈ (0, 1] ⊂ R which becomes

complex-valued as soon as α ̸= 1
2n+1 ,∀n ∈ N . What is required is a comprehensive approach to ground any

attempt of geometrically interpreting fractional differential calculus according to any particular formulation. To
serve this end, Tarasov (cf. [22]) proposed an outline of differential geometric perspective that makes use of the
notion of jet bundles in cases of fractional derivative of Riemann–Liouville, Caputo, and Hadamard type. We
intend to propose an algebraic geometric perspective on it using a modification of projective limit of finite-order
principal parts of vector bundles on real projective line P1 in section 3. For this, we need to make the following
observations about the cases of Riemann–Liouville and Caputo fractional derivative.

1.2.1. The case of Riemann–Liouville
From [19] (15.3), every noninteger Riemann–Liouville (or RL) fractional derivative admits a series expansion in
terms of integer-order derivatives as follows:

RLDα
a+f(x) =

∞∑
n=0

(
α

n

)
(x− a)(n−α)

Γ(n− α+ 1)
f (n)(x),

where f is any real analytic function on open interval (a, b) , f (n)(x) is the standard n th -derivative and
α ∈ (0,∞) ⊂ R . This gives rise to a general form

RLDα
a+f(x) =

∞∑
n=0

An(α)(x− a)nf (n)(x), (1.1)
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where An(α) ∈ R ∀n ∈ N at a particular point x0 ∈ (a, b) .

1.2.2. The case of Caputo

From [10] (2.4), Caputo fractional derivative can be written in terms of RL-derivative as

CDα
a+f(x) =

(RL

Dα
a+

[
f(t)−

n−1∑
k=0

(t− a)(k)

Γ(k + 1)
f (k)(a)

])
(x)

, where n = [α] + 1 if α /∈ N , n = α if α ∈ N , for every α > 0 , α = [α] + {α} such that [α] =greatest integer
less than or equal to α > 0 , {α} = fractional part of α , x ∈ (a, b) , f ∈ C∞(I), (a, b) ⊂ I ⊆ R without f

necessarily being analytic over I . However, if f is analytic over I , then one obtains:

CDα
a+f(x) =

(RL

Dα
a+

[ ∞∑
k=[α]+1

(t− a)(k)

Γ(k + 1)
f (k)(a)

])
(x). (1.2)

Thus, in each case, we see a recurring pattern of fractional derivatives being written in terms of convergent
power series such that the coefficients of these power series an can be written in the form Bn(α)f

n(x) ,
where fn is the standard n th -derivative of f and Bn(α) ∈ R,∀n ∈ N ∪ {0} . Thus, if there is a geometric
structure that contains all the information about all possible power series expansions with x a formal symbol,
then one should expect to find the geometric interpretation of fractional derivative in this structure. Our
claim is that this structure is a weighted-modified formal completion of n th -order principal parts of the
line bundle OP1 . In case of positive integer order derivatives or standard derivative, the definition depends
upon the point in an open interval. In physical applications, this leads to forgetting the history of the
phenomenon being modeled [9] (cf. pp. 87-106). However, once we fractionalize this classical derivative
through, for instance Riemann–Liouville sense, Caputo sense or Gr ünwal-Latnikov, we arrive at the possibility
of modeling physical phenomena with memory. This is described and interpreted theoretically as the nonlocality
of fractional derivative [9, 25]. Although there have been several attempts to devise local versions of fractional
derivative, for instance, conformal local derivative [18], local fractional derivative of KG-type [4] (cf. pp.
250ff), nonconformable local-type fractional derivative [6]. However, after Tarasov’s argument for the principle
of nonlocality, attempts to found a fractional calculus on local operator now seriously require a theoretical
rigor to avoid becoming objectionable [23, 24]. In particular, Abdelhakim [1] has shown that conformable
fractional derivative is in fact integer-order derivative in fractional disguise, thereby advising the fractional
calculus researchers against its use.

This paper is a formal algebraic geometric interpretation of fractional derivative aimed at opening future
topics of research to relate algebraic geometry with fractional analysis just like it happened in case of classical
analysis, for instance, in cases of differential forms, classical integration and derivations (just to give few
examples). This historically correlated with the development of homological algebra of sheaves and schemes [5].
We first introduce some computational tools involving principal parts which are seen as algebraic finite-order
neighborhoods. The results proved and calculations presented will help develop a view to interpret noninteger
fractional derivative as weighted-modified formal completion of finite-order neighborhoods. In particular, this
presentation is independent of the locality of classical derivative. Section 2 presents the algebraic geometric side
necessary to make this required connection. Section 3 will present this connection.
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2. On local description of principal parts

This section presents calculations involving principal parts of a vector bundle on smooth schemes defined over
the field of characteristic zero. This algebraic side is motivated from the works of David Perkinson [17], Dan
Laksov, Anders Thorup [11], and Maakestad [12, 13]. Primary source of basic computational methods is [7].

Proposition 2.1 Jn is a functor ∀n ∈ N . If f : X → Y is any morphism between smooth schemes, then
the pullback functor f∗ may not commute with Jn , i.e. f∗ ◦ Jn

Y ̸= Jn
X ◦ f∗ ; however, there exists a natural

transformation f∗ ◦ Jn
Y → Jn

X ◦ f∗ .‡

Proof We first show that Jn is a functor. Let F be any coherent sheaf on X , then Jn(F) is coherent,
since pullbacks, pushforwards and tensor products of coherent sheaves are coherent [7]. To show that for any
g : F1 → F2, h : F2 → F3,Fi all coherent,

Jn : Jn(F1)
Jn(h◦g)≃Jn(h)◦Jn(g)−→ Jn(F3)

and that Jn(1F ) = 1Jn(F) are well-defined, one just has to verify that Jn is a composition of three functors,

i.e. Jn = p∗ ◦ F ◦ q∗ , where F = (OP×P/In+1
△ ⊗ −) . To show f∗ ◦ Jn

Y → Jn
X ◦ f∗ , we proceed as follows.

Consider the diagram in the category of smooth schemes,

X

f

��

X ×X
pXoo qX //

f×f

��

X

f

��
Y Y × Y

pYoo qY // Y.

Let E be a locally free sheaf (i.e. a vector bundle) on Y , then

(f∗ ◦ Jn
Y )(E) = f∗(pY ∗(OY×Y /In+1

△Y
⊗ q∗Y (E))

= (f∗ ◦ pY ∗)(OY×Y /In+1
△Y
⊗ q∗Y (E))

applying [7] (III.9.3) on the left square to the above diagram, we obtain from the natural transformation
f∗ ◦ pY ∗ → pX∗ ◦ (f × f)∗ , a map

(f∗ ◦ pY ∗)(OY×Y /In+1
△Y
⊗ q∗Y (E))

α1−→ (pX∗ ◦ (f × f)∗)(OY×Y /In+1
△Y
⊗ q∗Y (E)),

then,

(pX∗ ◦ (f × f)∗)(OY×Y /In+1
△Y
⊗ q∗Y (E)) = pX∗((f × f)∗(OY×Y /In+1

△Y
⊗ q∗Y (E)))

≃ pX∗((f × f)∗(OY×Y /In+1
△Y

)⊗ (f × f)∗q∗Y (E))

≃ pX∗((f × f)∗(OY×Y /In+1
△Y

)⊗ (qY (f × f))∗(E)).

‡David Perkinson [17] proves a proposition from which the morphism f∗ ◦ Jn
Y → Jn

X ◦ f∗ can be derived as a special case.
But the present proof is different. Maakestad [12, 13] also assumed the existence of morphism f∗ ◦ Jn

Y → Jn
X ◦ f∗ from the way

Perkinson proved it.
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We similarly obtain from right square (cf. [7](III.9.3)), a natural transformation (qY ◦ (f × f))∗ → (fqX)∗ ,
which gives a morphism of coherent sheaves on X as follows

pX∗((f × f)∗(OY×Y /In+1
△Y

)⊗ (qY (f × f))∗(E)) α2−→ pX∗((f × f)∗(OY×Y /In+1
△Y

)⊗ (fqX)∗(E)).

On the other hand, from (f × f) : X ×X → Y × Y , one obtains the structure sheaf morphism β1 : OY×Y →
(f × f)∗(OX×X) , which induces the morphism β2 : OY×Y /In+1

△Y
→ (f × f)∗(OX×X/In+1

△X
) . Since (f × f)∗ is

left adjoint to (f × f)∗ [8], this implies that

Hom(OY×Y /In+1
△Y

, (f × f)∗(OX×X/In+1
△X

)) ≃ Hom((f × f)∗(OY×Y /In+1
△Y

),OX×X/In+1
△X

),

we thus obtain another morphism β4 : (f × f)∗(OY×Y /In+1
△Y

) → OX×X/In+1
△X

. Also since, G = pX∗(− ⊗

(fqX)∗(E)) is a functor, letting α3 = G(β4) , we obtain

pX∗((f × f)∗(OY×Y /In+1
△Y

)⊗ (fqX)∗(E) α3−→ pX∗(OX×X/In+1
△X
⊗ q∗X(f∗(E))).

The desired morphism f∗ ◦ Jn
Y → Jn

X ◦ f∗ is the composition α3 ◦ α2 ◦ α1 . 2

Corollary 2.2 Let U be any open set in X . If j : U → X is the usual injection, then Jn commutes with j∗ ,
i.e. j∗ ◦ Jn ≃ Jn ◦ j∗ .

Proof Replacing f by j , X and Y by U and X respectively in Proposition 2.1 above, then since j is an open
immersion and thus separated ([7] II.4), we obtain natural isomorphisms j∗◦pX∗ ≃ pU∗◦(j×j)∗, (qX ◦(j×j))∗ ≃
(j ◦ qU )∗ and from the fact that j∗(F) ≃ F|U ,∀F coherent sheaves on X , one obtains the isomorphism
(j × j)∗(OX×X/In+1

△X
) ≃ OU×U/In+1

△U
(cf. [7] II.5). These isomorphism turns all αi, 1 ≤ i ≤ 3 in Proposition

2.1 into isomorphisms under the special case when f = j . We thus have the result.
2

Now consider P1
K (or simply P1 ) to be the projective scheme Proj(K[x0, x1]). Let △P1 : P1 → P1×P1 be

the diagonal embedding, where we may identify P1 × P1 ≃Proj(K[x0, x1])×K Proj(K[y0, y1]).§ Topologically
identifying △P1(P1) ≃ P1 , we obtain the exact sequence

0 −→ I△P1
−→ OP1×P1 −→ △P1∗(OP1) −→ 0

such that I△P1
is the sheaf of ideals of P1 in OP1×P1 and △P1∗(OP1) is the structure sheaf of △P1(P1) ≃ P1

pushed forward to P1 × P1 which in this case reduces to extension of OP1 by zero outside △P1(P1) . From this
we can obtain,

0 −→ In+1
△P1
−→ OP1×P1 −→ (△P1∗(OP1))n −→ 0, (2.1)

where (△P1)n is the n th -infinitesimal neighborhood of △P1 in P1×P1 . Let E be any locally free sheaf of rank
r on P , then we can define n th -order principal part of E to be Jn(E) = p∗(OP1×P1/In+1

△ ⊗ q∗(E)) . However,

since every vector bundle on P1 splits as direct sum of twisted line bundles OP1(d), d ∈ Z , thus, working with
finite-order principal parts of rank-r vector bundle E reduces to working with ⊕r

i=1(OP1(di)), di ∈ Z, 1 ≤ i ≤ r .
We now restrict our attention only to the cases when E = OP1(d) . Then, we have the following.

§Proj(K[x0, x1] )×K Proj(K[y0, y1] ) is the fiber product of P1 with itself over Spec(K ).
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Proposition 2.3 Let U0 be the open set in P1 determined by Spec(K[x1

x0
]) , where both xi are homogeneous

coordinates on P1 , for 0 ≤ i ≤ 1 . Then the n th -order principal part of OP1 |U0
is globally generated by

{1, (s− t), (s− t)2, . . . , (s− t)n} as a free K[t]-module, where s and t are local affine coordinates respectively
on P1 × P1 ≃Proj(K[x0, x1])×Spec(K)Proj(K[x0, x1]) .

Proof From the short exact sequence (s.e.s.) 2.1 above, we obtain

0 −→ In△P1
/In+1

△P1
−→ OP1×P1/In+1

△P1
−→ OP1×P1/In+1

△P1
−→ 0

from which we straightforwardly get the following exact sequences one after the other ([11]);

0 −→ In△P1
/In+1

△P1
−→ Jn(E) −→ J (n−1)(E) −→ 0

and
0 −→ Symn

OP1
(ΩP1)⊗ E −→ Jn(E) −→ J (n−1)(E) −→ 0. (2.2)

Here ΩP1 denotes the sheaf of differentials on P1 , Symn
OP1

( ) is the usual n-fold symmetric product of coherent

sheaves considered as OP1 -module. Since J0(OP1) = OP1 ⇒ J0(OP1 |U0) = K[t] , the statement is trivially true
for n = 0 . Let n = 1 . Since ΩP1 = OP1(−2) , s.e.s. 2.2 gives

0 −→ ΩP1 −→ J1(OP1) −→ OP1 −→ 0.

Since the right most term is locally free, this exact sequence must split.¶ Therefore,

J1(OP1) = OP1(−2)⊕OP1

J1(OP1 |U0
) = K[t]⊕K[t]{(s− t)}

The last isomorphism follows from

OP1(−2) = △∗
P1(I△P1

/I2△P1
)

(I△P1
/I2△P1

)|U0×U0
≃ ((1⊗ t− s⊗ 1)(K[s]⊗K K[t])/(1⊗ t− s⊗ 1)2)Ash

(△∗
P1(I△P1

/I2△P1
))|U0 ≃ ((s− t)K[s, t]/(s− t)2)Ash,

where ( )Ash correspond to the fully faithful exact affine sheafification functor from the category of R -module
(R any commutative ring with 1 ̸= 0) to the category of OX -module (cf. detail of its construction in [7] II.5.2)
such that pushing forward along pU0 gives ((s− t)K[s, t]/(s− t)2)Ash as an OSpec(K[s])−module.

For n = 2 , we obtain

0 −→ Sym2
OP1

(ΩP1) −→ J2(OP1) −→ OP1(−2)⊕OP1 −→ 0,

which gives J2(OP1) ≃ Sym2
OP1

(ΩP1)⊕OP1(−2)⊕OP1 . Since, Sym2
OP1

(ΩP1) ≃ pU0∗(I2△P1
/I3△P1

) ([11]), restricting
to U0 , we get

Sym2
OP1

(ΩP1)|U0
≃ pU0∗(I2△A1

/I3△A1
)

≃ ((s− t)2K[s, t]/(s− t)3)Ash

¶There is another way for this. Note that this s.e.s. is isomorphic to the fundamental Euler sequence of P1 . In this case,
J1(OP1 ) = OP1 (−1)⊕OP1 (−1)
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which implies
J2(OP1 |U0

) = K[t]⊕K[t]{(s− t)} ⊕K[t]{(s− t)2}.

Using induction on n for,

Jn(OP1) = Symn
OP1

(ΩP1)⊕ J (n−1)(OP1)

≃ Symn
OP1

(ΩP1)⊕ Sym(n−1)
OP1

(ΩP1)⊕ · · · ⊕ ΩP1 ⊕OP1

we obtain the result. 2

Lemma 2.4 If L is a line bundle on P1 then the n th -order principal part of L on U0 is globally generated by
the sections {1⊗ xd

0, (s− t)⊗ xd
0, . . . , (s− t)n ⊗ xd

0} as a free K[t]-module, for some d ∈ Z .‖

Proof Since L ∈Pic(P1 ) implies that L ≃ OP1(d) for some d ∈ Z , hence, using above proposition, we just
have to show that Jn(OP1(d)|U0

) ≃ ((R[t])[1⊗ xd
0, (s− t)⊗ xd

0, . . . , (s− t)n ⊗ xd
0])

Ash . Since

Jn(OP1(d)) = Jn(OP1)⊗OP1(d)

≃ (Symn
OP1

(ΩP1)⊕ Sym(n−1)
OP1

(ΩP1)⊕ · · · ⊕ ΩP1 ⊕OP1)⊗OP1(d)

then from Proposition 2.3 above, we are only left to locally compute the tensoring with OP1(d) to verify the
statement.

Consider P1 =Proj(S ), S = ⊕k≥0Sk = ⊕k(K[x0, x1])k , where (K[x0, x1])k corresponds to the k th -
homogeneous part of K[x0, x1] . If ( )Psh denotes the projective sheafification of the graded ring S (cf. [7]
II.5 for the detail of its construction), then OP1(d) ≃ (S(d))Psh ⇒ OP1(d)|U0 ≃ OSpec(S(d)(x0)) = (S(d))(x0))

Ash

where S(d) = ⊕k≥0Sk+d, S(d)(x0) ⊆ Sx0
. We prove the statement by showing that S(d)(x0) is a free S(x0) -

module of rank 1 . Consider f ∈ S(d)(x0) , then locally, f = P (x0,x1)

xk
0

, with P (x0, x1) being a homogeneous

polynomial of degree (k+d) . Then f can be written as f = xd
0P (t) . Define a map S(d)(x0)

φ→ K[t][xd], φ(f) =

xd
0P (t) , then it is fairly straightforward to check that φ is an isomorphism. Hence, we obtain:

OP1(d)|U0
≃ (K[t]{xd

0})Ash

which is a free K[t] -module of rank 1 . Thus, locally on affine neighborhood U0 , we obtain,

Jn(OP1(d))|U0
= ((K[t])Ash ⊕ (K[t]{(s− t)})Ash ⊕ · · · ⊕ (K[t]{(s− t)n})Ash)⊗ (K[t]{xd

0})Ash.

The result follows by commuting tensor product with direct sum. 2

3. The algebraic geometric view of noninteger fractional derivative

Let Jn denote the sheaf Jn(OP1) (unless stated otherwie) ∀n ∈ N ∪ {0} and fix K = R . Then from
[11], we obtain inP1 : OP1 → Jn as the structure map determining Jn as an OP1 -algebra such that inP1

‖Helge Maakestadt in [12, 13] refers to this statement without proving it. Since there is no proof as such presented anywhere
else, authors have presented their own proof here.
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is the same as the canonical structure-sheaf morphism which comes from the scheme morphism (△P1)n =

(△P1(P1),OP1×P1/In△P1
)

p|△P1→ P1 , where p|△P1
is the restriction of usual projection P1 × P1 p→ P1 . In other

words, inP1 : OP1 → p|△P1∗(O△P1
) .

We also get dnJn : OP1 → Jn such that dn are all OSpec(R) -algebra morphisms (which are locally nothing
but homomorphisms of R -algebras determined by Jn|U0

). Here, local amounts to the transition from P1 to R
(or respectively from P1×P1 to R×R) in terms of affine coordinate s (or respectively both s, t).∗∗ For n = 0 ,
d0J0 is the identity. For n = 1 we get the formal local description of i1P1 and d1J1 as follows: f is any section of
U0 = A1 = R in OP1 , then i1U0

(f) = f(t) ∈ R[t] , (d1J1)U0
(f) = f(t) +D(f)(t)dt , such that D(f) is the second

formal coordinate of (d1J1)U0
(f) in Γ(U0, J

1) . It is fairly straightforward that i1P1 provides the splitting of the
exact sequence

0 −→ ΩP1 −→ J1(OP1) −→ OP1 −→ 0

such that d =df d
1− i1P1 : OP1 → ΩP1 is the universal derivation. Here, the symbols ‘d’ (as universal derivation),

‘D’ (as second coordinate), etc. are formal algebraic symbols. However, they do admit usual univariate calculus
definitions in the form of derivative and differential once we are able to interpret this in the definition of
J1 = p∗((O△P1

/I2△P1
) ⊗ q∗(OP1) . This happens as follows: locally, pullback q∗ is just taking f(t) to (t, f(t))

which is only formally differentiated when tensored with (O△P1
/I2△P1

) (using Proposition 2.3 above) such that

push-forward p∗ then gives the information as f(t) +D(f)(t)dt , whereas (s− t) is identified as dt . In general,
dnJn(f)|t0 = f(t0) + D(f)(t0)(s − t0) +

1
2D

2(f)(t0)(t)(s − t0)
2 · · · 1

n!D
n(f)(t0)(t)(s − t0)

n ([11]). This gives
(Jn, dnJn) such that the fibers or stalks Jn

t0 determine the structure of n th -order Taylor polynomial associated
with the section f at the point t0 . Assuming that there will not be any ambiguity, we set Jn = dnJn , then Jn|t0
satisfies all the linearity and leibnizian properties that we should expect. Since (U0, J

n(OP1)|U0
)n≥0 forms an

inverse system, taking projective limit, we get, (U0, lim←−(J
n((OP1)|U0

)n≥0)) =df J
∞ which corresponds to the

formal completion discussed in Subsection 1.1 above.†† From Proposition 2.3, we find that it is the ring of
formal power series R[[(s− t0)]] with s and t both being the local affine coordinates on P1 × P1 respectively,
such that the coordinates of every section in the fiber J∞(f)|t0 = lim−→(Γ(V,OP1)) (limit is taken over all open

sets V containing t0 ) is an infinite column vector (f(t0), D(f)(t)(t0)),
1
2D

2(f)(t)(t0), · · · , 1
n!D

n(f)(t)(t0), · · · ) .
This is the algebraic infinitesimal-neighborhood of the point t0 ∈ R .

Define a weighted finite-order principal part of OP1 as Jn
α such that its action on a section (f) ∈

Γ(V,OP1)) is determined as Jn
α |t0(f) = f(t0)+A′

0(α)D(f)(t0)(s−t0)+A′
1(α)D

2(f)(t0)(t)(s−t0)2 · · ·A′
n(α)D

n(f)(t0)(t)(s−
t0)

n , such that A′
i(α) = (i!)Ai(α) , Ai(α) as in equation 1.1 (cf. Subsection 1.2). This gives its corresponding

modified projective limiting version as the RL-fractional-derivative

RLDα
t0+(f) = J∞

α,t0(f). (3.1)

Let J̃∞
[α]+1|t0 be defined by its action on the section f :

∗∗cf. section 2 above.
††This J∞ that we have have constructed is different from Tarasov’s Infinite-order jet [22].
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J̃∞
[α]+1|t0(f) =

∞∑
i=0

1

Γ([α] + 1 + (i+ 1))
D([α]+1+i)(f)(t0)(s− t0)

([α]+1+i).

This similarly defines a modified projective limiting version as the C-fractional-derivative:

CDα
t0+ = J∞

α,t0 ◦ J̃
∞
([α]+1),t0

. (3.2)

From 3.1 and 3.2, we observe that noninteger fractional derivative of both Riemann–Liouville type and Caputo
type admit an interpretation as modifications of projective limits of finite-order principal parts of the structure-
sheaf OP1 . However, there is a limitation of our approach in this paper. This follows from the difference
of topology between Zariski topology of schemes and the manifold topology on R . The projective limit of
principal parts involve local neighborhoods which are too coarse topologically, since each of these neighborhood
is dense in the ambient scheme (here P1 ). On the contrary, any neighborhood in R considered as manifold
(which Tarasov in [22] has assumed) consists of (can be covered by) finite open intervals which are topologically
too fine.‡‡ Secondly, the weights α and [α] + 1 for defining both modified finite-order neighborhoods and
infinitesimal-neighborhoods suggest that there is a deeper connection between the diagonal embedding of P1

in P1 × P1 and the parameterizing of this embedding by a topological space that is not Zariski, i.e. not an
algebraic variety, especially if the parameterizing depends upon the weight α . This remains an open problem
in this paper towards which a further rigor can be developed.

4. Conclusion
In Section 2, we have presented explicit calculations involving local description of principal parts of vector
bundles on P1 . This helped develop, in Section 3, an interpretation of fractional derivative of both Riemann–
Liouville and Caputo type. According to this, noninteger fractional derivatives are formally the weighted-
modified projective limits of local restriction of principal parts of the structure sheaf of P1 . In particular, as far as
the formal interpretation is concerned, this local restriction is independent of the locality of integer-order deriva-
tive. However, we have also stated some limitations on our interpretation. In particular, weighted-modification
of stated projective limits suggests that there is a deeper connection between the diagonal embedding of P1 in
P1 × P1 and the parameterizing of this embedding by a topological space which remains an open problem in
this paper.
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