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Abstract: We give an explicit expression for the intrinsic metric on the Sierpinski gasket SG(3) (the mod-3 Sierpinski
gasket) via code representation of its points. We also investigate the geodesics of SG(3) and determine the number of
geodesics between two points.
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1. Introduction
The Sierpinski gasket is one of the classical examples in fractal geometry. This set can be considered as the
attractor of an iterated function system (IFS) consisting of three similitudes with scaling ratios 1/2 (see [2] for
the notion of IFS). The family of Sierpinski gaskets {SG(n) | 1 < n ∈ N} can be considered as an important
generalization of the classical Sierpinski gasket. Mathematicians work on the elements of this family (and on
the so-called irregular Sierpinski gaskets generated by these fractals) especially in the fields of Brownian motion,
random walk, graph theory, and stochastic process etc. (see [1, 3, 5]).

First we give a small brief for this family of Sierpinski gaskets. Start with a equilateral triangle S0 .
Divide S0 into four smaller equilateral triangles using the midpoints of the edges of S0 . Removing the middle
triangle we get S1 (see Figure 1b) and repeat this procedure on each remaining equilateral triangle to obtain
S2 . Continuing this procedure, we obtain a nested sequence of sets S0 ⊃ S1 ⊃ · · · ⊃ Si ⊃ · · · . The (classical)
Sierpinski gasket is the intersection of these sets.

(a) (b) (c) (d)

Figure 1. (a) The equilateral triangle S0 , the first stage of the construction of (b) SG(2) , (c) SG(3) , and (d) SG(4) .
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Apply this procedure by dividing the edges of the equilateral triangle into n equal-length parts to obtain
n(n + 1)/2 equilateral triangles as mentioned in Figures 1c and 1d for n = 3 and n = 4 , respectively. At the
end of the same procedure, the intersection of the related nested sets is called the Sierpinski gasket SG(n) . For
n = 2 , the classical Sierpinski gasket is obtained and represented by SG(2) . SG(2) , SG(3) , and SG(4) are
shown in Figure 2.

(a) (b) (c)

Figure 2. The Sierpinski gaskets (a) SG(2) , (b) SG(3) , and (c) SG(4) .

In [12], for a prime number p , the authors define the mod-p Sierpinski gasket or the Pascal–Sierpinski
gasket (with the inspiration of the Pascal triangle and the divisibility of the numbers in this triangle by p)
which coincides with SG(p) introduced above. For example, the mod-2 Sierpinski gasket is SG(2) and the
mod-3 Sierpinski gasket is SG(3) .

In this work, we investigate the intrinsic metric and geodesics on the Sierpinski gasket SG(3) . The
intrinsic metric on a set A which is obtained by taking into account the paths on the structure can be defined
as

d(x, y) = inf{δ | δ is the length of a rectifiable curve in A joining x and y}

for x, y ∈ A (for details see [4]).
In several works, the intrinsic metric on the self-similar sets such as classical Sierpinski gasket, Vicsek

fractal, and Sierpinski carpet was constructed and defined by using different techniques (see [7–11]). Strichartz
defines the intrinsic metric via barycentric coordinates (for details see [17]). In [14], Romik gives an expression
of the intrinsic metric on the discrete Sierpinski gasket. In [6], Cristea gives a formula of the intrinsic metric
on the Sierpinski carpet by using carpet coordinates and show the equivalence of the Euclidean metric and the
intrinsic metric on the Sierpinski carpet. In [13, 15, 16], the authors use code representations of the points of the
classical Sierpinski gasket and Vicsek fractal to express the intrinsic metric and classified the geodesics on the
related set. They prove that there exist at most 5 geodesics between two points in the Sierpinski gasket SG(2) .
In [9], the authors investigate the geodesics on the m -dimensional (classical) Sierpinski gasket (for m > 2) and
prove that there exist at most 8 geodesics between two points.

In Section 2, we give a formula for the intrinsic metric of the Sierpinski gasket SG(3) (using code
representations of the points) and use this formula to prove some geometric results. In Section 3, we investigate
the geodesics of SG(3) with respect to the intrinsic metric, and contrary to the classical Sierpinski gasket SG(2)

case, we prove that the number of geodesics between two points in SG(3) can be infinitely different numbers.
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2. Code representations and the intrinsic metric

2.1. Code representations of the points of SG(3)

SG(3) is the union of its six similitude copies (with similarity ratios 1/3) as seen in Figure 3. It can be obtained
also as the attractor of the iterated function system {R2; f1, f2, f3, f4, f5, f6} where

f1(x, y) =
(
1
3x,

1
3y

)
f2(x, y) =

(
1
3x+ 2

3 ,
1
3y

)
f3(x, y) =

(
1
3x+ 1

3 ,
1
3y +

√
3
3

)
f4(x, y) =

(
1
3x+ 1

2 ,
1
3y +

√
3
6

)
f5(x, y) =

(
1
3x+ 1

6 ,
1
3y +

√
3
6

)
f6(x, y) =

(
1
3x+ 1

3 ,
1
3y

) .

(a) (b)

  

 

  

 

 

Figure 3. (a) SG(3) and (b) the attractor S = SG(3) as the union of its six similitude copies.
From now on we will use the notation S instead of SG(3) for abbreviation.
Let S1, S2, S3, S4, S5 , and S6 be the just-touching parts of S as indicated in Figure 4. Note that

Si = fi(S) for all i = 1, 2, . . . , 6 and S = S1∪S2∪S3∪S4∪S5∪S6 . For a word σ = σ1σ2 · · ·σk ∈ {1, 2, . . . , 6}k

with length k , let Sσ := fσ(S) where fσ = fσ1
◦ fσ2

◦ · · · ◦ fσk
. We call Sσ as the subgasket of level k (with

the code σ , see Figure 4 for examples). We set σ = ∅ if k = 0 , and Sσ = S (which is the unique subgasket of
level 0). We give some examples in Figure 5 for codes of some subgaskets of level 1 and level 2 .

   

  

 

 

 

 

Figure 4. Some subgaskets of level 1 and level 2.
Let p1p2 . . . pk−1pkpk+1 . . . be a representation of a point p ∈ S . It is obvious that

Sp1
⊃ Sp1p2

⊃ Sp1p2p3
⊃ · · · ⊃ Sp1p2...pk

⊃ · · ·
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(a) (b)

Figure 5. Codes of the subgaskets of level 1 (a) and codes of some subgaskets of level 2 (b).

for pi ∈ {1, 2, . . . , 6} (for all i > 0), and by the Cantor Intersection Theorem, the infinite intersection

∞⋂
k=1

Sp1p2...pk

is a singleton, say {p} where p ∈ S . We call the sequence p1p2 . . . pk . . . as a code representation of the point
p . Note that, if p ∈ S is the intersection point of any two subgaskets of Sσ for some σ word with length k > 0

(such a “vertex” point is called a junction point of S ) then p has two or three different representations.
Let p be the unique point of the singleton Sσx ∩ Sσy where x ̸= y . If x, y ∈ {4, 5, 6} then p has three

different representations and otherwise p has two different representations. For example, if p is the unique
point of the singleton Sσ4∩Sσ5 then σ41 = σ4111 . . . , σ52 = σ5222 . . . and σ63 = σ6333 . . . are three different
representations of the point p (where x stands for infinite repetition throughout the paper). For another
example, if p is the unique point of the singleton Sσ1 ∩Sσ5 then σ13 = σ1333 . . . and σ51 = σ5111 . . . are two
different representations of the point p . We use (for example) 3σ1 or 1σ5 for this point. More generally, let
1σ , 2σ , and 3σ be the vertices of the convex hull of the subgasket Sσ as indicated in Figure 6a. Note that σ1 ,
σ2 , and σ3 are the code representations of these vertex points, respectively.

2.2. The intrinsic metric on SG(3)

Let x ∈ {1, 2, 3, 4, 5, 6} . If the number y ∈ {1, 2, 3, 4, 5, 6} satisfies |x− y| = 3 then we call y as the conjugate
of x and denote it by x̃ . More clearly, 1̃ = 4 , 2̃ = 5 , 3̃ = 6 , 4̃ = 1 , 5̃ = 2 , and 6̃ = 3 .

For a given number x ∈ {1, 2, 3} , let x′ and x′′ denote the numbers that satisfy x′ < x′′ , x+x′+x′′ = 6

and x′, x′′ ∈ {1, 2, 3} .
Let p1p2 . . . pk−1pkpk+1 . . . be a code representation of a point p ∈ S = SG(3) and let σ = p1p2 . . . pk .

The length of a shortest path between p ∈ Sσ and the vertex tσ of Sσ (for all t ∈ {1, 2, 3}) is the sum of the
lengths of the shortest paths between all pairs of vertices tpσpk+1···pi−1

= tp1p2···pi−1
and tpσpk+1···pi

= tp1p2···pi

for all i ≥ k + 1 (see Figure 6b). Note that tp1p2···pi−1
and tp1p2···pi

can be considered as two vertices of two
subgaskets of (same) level i since tp1p2···pi−1

= tp1p2···pi−1t . Therefore, the length of a shortest path a geodesic
between these vertices can be 0 , 1/3i or 2/3i since the length of the edges of the convex hull of a subgasket
of level i is 1/3i . If pi = t then these vertices would be the same point, so the length of a geodesic between
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(a) (b)

Figure 6. Vertices of a subgasket Sσ (a) and shortest paths between some vertices (for t = 2 , pk+1 = 5, pk+2 = 4 and
pk+3 = 5) (b).

them would be 0 . If pi > 3 and pi ̸= t̃ then these vertices would be the vertices of the same subgasket of level
i , so the length of a geodesic between them would be 1/3i . Otherwise, these vertices cannot lie in the same
subgasket; thus, the length of a geodesic between them would be 2/3i .

As a result, the length of a shortest path (a geodesic) between p and the vertex tσ of the subgasket Sσ

of level k that contains p can be expressed as

dσp,t =

∞∑
i=k+1

αp,t
i

3i
(2.1)

for t ∈ {1, 2, 3} where

αp,t
i =


0 , pi = t

1 , pi > 3, pi ̸= t̃
2 , otherwise

.

Theorem 2.1 Let a1a2 . . . ak . . . and b1b2 . . . bk . . . be two representations of the points a, b ∈ SG(3) respectively
such that ai = bi for i = 1, 2, . . . , k − 1 and ak ̸= bk (we assume ak < bk for simplicity). The length of a
shortest path (or geodesic distance) between a and b can be expressed as

d(a, b) =



1
3k

+min{dµa,bk + dνb,ak
, dµa,ck + dνb,ck + 1

3k
} , ak, bk ∈ {1, 2, 3}

min{dµa,ãk
+ dν

b,b̃k
, dµa,ek + dνb,ek + 1

3k
} , ak, bk ∈ {4, 5, 6}

1
3k

+ dνb,ak
+min{dµa,a′

k
, dµa,a′′

k
} , ak = b̃k

min{dµa,9−ak−bk
+ dνb,ak

, dµ
a,b̃k

+ dν
b,b̃k

+ 1
3k
} , otherwise

(2.2)

where ck = 6− ak − bk , ek = 6− ãk − b̃k , µ = a1a2 . . . ak−1ak and ν = a1a2 . . . ak−1bk .
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Proof Let a1a2 . . . ak . . . and b1b2 . . . bk . . . be two representations respectively of the points a, b ∈ S = SG(3)

such that ai = bi for i = 1, 2, . . . , k − 1 and ak < bk , i.e. a, b ∈ Sσ for σ = a1a2 . . . ak−1 and a ∈ Sµ, b ∈ Sν

where µ = a1a2 . . . ak−1ak = σak , ν = a1a2 . . . ak−1bk = σbk (see Figure 7).

 

 

 

 

 

Figure 7. The subgaskets Sµ and Sν of level k that contain the points a and b respectively.

Case I (ak, bk ∈ {1, 2, 3}): Let ak = 1 and bk = 2 . As shown in Figure 8a, the shortest paths between a

and b must pass through either the line 3σ13σ2 = 3µ3ν or the line 2σ11σ2 = 2µ1ν (in this special case, we have
µ = σ1 and ν = σ2). First, consider the shortest path passing through the line 3σ13σ2 whose length is 2/3k .
To calculate the length of this path, we also need to calculate the shortest distance between the points “a and
3σ1 ” and distance between the points “3σ2 and b” which are dµa,ck = dµa,3 and dνb,ck = dνb,3 respectively (note

that ck = 3 for this case). Thus, the length of the related shortest path is dµa,ck + dνb,ck + 2
3k

. Now consider

the shortest path passing through the line 2σ11σ2 whose length is 1/3k . To calculate the length of this path,
we need to calculate the shortest distance between “a and 2σ1 ” and distance between “1σ2 and b” which are
dµa,bk = dµa,2 and dνb,ak

= dνb,1 respectively. Thus, the length of the related shortest path is dµa,bk + dνb,ak
+ 1

3k
.

Minimum of the lengths of these two paths would be the shortest distance between a and b (for the cases
ak = 1, bk = 3 and ak = 2, bk = 3 the formula can be obtained using similar argument).

Case II (ak, bk ∈ {4, 5, 6}): Let ak = 5 and bk = 6 (µ = σ5 , ν = σ6). As shown in Figure 8b, the
shortest paths between a and b must pass through either the points 2σ5(= 3σ6) or the line 1σ51σ6 . It is obvious
that to calculate the length of the shortest path passing through the point 3σ6 we need to calculate the shortest
distance between the points “a and 2σ5 ” where 2 is the conjugate of ak = 5 ( 5̃ = 2), and the shortest distance
between the points “b and 3σ6 ” where 3 is the conjugate of bk = 6 ( 6̃ = 3). Thus, the length of the related
shortest path is dµa,ãk

+ dν
b,b̃k

= dµa,2 + dνb,3 .

Now consider the shortest path passing through the line 1σ51σ6 whose length is 1/3k . To calculate the
length of this path, we need to calculate the shortest distance between “a and 1σ5 ” and distance between “1σ6
and b” which are dµa,ek = dµa,1 and dνb,ek = dνb,1 respectively. Thus, the length of the related shortest path is

dµa,ek + dνb,ek +
1
3k

. Minimum of the lengths of these two paths would be the shortest distance between a and b

(for the cases ak = 4, bk = 5 , and ak = 4, bk = 6 the formula can be obtained using similar argument).
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(c) (d)

 

Figure 8. Possible shortest paths (geodesics) between a and b where (a)ak = 1 , bk = 2 , (b) ak = 5 , bk = 6 , (c)
ak = 1 , bk = 4 and (d) ak = 1 , bk = 6 .

Case III (ak = b̃k ): Let ak = 1 and bk = 4 (µ = σ1 , ν = σ4). As shown in Figure 8c, the shortest paths
between a and b must pass through the points 1σ4(= 3σ6 = 2σ5) . The distance between the points b and 1σ4

is dνb,ak
= dνb,1 (note that ak = b̃k ). The shortest paths between the points a and 1σ4 must pass through either

the line 2σ11σ4 or the line 3σ11σ4 whose length is 1/3k . Thus, there exits two different paths between a and
1σ4 with lengths 1/3k + dµa,a′

k
= 1/3k + dµa,2 and 1/3k + dµa,a′′

k
= 1/3k + dµa,3 respectively (note that a′k = 2 and

a′′k = 3 since ak = 1). For the cases ak = 2, bk = 5 , and ak = 3, bk = 6 the formula can be obtained using
similar argument.

Case IV (otherwise): In this case, a and b lie in the adjacent subgaskets of level k . For example,
let ak = 1 and bk = 6 (µ = σ1 , ν = σ6). As shown in Figure 8d, the shortest path between a and b

must pass through either the points 2σ1(= 1σ6) or the line 3σ13σ6 . The length of the shortest path passing
through the point 2σ1(= 1σ6) is dµa,9−ak−bk

+ dνb,ak
= dµa,2 + dνb,1 as the sum of the shortest distance between

the points “a and 2σ1(= 1σ6)” and the shortest distance between the points “b and 1σ6(= 2σ1)” (notice that
2 = 9− ak − bk ). To calculate the length of the shortest path passing through the line 3σ13σ6 we need to sum
the geodesic distance between “a and 3σ1 ”, the geodesic distance between “b and 3σ6 ” and 1/3k which give
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us dµ
a,b̃k

+ dν
b,b̃k

+ 1
3k

= dµa,3 + dνb,3 +
1
3k

. For the cases “ak = 1, bk = 5”, “ak = 2, bk = 6”, “ak = 2, bk = 4”,

“ak = 3, bk = 4”, “ak = 3, bk = 5” the formula can be obtained using similar argument.
2

In Example 2.2 below, we compute the geodesic distance between two points which will be used in the
proof of Theorem 3.4 in the next section.

Example 2.2 Consider the points a, b ∈ S such that one of the code representations of a is 1µ1µ21 =

155 · · · 566 · · · 61 where µ1 = 55 · · · 5 and µ2 = 66 · · · 6 are two words with length n ∈ N and m ∈ N respectively,
and one of the code representations of b is 1222 · · · = 12 . Note that the point b is the vertex point 21 which is
the right vertex of the subgasket S1 (of level 1). Using Equation (2.1) we obtain

d1a,2 =

∞∑
i=2

αa,2
i

3i

=
2

32
+ · · ·+ 2

3n+1
+

1

3n+2
+ · · ·+ 1

3n+m+1
+

2

3n+m+2
+

2

3n+m+3
+ · · ·

=
2

32
1

1− 1/3
− 1

3n+2

(
1 +

1

3
+ · · ·+ 1

3m−1

)
=

1

3
− 1

2 · 3n+1
+

1

2 · 3n+m+1
.

Since b is a vertex point (of S1 ), we get immediately d(a, b) = d1a,2 without using the formula (2.2). In case

n = 2 and m = 3 , we obtain 230
729 as the geodesic distance between a and b whose code representations are

1556661 and 12 respectively.

Remark 2.3 One can verify easily that the formula of the intrinsic metric (2.2) does not depend on the code
representations of the points.

Proposition 2.4 The distance function d defined in Theorem 2.1 is a strictly intrinsic metric on S .

Proof From the construction, the claim is obvious from the fact that d is defined as the minimum of the
lengths of the geodesics. 2

Lemma 2.5 Let a ∈ Sσ where Sσ is the subgasket of level k . The sum of the geodesic distances between a

and the vertices of the subgasket Sσ is 2/3k :

d(a, 1σ) + d(a, 2σ) + d(a, 3σ) =
2

3k
.

Proof Remember that the length of the shortest path between a and the vertex tσ of the subgasket Sσ of
level k contains a can be computed by Equation (2.1). Using the formula we get

d(a, 1σ) + d(a, 2σ) + d(a, 3σ) = dσa,1 + dσa,2 + dσa,3 =

∞∑
i=k+1

αa,1
i + αa,2

i + αa,3
i

3i
.
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Since

αa,1
i =

 0 , ai = 1
1 , ai > 3, ai ̸= 4
2 , otherwise

, αa,2
i =

 0 , ai = 2
1 , ai > 3, ai ̸= 5
2 , otherwise

, αa,3
i =

 0 , ai = 3
1 , ai > 3, ai ̸= 6
2 , otherwise

,

we obtain αa,1
i + αa,2

i + αa,3
i = 4 for i ≥ k + 1 which implies

d(a, 1σ) + d(a, 2σ) + d(a, 3σ) =

∞∑
i=k+1

4

3i
=

2

3k
.

2

3. Geodesics of the Sierpinski gasket SG(3)

In the classical Sierpinski gasket (SG(2)) case, it is shown that the number of geodesics between two points
can be 1, 2, 3, 4, or at most 5 (see [16]). In [9], the authors generalized the previous result to the higher
dimensional case and proved that the number of geodesics between two points can be 1, 2, 3, 4, 5, 6, or at
most 8 on the (n -dimensional) Sierpinski gasket (on the Sierpinski Tetrahedron for example). However, on the
Sierpinski gasket SG(3) , we prove that the number of geodesics between two points can be infinitely many (see
Figure 9 for examples). Lemma 3.1 and Theorem 3.4 give an idea about how many geodesics can be between
two different points. (We use the notation N∗ for the set N ∪ {0} throughout the paper.)

Lemma 3.1 Let a ∈ Sσ where Sσ is a subgasket of level k and let t ∈ {1, 2, 3} . Then the number of geodesics
between a and tσ ̸= a is either one of the numbers 2n , 3 · 2n for some n ∈ N∗ or ∞ . Moreover, for all n ∈ N∗

there exists a ∈ Sσ for some σ such that the number of geodesics between a and tσ is exactly 2n or 3 · 2n .

Proof Using the symmetry properties, without loss of generality, we may assume that t = 1 . Let a ∈ Sσ

where Sσ is a subgasket of level k and let a1a2 . . . ak . . . be one of the code representations of a . Consider all
geodesics starting at the vertex 1σ and ending at the point a (see Figure 10 for examples).

Assume that a is a vertex point of the subgasket Sµ ⊂ Sσ where µ is a word with length m = k + l .
In this case the number of geodesics would be finite and a geodesic starting at the vertex 1σ and ending at the
point a must pass through the vertex points 1σ, 1σak+1

, . . . , 1σak+1...am−1 and a = tσak+1...am (note that, a is
one of the points 1σak+1...am

, 2σak+1...am
or 3σak+1...am

since it is a vertex point of Sµ ).
The number of geodesics between 1σ and 1σak+1

can be 0 , 1 , or at most 2 (indeed, if ak+1 = 1 then it
would be 0, if ak+1 = 2 then it would be 2 and otherwise it would be 1). Similarly, the number of geodesics
between 1σak+1

and 1σak+1ak+2
can be 0 , 1 , or at most 2 . More generally, the number of geodesics between

1σak+1...ai−1
and 1σak+1...ai

(which are also the vertex points of two different subgaskets of (the same) level
k + i) can be 0 , 1 , or at most 2 for k < i < m (see Figure 11a). Thus, the number of geodesics between
the vertex points 1σ and 1σak+1...am−1

can be obtained by multiplying the numbers of these (partial) geodesics
as 2n for some n ∈ N∗ or 0 (note that the total geodesic number is 0 if ai = 1 for all k < i < m which
gives 1σ = 1σak+1...am−1 ). As the final step, we need to find the number of geodesics between 1σak+1...am−1 and
a = tσak+1...am

which can be 0 (if am = 1, t = 1), 1 , 2 or 3 . In fact, a = 3σak+1...am−14 or a = 2σak+1...am−14 if
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(a) (b)

 

 

(c)

 

 

(d)

 

 

(e)

 

(f)

 

Figure 9. Examples of geodesics between the points a and b ; (a) 1 geodesic, (b) 2 geodesics, (c) 3 geodesics, (d) infinite
geodesics, (e) 6 geodesics, and (f) 12 geodesics (the word in parentheses is one of the code representation of the related
point).

 

 

(a)

 

(b)

 

 

 

(c)

 

 

 

Figure 10. Examples of geodesics between the points 1σ and a ; (a) 22 = 4 geodesics, (b) 3 · 21 = 6 geodesics and (c)
3 · 22 = 12 geodesics (the word in parentheses is one of the code representations of the related point).

and only if the number of geodesics between 1σak+1...am−1
and a is 3 (see Figure 11b). Therefore, the number

of geodesics between the vertex point 1σ and the point a can be 2n or 3 · 2n for some n ∈ N∗ .
Assume that a is not a vertex point of any subgasket in Sσ . Using the similar argument (if necessary,

infinite times) we obtain the number of geodesics either ∞ or 2n for some n ∈ N∗ (since a is not a vertex
point, there does not exist 3 (partial) geodesics in the final step as in the previous case). For example, if t = 3

and the code representation of a is of the form σ666 · · · = σ6 , then the number of geodesics is ∞ (note that
6 = 3̃) (Furthermore, if the number of geodesics between a and tσ is ∞ then the code representation of a

must be of the form σν t̃ t̃ t̃ · · · for some ν ).
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(a) (b)

 

 

 

Figure 11. Examples of geodesics between the vertex points 1σak+1···ai−1 and 1σak+1···ai (a), three geodesics between
the vertex points 1σak+1···am−1 and a = 3σak+1···am−14 (b).

To see the second part of the statement, due to the symmetry of the self-similar set we can assume t = 1

for simplicity. The points 1σ4···4 and 2σ4···4 which are the vertex points of two subgaskets (of level k + n and
level k + n+ 1 respectively) would be the desired points. 2

Lemma 3.2 Let a ∈ Sσ where Sσ is a subgasket of level k . If the number of geodesics between a and tσ is
3 · 2n for some n ∈ N∗ or ∞ , then the number of geodesics between a and t∗σ is 2m for some m ∈ N∗ for each
t∗ ̸= t .

Proof For simplicity assume that t = 1 and t∗ = 2 . As mentioned in the proof of Lemma 3.1, if the
number of geodesics between a and 1σ is finite and 3 (or a multiple of 3) then there exist (just) two different
code representations of a as σν2 or σµ3 for some ν and µ (indeed, these equal-length words ν and µ differ
only in the last letters). If the number of geodesics between a and 2σ is 3 (or a multiple of 3) then a code
representation of a must be of the form συ1 or στ3 for some υ and τ . Thus, we obtain three different code
representations of a which is a contradiction. Note that if the point b has three different code representations
then the number of geodesics between b and tσ (for all t ∈ {1, 2, 3}) must be an even number which is obvious
from the proof of Lemma 3.1. If the number of geodesics between a and 1σ is ∞ then a is not a vertex point
of a subgasket. Thus, the number of geodesics between a and 1σ cannot be a multiple of 3 as indicated in the
proof of Lemma 3.1. 2

Remark 3.3 The numbers of geodesics between the point a and the (three) vertex points can be an even number
at the same time. Lemma 3.2 says that more than one of these numbers cannot be a multiple of 3. For example,
consider the point 3σ6 for some σ . The number of geodesics between 3σ6 and tσ is 2 for all t ∈ {1, 2, 3} .

Theorem 3.4 Let a, b ∈ S . The number of geodesics between a and b is one of the numbers 3u 2m , 3 2m+32n ,
3u 2m + 2n or ∞ for some u ∈ {0, 1, 2} and m,n ∈ N∗ . Moreover, given one of the numbers 3u 2m , 2m + 2n ,
3 · 2m + 2n (for all u ∈ {0, 1, 2},m, n ∈ N∗ ), there exist a, b ∈ S such that the number of geodesics between
them is exactly the given number.

Proof Since a and b are different points then there exists a subgasket Sσ such that a, b ∈ Sσ of level k and
a ∈ Sσi , b ∈ Sσj for some i, j ∈ {1, 2, 3, 4, 5, 6} such that i ̸= j . Assume that a ∈ Sσ1 and b ∈ Sσ2 . Any
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geodesics between a and b must pass through “Gate-1” or “Gate-2” segments whose lengths are 2/3k+1 and
1/3k+1 respectively as mentioned in Figure 12a.

 

Gate-1

Gate-2

  

  

  

 

Gate-1

Gate-2

 

 

  

  

(a) (b)

Figure 12. Gate-1 and Gate-2 between two nonadjacent subgaskets of level k + 1 (a), the point b on the line segment
between 12 and 32 (b).

If the geodesics use Gate-1 then, by Lemma 3.1, the number of geodesics between “a and 3σ1 ” and
“b and 3σ2 ” are 3r 2n1 and 3s 2n2 respectively for some r, s ∈ {0, 1}, n1, n2 ∈ N∗ and by multiplying these
numbers we obtain the total geodesic number between a and b as 3u 2m for some u ∈ {0, 1, 2},m ∈ N∗ . If the
geodesics pass through Gate-2 then the total number of geodesics would be the same form. Obviously, some
of the geodesics pass through Gate-1 while others may pass through Gate-2; thus, we need the sum of these
numbers to find total number. Note that, by Lemma 3.2, the number of geodesics between a (or b) and the
vertex points “3σ1 and 2σ1 ” (or “3σ2 and 1σ2 ”) cannot be both a multiple of 3. Thus, in this case the total
geodesic number can be 2m + 2n , 3 · 2m + 2n , 32 · 2m + 2n , 3 · 2m + 3 · 2n for some m,n ∈ N∗ . Therefore,
the number of geodesics between a and b must be of the form 3u2m or 3 · 2m + 3 · 2n or 3u 2m + 2n for some
u ∈ {0, 1, 2} , m,n ∈ N∗ .

If a and b are in different subgaskets, the same argument can be applied (notice that the length of a
gate can be 0 , 1/3k+1 or 2/3k+1 depending on the positions of a and b).

The second part of the theorem can be proved using Lemma 3.1. Firstly, let m ∈ N∗ . Consider the
points a and b whose code representations are 133σ1 = 13366 · · · 61 and 23361 respectively where σ = 66 · · · 6
is the word with length m + 1 . The number of geodesics between a and 3σ1 is 3 · 2m and the number of
geodesics between b and 3σ2 is 3. Thus, the number of geodesics between a and b is 32 2m (we choose a and
b in the subgaskets S133 and S233 to ensure that geodesics only pass through Gate-1). Similarly, the number
of geodesics between a and b whose code representations are 133σ1 and 2331 is 3 · 2m since the number of
geodesics between b and 3σ2 is 1, and the number of geodesics between a and b whose code representations are
133σ3 and 2331 is 2m since the number of geodesics between a and 3σ1 is 2m and the number of geodesics
between b and 3σ2 is 1.

Now, we show that there exist a pair of points such that the number of geodesics between them is
2n + 3 · 2m for m,n ∈ N (for m = n = 0 it is obvious for the points whose code representations are 121 and
421). Consider the point a ∈ S1 whose code representation is 1σµ1 = 155 · · · 566 · · · 61 where σ = 55 · · · 5 and
µ = 66 · · · 6 are the words with length n and m+ 1 respectively. The number of geodesics between a and the
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vertex 21 is 2n and the number of geodesics between a and the vertex 31 is 3 · 2m . Using Equation (2.1), one
can easily compute (as done in Example 2.2) the lengths of these geodesics as

d1a,2 =
1

3
− 1

2 · 3n+1
+

1

2 · 3n+m+2

and

d1a,3 =
1

6
+

1

2 · 3n+1
.

It is obvious that K = d1a,2 − d1a,3 > 0 . Let b ∈ S2 be the point lies on the line segment between the vertices
12 and 32 such that d2b,3 = K/2 . Then, using Theorem 2.1, we obtain

d(a, b) = d1a,2 + 1/3 + (1/3−K/2) = d1a,3 + 2/3 +K/2

which implies that there exist different geodesics between a and b using both Gate-1 and Gate-2 (see Figure 12b).
Thus, summing the number of geodesics passing through Gate-1 and Gate-2, we obtain the number of geodesics
between a and b as 2n+3 ·2m . Note that there exists just one geodesic between “b and 1σ2 ” (or “b and 3σ2 ”)
(It would be a nice result to find one code representation of the point b).

We finally show that there exist a pair of points such that the number of geodesics between them is
2n + 2m for m,n ∈ N (for m = n = 0 it is obvious). Consider the point a ∈ S1 whose code representation
is 1σµ1 = 155 · · · 566 · · · 63 where σ = 55 · · · 5 and µ = 66 · · · 6 are the words with length n − 1 and m

respectively. The number of geodesics between a and the vertex 21 is 2n and the number of geodesics between
a and the vertex 31 is 2m . Similarly, using the above argument, one can find b ∈ S2 that lies on the line
segment between the vertices 12 and 32 such that there exist different geodesics between a and b using both
Gate-1 and Gate-2. Therefore, the number of geodesics between a and b is 2n + 2m . 2

Does there exist a pair of points a, b ∈ S such that the number of geodesics between them is exactly
32 2m + 2n or 3 2m + 32n for given m,n ∈ N∗ ? For some small and special values of m and n , the claim is
true. However, the general situation remains a question worth solving.

Example 3.5 Let m = 4, n = 3 . It is known that there exist pairs of points such that the number of geodesics
between them is one of the numbers 16, 48, 56 , or 144 by Theorem 3.4. Taking m = 12, n = 10 we get
2n + 3 · 2m = 13312 geodesics. Notice that we may not always find a pair of points such that the number of
geodesics between them is a given number. For example, by the first part of Theorem 3.4, one can easily show
that there does not exist a pair of points such that the number of geodesics between them is (the odd number)
3 + 32 · 2m for all m ∈ N . On the other hand, there are infinite geodesics between the points a and b whose
code representations (for example) are 3 and 6 .
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