тüвітак
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2019) 43: $2755-2766$
© TÜBİTAK
doi:10.3906/mat-1904-165

Classifying semisymmetric cubic graphs of order $20 p$

Mohsen SHAHSAVARAN© ${ }^{(1)}$ Mohammad Reza DARAFSHEH* ${ }^{\text {© }}$

School of Mathematics, Statistics, and Computer Science, College of Science, University of Tehran, Tehran, Iran

| Received: 26.04 .2019 | Accepted/Published Online: 18.09 .2019 | Final Version: 22.11 .2019 |
| :--- | :--- | :--- | :--- |

Abstract

A simple graph is called semisymmetric if it is regular and edge-transitive but not vertex-transitive. In this paper we classify all connected cubic semisymmetric graphs of order $20 p, p$ prime.

Key words: Edge-transitive graph, vertex-transitive graph, semisymmetric graph, order of a graph, classification of cubic semisymmetric graphs

1. Introduction

In this paper all graphs are finite, undirected, and simple, i.e. without loops and multiple edges. A graph is called semisymmetric if it is regular and edge-transitive but not vertex-transitive.

The class of semisymmetric graphs was first studied by Folkman [9], who found several infinite families of such graphs and posed eight open problems.

An interesting research problem is to classify connected cubic semisymmetric graphs of various types of orders. In [9], Folkman proved that there are no semisymmetric graphs of order $2 p$ or $2 p^{2}$ for any prime p. The classification of semisymmetric graphs of order $2 p q$, where p and q are distinct primes, was given in [7].

For prime p, cubic semisymmetric graphs of order $2 p^{3}$ were investigated in [17], in which the authors proved that there is no connected cubic semisymmetric graph of order $2 p^{3}$ for any prime $p \neq 3$ and that for $p=3$ the only such graph is the Gray graph.

Connected cubic semisymmetric graphs of orders $4 p^{3}, 6 p^{2}, 6 p^{3}, 8 p^{2}, 8 p^{3}, 10 p^{3}$, and $18 p^{n}(n \geq 1)$ were also classified in $[1,2,8,11,13,21]$.

In this paper we investigate connected cubic semisymmetric graphs of order $20 p$ for all primes p. Note that for orders like $4 p, 6 p, 10 p$, and $14 p$, which are of the form $2 q p$ for some fixed prime q, the problem of classifying such graphs follows from the general result of [7].

We prove that if Γ is a connected cubic semisymmetric graph of order $20 p, p$ prime, then $p=11$ and Γ is isomorphic to a known graph. We go beyond this, however, and prove that there is no connected cubic G-semisymmetric graph of order $20 p$ for any prime $p \neq 2,11$. This will put us near the classification of all connected cubic G-semisymmetric graphs of order $20 p$: if there is any such graph, then its order must be either 40 or 220 .

[^0]
2. Preliminaries

In this paper the symmetric and alternating groups of degree n, the dihedral group of order $2 n$, and the cyclic group of order n are respectively denoted by $\mathbb{S}_{n}, \mathbb{A}_{n}, D_{2 n}$, and \mathbb{Z}_{n}. If G is a group and $H \leq G$, then $\operatorname{Aut}(G), G^{\prime}, Z(G), C_{G}(H)$, and $N_{G}(H)$ respectively denote the group of automorphisms of G, the commutator subgroup of G, the center of G, the centralizer, and the normalizer of H in G. We also write $H \unlhd^{c} G$ to denote that H is a characteristic subgroup of G. If $H \unlhd^{c} K \unlhd G$, then $H \unlhd G$. For a prime p dividing the order of a finite group $G, O_{p}(G)$ will denote the largest normal p-subgroup of G. It is easy to verify that $O_{p}(G) \unlhd^{c} G$.

For a group G and a nonempty set Ω, an action of G on Ω is a function $(g, \omega) \rightarrow g . \omega$ from $G \times \Omega$ to Ω, where $1 . \omega=\omega$ and $g .(h . \omega)=(g h) . \omega$, for every $g, h \in G$ and every $\omega \in \Omega$. We write $g \omega$ instead of $g . \omega$ if there is no fear of ambiguity. For $\omega \in \Omega$, the stabilizer of ω in G is defined as $G_{\omega}=\{g \in G: g \omega=\omega\}$. The action is called semiregular if the stabilizer of each element in Ω is trivial; it is called regular if it is semiregular and transitive.

For any two groups G and H and any homomorphism $\varphi: H \rightarrow \operatorname{Aut}(G)$ the external semidirect product $G \rtimes_{\varphi} H$ is defined as the group whose underlying set is the Cartesian product $G \times H$ and whose binary operation is defined as $\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} \varphi\left(h_{1}\right)\left(g_{2}\right), h_{1} h_{2}\right)$. If $\varphi(h)=1$ for each $h \in H$, then the semidirect product will coincide with the usual direct product. If $G=N K$ where $N \unlhd G, K \leq G$, and $N \cap K=1$, then G is said to be the internal semidirect product of N and K. These two concepts are in fact equivalent in the sense that there is some homomorphism $\varphi: K \rightarrow \operatorname{Aut}(N)$ where $G \simeq N \rtimes_{\varphi} K$.

The dihedral group $D_{2 n}$ is defined as

$$
D_{2 n}=\left\langle a, b \mid a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle
$$

so $D_{2 n}=\left\{a^{i} \mid i=0, \ldots, n-1\right\} \cup\left\{b a^{i} \mid i=0, \ldots, n-1\right\}$. All the elements of the form $b a^{i}$ are of order 2 .
Let Γ be a graph. For two vertices u and v, we write $u \sim v$ to denote that u is adjacent to v. If $u \sim v$, then each of the ordered pairs (u, v) and (v, u) is called an arc. The set of all vertices adjacent to a vertex u is denoted by $\Gamma(u)$. The degree or valency of u is $|\Gamma(u)|$. We call Γ regular if all of its vertices have the same valency. The vertex set, the edge set, the arc set, and the set of all automorphisms of Γ are respectively denoted by $V(\Gamma), E(\Gamma), \operatorname{Arc}(\Gamma)$, and $\operatorname{Aut}(\Gamma)$. If Γ is a graph and $N \unlhd \operatorname{Aut}(\Gamma)$, then Γ_{N} will denote a simple undirected graph whose vertices are the orbits of N in its action on $V(\Gamma)$, and where two vertices $N u$ and $N v$ are adjacent if and only if $u \sim n v$ in Γ, for some $n \in N$.

Let Γ_{c} and Γ be two graphs. Then Γ_{c} is said to be a covering graph for Γ if there is a surjection $f: V\left(\Gamma_{c}\right) \rightarrow V(\Gamma)$ that preserves adjacency, and for each $u \in V\left(\Gamma_{c}\right)$, the restricted function $\left.f\right|_{\Gamma_{c}(u)}: \Gamma_{c}(u) \rightarrow$ $\Gamma(f(u))$ is a one to one correspondence. f is called a covering projection. Clearly, if Γ is bipartite, then so is Γ_{c}. For each $u \in V(\Gamma)$, the fiber on u is defined as $f i b_{u}=f^{-1}(u)$. The following important set is a subgroup of $\operatorname{Aut}\left(\Gamma_{c}\right)$ and is called the group of covering transformations for f :

$$
C T(f)=\left\{\sigma \in \operatorname{Aut}\left(\Gamma_{c}\right) \mid \forall u \in V(\Gamma), \sigma\left(f i b_{u}\right)=f i b_{u}\right\}
$$

It is known that $K=C T(f)$ acts semiregularly on each fiber [14]. If this action is regular, then Γ_{c} is said to be a regular K-cover of Γ.

Let $X \leq \operatorname{Aut}(\Gamma)$. Then Γ is said to be X-vertex transitive, X-edge transitive, or X-arc transitive if X acts transitively on $V(\Gamma), E(\Gamma)$, or $\operatorname{Arc}(\Gamma)$, respectively. The graph Γ is called X-semisymmetric if it is
regular and X-edge transitive but not X-vertex transitive. Also, Γ is called X-symmetric if it is X-vertex transitive and X-arc transitive. For $X=\operatorname{Aut}(\Gamma)$, we omit X and simply talk about Γ being edge-transitive, vertex-transitive, symmetric, or semisymmetric. As an example, $\Gamma=K_{3,3}$, the complete bipartite graph on 6 vertices, is not semisymmetric but it is X-semisymmetric for some $X \leq \operatorname{Aut}(\Gamma)$.

An X-edge transitive but not X-vertex transitive graph is necessarily bipartite, where the two partites are the orbits of the action of X on $V(\Gamma)$. If Γ is regular, then the two partite sets have equal cardinality, so an X-semisymmetric graph is bipartite such that X is transitive on each partite but X carries no vertex from one partite set to the other.

According to [5], if there is a unique known cubic semisymmetric graph of order n, then it is denoted by $\mathbf{S n}$. The symmetric counterpart of $\mathbf{S n}$ is denoted by $\mathbf{F n}[6]$. There are only two symmetric cubic graphs of order 20, which are denoted by F20A and F20B. Only F20B is bipartite [6].

Any minimal normal subgroup of a finite group is the internal direct product of isomorphic copies of a simple group.

A finite group G is called a K_{n}-group if its order has exactly n distinct prime divisors, where $n \in \mathbb{N}$. The following two results determine all simple K_{3}-groups and K_{4}-groups [3, 12, 19, 24].

Theorem 2.1 (i) If G is a simple K_{3}-group, then G is isomorphic to one of the following groups: $\mathbb{A}_{5}, \mathbb{A}_{6}$, $L_{2}(7), L_{2}\left(2^{3}\right), L_{2}(17), L_{3}(3), U_{3}(3), U_{4}(2)$.
(ii) If G is a simple K_{4}-group, then G is isomorphic to one of the following groups:
(1) $\mathbb{A}_{7}, \mathbb{A}_{8}, \mathbb{A}_{9}, \mathbb{A}_{10}, M_{11}, M_{12}, J_{2}, L_{2}\left(2^{4}\right), L_{2}\left(5^{2}\right), L_{2}\left(7^{2}\right), L_{2}\left(3^{4}\right), L_{2}(97), L_{2}\left(3^{5}\right), L_{2}(577), L_{3}\left(2^{2}\right)$, $L_{3}(5), L_{3}(7), L_{3}\left(2^{3}\right), L_{3}(17), L_{4}(3), U_{3}\left(2^{2}\right), U_{3}(5), U_{3}(7), U_{3}\left(2^{3}\right), U_{3}\left(3^{2}\right), U_{4}(3), U_{5}(2), S_{4}\left(2^{2}\right)$, $S_{4}(5), S_{4}(7), S_{4}\left(3^{2}\right), S_{6}(2), O_{8}^{+}(2), G_{2}(3), S z\left(2^{3}\right), S z\left(2^{5}\right),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}$;
(2) $L_{2}(r)$ where r is a prime, $r^{2}-1=2^{a} \cdot 3^{b} \cdot s, s>3$ is a prime, $a, b \in \mathbb{N}$;
(3) $L_{2}\left(2^{m}\right)$ where $m, 2^{m}-1, \frac{2^{m}+1}{3}$ are primes greater than 3 ;
(4) $L_{2}\left(3^{m}\right)$ where $m, \frac{3^{m}+1}{4}$ and $\frac{3^{m}-1}{2}$ are odd primes.

Proposition 2.2 ([18], Theorem 9.1.2) Let G be a finite group and $N \unlhd G$. If $|N|$ and $\left|\frac{G}{N}\right|$ are relatively prime, then G has a subgroup H such that $G=N H$ and $N \cap H=1$ (therefore, G is the internal semidirect product of N and H).

An immediate consequence of the following theorem of Burnside is that the order of every nonabelian simple group is divisible by at least 3 distinct primes.

Theorem 2.3 [20] For any two distinct primes p and q and any two nonnegative integers a and b, every finite group of order $p^{a} q^{b}$ is solvable.

In the following theorem, the inverse of a pair (a, b) is meant to be (b, a). Also, for each i, A_{i}, B_{i}, C_{i}, and D_{i} are certain groups of order i with known structures. We will not need their structures.

Theorem 2.4 [10] If Γ is a connected cubic X-semisymmetric graph, then the order of the stabilizer of any vertex is of the form $2^{r} \cdot 3$ for some $0 \leq r \leq 7$. More precisely, if $\{u, v\}$ is any edge of Γ, then the pair $\left(X_{u}, X_{v}\right)$ can only be one of the following fifteen pairs or their inverses:
$\left(\mathbb{Z}_{3}, \mathbb{Z}_{3}\right),\left(\mathbb{S}_{3}, \mathbb{S}_{3}\right),\left(\mathbb{S}_{3}, \mathbb{Z}_{6}\right),\left(D_{12}, D_{12}\right),\left(D_{12}, \mathbb{A}_{4}\right),\left(\mathbb{S}_{4}, D_{24}\right),\left(\mathbb{S}_{4}, \mathbb{Z}_{3} \rtimes D_{8}\right),\left(\mathbb{A}_{4} \times \mathbb{Z}_{2}, D_{12} \times \mathbb{Z}_{2}\right),\left(\mathbb{S}_{4} \times\right.$ $\left.\mathbb{Z}_{2}, D_{8} \times \mathbb{S}_{3}\right),\left(\mathbb{S}_{4}, \mathbb{S}_{4}\right),\left(\mathbb{S}_{4} \times \mathbb{Z}_{2}, \mathbb{S}_{4} \times \mathbb{Z}_{2}\right),\left(A_{96}, B_{96}\right),\left(A_{192}, B_{192}\right),\left(C_{192}, D_{192}\right),\left(A_{384}, B_{384}\right)$.

Proposition 2.5 [17] Let Γ be a connected cubic X-semisymmetric graph for some $X \leq A u t(\Gamma)$; then either $\Gamma \simeq K_{3,3}$, the complete bipartite graph on 6 vertices, or X acts faithfully on each of the bipartition sets of Γ.

Theorem 2.6 [15] Let Γ be a connected cubic X-semisymmetric graph. Let $\{U, W\}$ be a bipartition for Γ and assume $N \unlhd X$. If the actions of N on both U and W are intransitive, then N acts semiregularly on both U and W, Γ_{N} is $\frac{X}{N}$-semisymmetric, and Γ is a regular N-covering of Γ_{N}.

This theorem has a nice result. For every normal subgroup $N \unlhd X$ either N is transitive on at least one partite set or it is intransitive on both partite sets. In the former case, the order of N is divisible by $|U|=|W|$. In the latter case, according to Theorem 2.6, the induced action of N on both U and W is semiregular and hence the order of N divides $|U|=|W|$. Thus, we have the following handy corollary.

Corollary 2.7 If Γ is a connected cubic X-semisymmetric graph with $\{U, W\}$ as a bipartition and $N \unlhd X$, then either $|N|$ divides $|U|$ or $|U|$ divides $|N|$.

Following [10] (see also [16]), the coset graph $C\left(G ; H_{0}, H_{1}\right)$ of a group G with respect to finite subgroups H_{0} and H_{1} is a bipartite graph with $\left\{H_{0} g \mid g \in G\right\}$ and $\left\{H_{1} g \mid g \in G\right\}$ as its bipartition sets of vertices where $H_{0} g$ is adjacent to $H_{1} g^{\prime}$ whenever $H_{0} g \cap H_{1} g^{\prime} \neq \emptyset$. The following proposition may be extracted from [10]:

Proposition 2.8 Let G be a finite group and $H_{0}, H_{1} \leq G$. The coset graph $C\left(G ; H_{0}, H_{1}\right)$ has the following properties:
(i) $C\left(G ; H_{0}, H_{1}\right)$ is regular of valency d if and only if $H_{0} \cap H_{1}$ has index d in both H_{0} and H_{1}.
(ii) $C\left(G ; H_{0}, H_{1}\right)$ is connected if and only if $G=\left\langle H_{0}, H_{1}\right\rangle$.
(iii) G acts on $C\left(G ; H_{0}, H_{1}\right)$ by right multiplication. Moreover, this action is faithful if and only if Core ${ }_{G}\left(H_{0} \cap\right.$ $\left.H_{1}\right)=1$.
(iv) In the case when the action of G is faithful, the coset graph $C\left(G ; H_{0}, H_{1}\right)$ is G-semisymmetric.

Proposition 2.9 [16] Let Γ be a regular graph and $G \leq A u t(\Gamma)$. If Γ is G-semisymmetric, then Γ is isomorphic to the coset graph $C\left(G ; G_{u}, G_{v}\right)$ where u and v are adjacent vertices.

3. Main results

Our goal in this paper is to fully classify connected cubic semisymmetric graphs of order $20 p$. We also derive a very restrictive necessary condition for the existence of connected cubic G-semisymmetric graphs of order $20 p$. We prove the following important result. Part (i) is a full classification whereas part (ii) is only a necessary condition.

Theorem 3.1 Let p be a prime.
(i) If Γ is a connected cubic semisymmetric graph of order $20 p$, then $p=11$ and $\Gamma \simeq$ S220.
(ii) If Γ is a connected cubic G-semisymmetric graph of order $20 p$ for some $G \leq A u t(\Gamma)$, then $p=2$ or 11 .

To prove the main theorem, we need some lemmas.

Lemma 3.2 The only simple K_{4}-groups whose orders are of the form $2^{i} \cdot 3 \cdot 5 \cdot p$ for some prime $p>5$ and some $1 \leq i \leq 8$ are the following three projective special linear groups: $L_{2}\left(2^{4}\right), L_{2}(11)$, and $L_{2}(31)$.

Proof Considering the powers of primes, there is no possibility for such a group in subitem (4) of item (ii) of Theorem 2.1. By inspecting orders of groups in subitem (1), the only group of the desired form is $L_{2}\left(2^{4}\right)$. As for subitem (3), let $L_{2}\left(2^{m}\right)$ be a group of order $2^{i} \cdot 3 \cdot 5 \cdot p$, and then

$$
2^{m} \cdot 3 \cdot\left(2^{m}-1\right) \cdot\left(\frac{2^{m}+1}{3}\right)=2^{i} \cdot 3 \cdot 5 \cdot p
$$

where $m, 2^{m}-1$, and $\frac{2^{m}+1}{3}$ are all primes according to Theorem 2.1. This equation has no answer as neither $2^{m}-1$ nor $\frac{2^{m}+1}{3}$ could be equal to 5 . Finally, consider groups $L_{2}(r)$ in subitem (2). If for odd prime r and for prime $s>3$, we have $r^{2}-1=2^{a} \cdot 3^{b} \cdot s$ and

$$
2^{a-1} \cdot 3^{b} \cdot s \cdot r=2^{i} \cdot 3 \cdot 5 \cdot p
$$

then $b=1, a-1=i$, and either $s=5$ or $r=5$. The equality $r=5$ is not possible, since $L_{2}(5)$ is not a K_{4}-group. Also, if $s=5$, then the equation $r^{2}-1=2^{a} \cdot 3 \cdot 5$ gives us only two solutions, $r=11$, 31, when a spans integers $2,3, \ldots, 9$.

Lemma 3.3 Let $p>11$ be a prime and $p \neq 17,31$. If Γ is a connected cubic G-semisymmetric graph of order $20 p$, then G has a normal Sylow p-subgroup.

Proof Take $\{U, W\}$ to be a bipartition for Γ. Then $|U|=|W|=10 p$. For $u \in U$ according to Theorem 2.4, $\left|G_{u}\right|=2^{r} \cdot 3$ for some $0 \leq r \leq 7$. Due to transitivity of G on U, the equality $\left[G: G_{u}\right]=|U|$ holds, which yields $|G|=2^{r+1} \cdot 3 \cdot 5 \cdot p$. If G does not have a normal Sylow p-subgroup, then $O_{p}(G)=1$. We derive a contradiction out of this.

Suppose G has a normal subgroup M of order 10. Due to its order, M is intransitive on the partite sets, and according to Theorem 2.6, the quotient graph Γ_{M} is $\frac{G}{M}$-semisymmetric with a bipartition $\left\{U_{M}, W_{M}\right\}$ where $\left|U_{M}\right|=\left|W_{M}\right|=p$ and $\left|\frac{G}{M}\right|=2^{r} \cdot 3 \cdot p$.

Let $\frac{K}{M}$ be a minimal normal subgroup of $\frac{G}{M}$. If $\frac{K}{M}$ is unsolvable, it must be simple of order $2^{i} \cdot 3 \cdot p$ for some i, so $\frac{K}{M} \simeq \mathbb{A}_{5}$ or $L_{2}(7)$. However, these are not possible since $p>11$. Now if $\frac{K}{M}$ is solvable and hence elementary abelian, then by Corollary 2.7, its order must be p, implying $|K|=10 p$. The Sylow p-subgroup of K is normal and hence characteristic in K. Therefore, it is normal in G, contradicting the assumption that $O_{p}(G)=1$. Thus, $O_{p}(G)=1$ implies that G does not have a normal subgroup of order 10 .

Next, let $N \simeq T^{k}$ be a minimal normal subgroup of G, where T is simple. If T is nonabelian, then $k=1$ and $N=T$ since the powers of 3 and 5 in $|G|$ equal 1. According to Corollary 2.7, either $|N|$ divides $|U|=10 p$ or $10 p$ divides $|N|$.

If $|N|$ divides $10 p$, then $|N|=2 \cdot 5 \cdot p$, since $|N|$ should be divisible by at least three distinct primes (Theorem 2.3). However, there is no simple K_{3}-group of order $2 \cdot 5 \cdot p$ according to part (i) of Theorem 2.1, so $10 p$ divides $|N|$. Since the order of every simple K_{3}-group is divisible by $3, N$ must be a simple K_{4}-group whose order is of the form $2^{i} \cdot 3 \cdot 5 \cdot p$. According to Lemma $3.2, N \simeq L_{2}\left(2^{4}\right), L_{2}(11)$, or $L_{2}(31)$ corresponding to $p=17,11$, and 31 respectively. However, these cases are ruled out in the statement of the lemma.

Now suppose that T is abelian and hence N would be elementary abelian. It follows from Corollary 2.7 that $|N|$ divides $10 p$ and so $|N|=2,5$, or p. Certainly $|N|=p$ contradicts the assumption on $O_{p}(G)$. In the remaining two cases Γ_{N} would itself be a connected cubic $\frac{G}{N}$-semisymmetric graph of order $\frac{20 p}{|N|}$. Take $\left\{U_{N}, W_{N}\right\}$ to be the bipartition for Γ_{N}. Also let $\frac{M}{N}$ be a minimal normal subgroup of $\frac{G}{N}$.

If $N \simeq \mathbb{Z}_{2}$, then $\left|\frac{G}{N}\right|=2^{r} \cdot 3 \cdot 5 \cdot p$ and $\left|U_{N}\right|=\left|W_{N}\right|=5 p$. If $\frac{M}{N}$ is unsolvable, then it must be a simple K_{4}-group whose order is of the form $2^{i} \cdot 3 \cdot 5 \cdot p$. It follows from Lemma 3.2 that $p=17,11$, or 31 , which are ruled out by our assumption on p. On the other hand, if $\frac{M}{N}$ is solvable, then its order should divide $\left|U_{N}\right|=5 p$ and hence $\left|\frac{M}{N}\right|=5$ or p. If $\left|\frac{M}{N}\right|=5$, then $|M|=10$, which is not possible (as we showed at the beginning of the proof), and if $\left|\frac{M}{N}\right|=p$, then $|M|=2 p$, which contradicts our assumption on $O_{p}(G)$ since a Sylow p-subgroup of M would be characteristic in M and so would be normal in G.

Now if $N \simeq \mathbb{Z}_{5}$, then $\left|\frac{G}{N}\right|=2^{r+1} \cdot 3 \cdot p$ and $\left|U_{N}\right|=\left|W_{N}\right|=2 p$. In this case, if $\frac{M}{N}$ is unsolvable, it would be a simple group of order $2^{i} \cdot 3 \cdot p$ for some i, and hence, according to Theorem 2.1, $\frac{M}{N} \simeq \mathbb{A}_{5}$ or $L_{2}(7)$ implying $p=5$ or 7 . This is in contradiction to our assumption on p. On the other hand, if $\frac{M}{N}$ is solvable, then like before, we conclude that $\left|\frac{M}{N}\right|=2$ or p, which again leads to contradictions as in the previous case.

Lemma 3.4 Let $p>11$ be a prime and $p \neq 17,31$. Suppose Γ is a connected cubic G-semisymmetric graph of order $20 p$. Let M be the Sylow p-subgroup of G. If $\frac{G}{M} \simeq H$, then:
(1) For each vertex u the stabilizer G_{u} is isomorphic to a subgroup of H.
(2) $G \simeq M \rtimes_{\varphi} H$ for some homomorphism $\varphi: H \rightarrow \operatorname{Aut}(M)$.

Proof For each vertex u of $\Gamma, M G_{u} \leq G$. Therefore, $G_{u} \simeq \frac{G_{u}}{M \cap G_{u}} \simeq \frac{M G_{u}}{M} \leq \frac{G}{M}$. This proves (1). Now since obviously the orders of M and $\frac{G}{M}$ are coprime, it follows from Proposition 2.2 that $G=M K$ for some subgroup $K \leq G$ where $M \cap K=1$. Thus, G is the internal semidirect product of M and K and hence it is isomorphic to the external semidirect product of M and K, i.e. $G \simeq M \rtimes_{\psi} K$ for some $\psi: K \rightarrow \operatorname{Aut}(M)$. Since $H \simeq \frac{G}{M}=\frac{M K}{M} \simeq \frac{K}{M \cap K} \simeq K$, we can write $G \simeq M \rtimes_{\varphi} H$ for some $\varphi: H \rightarrow \operatorname{Aut}(M)$.

Lemma 3.5 Let $p>11$ be a prime and $p \neq 17,31$. If Γ is a connected cubic G-semisymmetric graph of order $20 p$ and if M is the Sylow p-subgroup of G, then $\frac{G}{M}$ cannot be isomorphic to \mathbb{A}_{5}.

Proof Suppose, on the contrary, that $\frac{G}{M} \simeq \mathbb{A}_{5}$. Then for any vertex u from $\left[G: G_{u}\right]=10 p$ we obtain $\left|G_{u}\right|=6$ and hence $G_{u} \simeq \mathbb{Z}_{6}$ or \mathbb{S}_{3}. By Lemma 3.4, $G_{u} \leq \mathbb{A}_{5}$. Since \mathbb{A}_{5} does not have elements of order 6 , we conclude that $G_{u} \simeq \mathbb{S}_{3}$. Also, according to Lemma 3.4, $G \simeq M \rtimes_{\varphi} \mathbb{A}_{5}$. There are only two possibilities for the kernel of $\varphi: \mathbb{A}_{5} \rightarrow \operatorname{Aut}(M)$:
(a) If $\operatorname{ker}(\varphi)=1$, then \mathbb{A}_{5} is isomorphic to a subgroup of $\operatorname{Aut}(M) \simeq \operatorname{Aut}\left(\mathbb{Z}_{p}\right) \simeq \mathbb{Z}_{p-1}$, which is obviously not the case.
(b) If $\operatorname{ker}(\varphi)=\mathbb{A}_{5}$, then φ is the trivial homomorphism and so $G \simeq M \times \mathbb{A}_{5}$. Since Γ is G semisymmetric, according to Proposition 2.9, Γ is isomorphic to $C\left(G ; G_{u}, G_{v}\right)$ where u and v are two adjacent vertices in Γ. As Γ is connected, according to Proposition 2.8, we must have $G=\left\langle G_{u}, G_{v}\right\rangle$. In view of $G_{u} \simeq G_{v} \simeq \mathbb{S}_{3}$, this means that $M \times \mathbb{A}_{5}$ is generated by two of its subgroups, say H and K, both isomorphic to \mathbb{S}_{3}. Now for each element $(m, a) \in H$ we have $(m, a)^{6}=1$, which means $m^{6}=1$ in M. As $|M|=p>31$, we conclude $m=1$. Therefore, the first component of each element of H (and similarly for K) equals 1 . Consequently, the first component of each element in $M \times \mathbb{A}_{5}=\langle H, K\rangle$ equals 1 , which is a contradiction.

Consider a semidirect product $\mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ where $\varphi: \mathbb{S}_{5} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ is a homomorphism. Let $H \leq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ and $H \simeq D_{12}$ or \mathbb{A}_{4}. We call H type \mathbf{A} if all the elements of H have their second component in \mathbb{A}_{5}. We also call H type \mathbf{D} if there is at least one element in H whose second component is not in \mathbb{A}_{5}. Also, for any $x \in \mathbb{Z}_{p}$ and any $g, h \in \mathbb{S}_{5}$, we define two subsets $R_{x, g, h}, S_{x, g, h} \subset \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ as follows:

$$
R_{x, g, h}=\left\{(1,1),(x, g),\left(1, g^{2}\right),\left(x, g^{3}\right),\left(1, g^{4}\right),\left(x, g^{5}\right),(1, h),(x, h g),\left(1, h g^{2}\right),\left(x, h g^{3}\right),\left(1, h g^{4}\right),\left(x, h g^{5}\right)\right\}
$$

and

$$
S_{x, g, h}=\left\{(1,1),(x, g),\left(1, g^{2}\right),\left(x, g^{3}\right),\left(1, g^{4}\right),\left(x, g^{5}\right),(x, h),(1, h g),\left(x, h g^{2}\right),\left(1, h g^{3}\right),\left(x, h g^{4}\right),\left(1, h g^{5}\right)\right\}
$$

As we will see later, these two subsets are sometimes subgroups of $\mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$.
The group $D_{12}=\left\langle a, b \mid a^{6}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle$ has exactly three Sylow 2-subgroups, all isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, which are listed below:

$$
P_{1}=\left\{1, a^{3}, b, b a^{3}\right\}, P_{2}=\left\{1, a^{3}, b a, b a^{4}\right\}, P_{3}=\left\{1, a^{3}, b a^{2}, b a^{5}\right\}
$$

Lemma 3.6 Let $p>3$ be a prime and let $\varphi: \mathbb{S}_{5} \rightarrow A u t\left(\mathbb{Z}_{p}\right)$ be a homomorphism where ker $(\varphi)=\mathbb{A}_{5}$. Let $H \leq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$.
(i) If $H \simeq \mathbb{A}_{4}$, then H is of type A, and if $H \simeq D_{12}$, then H is of type D.
(ii) Moreover, if $H \simeq D_{12}$, then there are some $x \in \mathbb{Z}_{p}$, some $g, g^{\prime} \notin \mathbb{A}_{5}$, and some $h \in \mathbb{A}_{5}$ where $H=R_{x, g, h}$ or $H=S_{x, g, g^{\prime}}$.

Proof The image of φ is isomorphic to $\frac{\mathbb{S}_{5}}{\mathbb{A}_{5}} \simeq \mathbb{Z}_{2}$, so there is some $F \in \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ of order 2 for which $\varphi(x)=1$ for all $x \in \mathbb{A}_{5}$ and $\varphi(x)=F$ for any $x \notin \mathbb{A}_{5}$. For any two elements (x, g) and (y, h) from $\mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ the multiplication $(x, g)(y, h)$ equals $(x y, g h)$ if $g \in \mathbb{A}_{5}$ and equals $(x F(y), g h)$ if $g \notin \mathbb{A}_{5}$. It is easy to see that for any positive integer n, if $g \in \mathbb{A}_{5}$, then $(x, g)^{n}=\left(x^{n}, g^{n}\right)$ for all $x \in \mathbb{Z}_{p}$, and if $g \notin \mathbb{A}_{5}$, then $(x, g)^{2 n}=\left(x^{n} F\left(x^{n}\right), g^{2 n}\right)$ and $(x, g)^{2 n+1}=\left(x^{n+1} F\left(x^{n}\right), g^{2 n+1}\right)$ for all $x \in \mathbb{Z}_{p}$.

Now, to prove part (i), it suffices to prove that for a subgroup $H \leq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ that is isomorphic to either D_{12} or \mathbb{A}_{4}, both of the following statements are true:

- if H is of type A , then $H \simeq \mathbb{A}_{4}$.
- if H is of type D , then $H \simeq D_{12}$.

Let $H \leq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ and $H \simeq D_{12}$ or \mathbb{A}_{4}. If $K:=\left\{(x, g) \in H \mid g \in \mathbb{A}_{5}\right\}$ then $K \leq H$. For the homomorphism $f: K \rightarrow \mathbb{Z}_{p}$ defined by $f(x, g)=x$, the isomorphism $\frac{K}{\operatorname{ker}(f)} \simeq \operatorname{Im}(f)$ implies that $\left|\frac{K}{\operatorname{ker}(f)}\right|$ divides both 12 and p and hence $K=\operatorname{ker}(f)$. Therefore, for each $(x, g) \in H$, if $g \in \mathbb{A}_{5}$, then $x=1$.

It follows immediately that if H is of type A , then the first component of each element of H equals 1 and hence H is isomorphic to a subgroup of \mathbb{A}_{5}. As \mathbb{A}_{5} has no element of order $6, H$ cannot be isomorphic to D_{12} and so $H \simeq \mathbb{A}_{4}$.

Now suppose H is of type D . For two arbitrary elements $(x, g),(y, h) \in H$ with $g, h \notin \mathbb{A}_{5}$, we have $\left(x F(x), g^{2}\right)=(x, g)^{2} \in H$ and $(y F(x), h g)=(y, h)(x, g) \in H$. Since g^{2} and $h g$ are in \mathbb{A}_{5}, the first components must equal 1, i.e. $x F(x)=1$ and $y F(x)=1$, which imply $x=y$. In other words, for any pair of elements $(x, g) \in H$ and $(y, h) \in H$ with $g, h \notin \mathbb{A}_{5}$ we must have $x=y$. There are always elements in H whose second component lies in \mathbb{A}_{5} and hence their first component is 1 . Therefore, we can write

$$
\begin{equation*}
H=\left\{\left(x, g_{1}\right),\left(x, g_{2}\right), \ldots,\left(x, g_{n}\right),\left(1, h_{1}\right), \ldots,\left(1, h_{m}\right)\right\} \tag{3.1}
\end{equation*}
$$

where $n+m=12$ and where $g_{1}, \ldots, g_{n} \notin \mathbb{A}_{5}$ and $h_{1}, \ldots, h_{m} \in \mathbb{A}_{5}$. It also follows that for this specific x, $F(x)=x^{-1}$. Let

$$
\bar{H}=\left\{\left(1, h_{1}\right), \ldots,\left(1, h_{m}\right)\right\}, H_{1}=\left\{h_{1}, \ldots, h_{m}\right\}
$$

then $H_{1} \simeq \bar{H}, \bar{H} \leq H$ and $H_{1} \leq \mathbb{A}_{5}$. Multiplying all the elements of H from equation 3.1, by (x, g_{t}) for an arbitrary t, we again obtain H. Therefore,

$$
\begin{equation*}
H=\left\{\left(1, g_{t} g_{1}\right),\left(1, g_{t} g_{2}\right), \ldots,\left(1, g_{t} g_{n}\right),\left(x, g_{t} h_{1}\right), \ldots,\left(x, g_{t} h_{m}\right)\right\} \tag{3.2}
\end{equation*}
$$

Comparing equalities 3.1 and 3.2 , and by taking into account that $g_{t} g_{i} \in \mathbb{A}_{5}$ for $i=1, \ldots, n$ and $g_{t} h_{j} \notin \mathbb{A}_{5}$ for $j=1, \ldots, m$, it follows that

$$
\left\{g_{t} h_{1}, \ldots, g_{t} h_{m}\right\}=\left\{g_{1}, \ldots, g_{n}\right\}
$$

Therefore, $m=n=6$ and so $|\bar{H}|=6$. Since \mathbb{A}_{4} does not have a subgroup of order 6 , we conclude that $H \simeq D_{12}$.

We now proceed to prove part (ii). Let $D_{12} \simeq H \leq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$. According to part (i) H is of type D. We continue to use the notations invented in the proof of part (i). Group D_{12} has only two subgroups of order 6 , namely \mathbb{Z}_{6} and \mathbb{S}_{3}. Since $\bar{H} \leq H$ and $|\bar{H}|=6$, we have $\bar{H} \simeq \mathbb{Z}_{6}$ or \mathbb{S}_{3}. Since $\bar{H} \simeq H_{1} \leq \mathbb{A}_{5}$ and \mathbb{A}_{5} does not have elements of order 6 , it follows that \bar{H} cannot be isomorphic to \mathbb{Z}_{6} and hence $\bar{H} \simeq \mathbb{S}_{3}$. Also, as $H \simeq D_{12}$, we can write $H=\left\{a^{i} \mid i=0, \ldots, 5\right\} \cup\left\{b a^{i} \mid i=0, \ldots, 5\right\}$. As $\bar{H} \simeq \mathbb{S}_{3}$ does not have any element of order 6 , we must have $a \in H-\bar{H}$, i.e. $a=(x, g)$ for some $g \notin \mathbb{A}_{5}$ (see equation 3.1). As for b, there are two possible cases: either $b=(1, h) \in \bar{H}$ or $b=\left(x, g^{\prime}\right) \in H-\bar{H}$.

If $b=(1, h), h \in \mathbb{A}_{5}$, then

$$
\begin{gathered}
H=\left\{(x, g)^{i} \mid i=0, \ldots, 5\right\} \cup\left\{(1, h)(x, g)^{i} \mid i=0, \ldots, 5\right\}=\left\{(1,1),(x, g),\left(1, g^{2}\right),\left(x, g^{3}\right),\left(1, g^{4}\right),\left(x, g^{5}\right)\right. \\
\left.(1, h),(x, h g),\left(1, h g^{2}\right),\left(x, h g^{3}\right),\left(1, h g^{4}\right),\left(x, h g^{5}\right)\right\}=R_{x, g, h}
\end{gathered}
$$

Also, if $b=\left(x, g^{\prime}\right), g^{\prime} \notin \mathbb{A}_{5}$, then

$$
\begin{gathered}
H=\left\{(x, g)^{i} \mid i=0, \ldots, 5\right\} \cup\left\{\left(x, g^{\prime}\right)(x, g)^{i} \mid i=0, \ldots, 5\right\}=\left\{(1,1),(x, g),\left(1, g^{2}\right),\left(x, g^{3}\right),\left(1, g^{4}\right),\left(x, g^{5}\right)\right. \\
\left.\left(x, g^{\prime}\right),\left(1, g^{\prime} g\right),\left(x, g^{\prime} g^{2}\right),\left(1, g^{\prime} g^{3}\right),\left(x, g^{\prime} g^{4}\right),\left(1, g^{\prime} g^{5}\right)\right\}=S_{x, g, g^{\prime}}
\end{gathered}
$$

Lemma 3.7 Let $p>3$ be a prime. A semidirect product $\mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ does not have two subgroups U and V with all the following properties:

1) $(U, V) \simeq\left(D_{12}, D_{12}\right)$ or $\left(D_{12}, \mathbb{A}_{4}\right)$; and
2) $\mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}=\langle U, V\rangle$; and
3) $U \cap V$ is a common Sylow 2 -subgroup of both U and V.

Proof Let $\varphi: \mathbb{S}_{5} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ be a homomorphism. The kernel of φ could not be identity since otherwise \mathbb{S}_{5} would be isomorphic to a subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{p}\right) \simeq \mathbb{Z}_{p-1}$, which is impossible. On the other hand, if $\operatorname{ker}(\varphi)=\mathbb{S}_{5}$, then φ is the trivial homomorphism and so $\mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}=\mathbb{Z}_{p} \times \mathbb{S}_{5}$. For any two subgroups $U, V \leq \mathbb{Z}_{p} \times \mathbb{S}_{5}$ both of order 12 , the equality $(x, a)^{12}=1$ holds for each $(x, a) \in U \cup V$. This implies $x^{12}=1$ and hence $x=1$, since $x \in \mathbb{Z}_{p}$. Consequently, the equality $\mathbb{Z}_{p} \times \mathbb{S}_{5}=\langle U, V\rangle$ cannot hold.

The only remaining possibility is to have $\operatorname{ker}(\varphi)=\mathbb{A}_{5}$. We assume there are subgroups U, V with the desired properties and reach a contradiction, so $U \simeq D_{12}$, and hence according to Lemma 3.6, there are some $x \in \mathbb{Z}_{p}$, some $g, k \notin \mathbb{A}_{5}$, and some $h \in \mathbb{A}_{5}$ where $U=R_{x, g, h}$ or $U=S_{x, g, k}$. If $U=R_{x, g, h}$, then all the Sylow 2 -subgroups of U are as follows:

$$
\begin{gathered}
R P_{x, g, h}^{1}=\left\{(1,1),\left(x, g^{3}\right),(1, h),\left(x, h g^{3}\right)\right\} \\
R P_{x, g, h}^{2}=\left\{(1,1),\left(x, g^{3}\right),(x, h g),\left(1, h g^{4}\right)\right\} \\
R P_{x, g, h}^{3}=\left\{(1,1),\left(x, g^{3}\right),\left(1, h g^{2}\right),\left(x, h g^{5}\right)\right\}
\end{gathered}
$$

and if $U=S_{x, g, k}$, then all the Sylow 2-subgroups of U are as follows:

$$
\begin{aligned}
& S P_{x, g, k}^{1}=\left\{(1,1),\left(x, g^{3}\right),(x, k),\left(1, k g^{3}\right)\right\} \\
& S P_{x, g, k}^{2}=\left\{(1,1),\left(x, g^{3}\right),(1, k g),\left(x, k g^{4}\right)\right\} \\
& S P_{x, g, k}^{3}=\left\{(1,1),\left(x, g^{3}\right),\left(x, k g^{2}\right),\left(1, k g^{5}\right)\right\}
\end{aligned}
$$

For some i either $R P_{x, g, h}^{i}$ or $S P_{x, g, k}^{i}$ must also be a Sylow 2 -subgroup of V. If $V \simeq \mathbb{A}_{4}$, then according to Lemma 3.6, it is of type A and hence the first components of all the elements of each of its Sylow 2-subgroups equal 1. However, there are elements in $R P_{x, g, h}^{i}$ and in $S P_{x, g, k}^{i}$ whose first components are equal to x, so if $V \simeq \mathbb{A}_{4}$, then $x=1$. Every element of $\langle U, V\rangle$ is an alternating product of elements from U and V. Since in the semidirect product we have $(1, t)(1, s)=(1, t s)$ for any $t, s \in \mathbb{S}_{5}$, it follows that the first component of every element from $\langle U, V\rangle$ is 1 and hence $\langle U, V\rangle \neq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$.

On the other hand, if $V \simeq D_{12}$, then according to Lemma 3.6, either $V=R_{y, g^{\prime}, h^{\prime}}$ or $V=S_{y, g^{\prime}, k^{\prime}}$ for some $y \in \mathbb{Z}_{p}$, some $g^{\prime}, k^{\prime} \notin \mathbb{A}_{5}$, and some $h^{\prime} \in \mathbb{A}_{5}$. Again, all the Sylow 2 -subgroups of V are known. The first component of each element from any Sylow 2 -subgroup of U is 1 or x and the first component of each element from any Sylow 2 -subgroup of V is 1 or y. Since U and V have at least one common Sylow 2 -subgroup (namely $U \cap V$), we must have $x=y$.

Now define $W=\left(\{1\} \times \mathbb{A}_{5}\right) \cup\left(\{x\} \times\left(\mathbb{S}_{5}-\mathbb{A}_{5}\right)\right)$. It is easy to check that $W \leq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$. Obviously $U \cup V \subset W$, and so $\langle U, V\rangle \leq W$. Therefore, $\langle U, V\rangle \neq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$.

Proof of Theorem 3.1. We first provide a general discussion on G-semisymmetric graphs. Let Γ be a connected cubic G-semisymmetric graph of order n. Then Γ is regular and bipartite. Moreover, it is G-edgetransitive and hence edge-transitive. Now, if Γ is not vertex-transitive, then by definition it is semisymmetric cubic of order n. On the other hand, if Γ is vertex-transitive, then it is symmetric cubic of order n, since according to [23] a cubic vertex- and edge-transitive graph is necessarily symmetric. Therefore, Γ is either a bipartite cubic symmetric graph of order n or it is a cubic semisymmetric graph of order n.

We now set off to prove part (ii) of Theorem 3.1. For $p=3,5,7,17,31$ there is no connected cubic semisymmetric graph of order $20 p$ according to [5]. Also, for $p=5,7,17$, no connected cubic symmetric graph of order $20 p$ exists according to [6]. As for $p=3,31$, according to [6] there exists only one connected cubic symmetric graph of order $20 p$, which is not bipartite. Therefore, we conclude that for $p=3,5,7,17,31$ there is no connected cubic G-semisymmetric graph of order $20 p$.

Now let $p>11$ be a prime such that $p \neq 17,31$. Suppose, on the contrary, that Γ is a connected cubic G-semisymmetric graph of order $20 p$ for some $G \leq \operatorname{Aut}(\Gamma)$. Let $\{U, W\}$ be the bipartition for Γ. Then $|U|=|W|=10 p$ and $|G|=2^{r+1} \cdot 3 \cdot 5 \cdot p$ for some $0 \leq r \leq 7$. If M is a Sylow p-subgroup of G, then according to Lemma 3.3, $M \unlhd G$. Due to its order, M is intransitive on both U and W and so, according to Theorem 2.6, Γ_{M} is a connected cubic G_{M}-semisymmetric graph of order 20 with the bipartition $\left\{U_{M}, W_{M}\right\}$, where $G_{M} \simeq \frac{G}{M}$ and $\left|U_{M}\right|=\left|W_{M}\right|=10$. According to the general discussion we just had, Γ_{M} is either a bipartite cubic symmetric graph or a cubic semisymmetric graph of order 20. By [5] there is no semisymmetric cubic graph of order 20 and by [6] there is only one bipartite symmetric cubic graph of order 20, namely F20B. Therefore, $\Gamma_{M} \simeq$ F20B .

The automorphism group of F20B has 240 elements [6] and G_{M} is isomorphic to a subgroup of Aut (F20B) of order $\left|G_{M}\right|=2^{r+1} \cdot 3 \cdot 5$. The equality is not possible since G_{M} is not transitive on $V(\mathbf{F} 20 B)$ whereas Aut $(\mathbf{F 2 0 B})$ is. Thus, $\left|G_{M}\right|<240$ and hence $1 \leq r+1 \leq 3$. Also, G_{M} is transitive on both U_{M} and W_{M}, and according to Proposition 2.5, the action of G_{M} on each of U_{M} and W_{M} is faithful. Therefore, G_{M} is a transitive permutation group of degree 10. Transitive permutation groups of degree 10 were completely classified in [4]. There are 45 such groups up to isomorphism, which are denoted $T 1, T 2, \cdots, T 45$ in [4] and the only ones whose orders are of the form $2^{i} \cdot 3 \cdot 5$ for $1 \leq i \leq 3$ are $T 7 \simeq \mathbb{A}_{5}$ of order 60 , and $T 11$, $T 12$, and $T 13 \simeq \mathbb{S}_{5}$ of order 120.

First note that $G_{M} \simeq T 7$ is not possible according to Lemma 3.5. Next, we argue that G_{M} could not be isomorphic to $T 11$ or $T 12$.

In [4] all the transitive groups of degree 10 are defined with a set of generating permutations on ten points. If

$$
\begin{gathered}
a=(1,2,3,4,5), b=(6,7,8,9,10), e=(1,5)(2,3), f=(6,10)(7,8) \\
g=(1,2), h=(6,7), \text { and } i=(1,6)(2,7)(3,8)(4,9)(5,10)
\end{gathered}
$$

then $T 11=\langle a b, e f, i\rangle$ and $T 12=\langle a b, e f, g h i\rangle$. Using the GAP software [22], it is easy to verify that $H=\langle i\rangle$ of order 2 is a normal subgroup of $T 11$.

If $G_{M} \simeq T 11$, then according to Theorem 2.6, the quotient graph of Γ_{M} with respect to H, which we denote by $\left(\Gamma_{M}\right)_{H}$, would be R-semisymmetric of order 10 , where $R \simeq \frac{T 11}{H}$. This implies that R is transitive
on each partite set, and by Proposition 2.5, R would be a transitive permutation group of degree 5. Again according to [4], the only transitive permutation group of degree 5 and of order 60 is \mathbb{A}_{5}, so we should have $R \simeq \mathbb{A}_{5}$. Now the stabilizer of any vertex of $\left(\Gamma_{M}\right)_{H}$ under the action of R has $\frac{|R|}{5}=12$ points and the only subgroup of \mathbb{A}_{5} of order 12 is isomorphic to \mathbb{A}_{4}. For an edge $\{u, w\}$ of the cubic R-semisymmetric graph $\left(\Gamma_{M}\right)_{H}$, we have $\left(R_{u}, R_{w}\right)=\left(\mathbb{A}_{4}, \mathbb{A}_{4}\right)$, which is not possible according to Theorem 2.4. Therefore, the assumption that $G_{M} \simeq T 11$ leads to a contradiction.

Now suppose $G_{M} \simeq T 12$. Calculated by GAP, the stabilizer of 1 under $T 12$ is

$$
(T 12)_{1}=\langle(2,4)(3,5)(7,9)(8,10),(3,5,4)(8,10,9)\rangle
$$

Again, using GAP, one finds out that this group is nonabelian of order 12 , which has the following group as a normal subgroup:

$$
\langle(2,3)(4,5)(7,8)(9,10),(2,4)(3,5)(7,9)(8,10)\rangle \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

There are only 3 nonabelian groups of order 12 up to isomorphism: \mathbb{A}_{4}, D_{12} and the dicyclic group of order 12. Among these, only \mathbb{A}_{4} has a normal subgroup of order 4 . Thus, $(T 12)_{i} \simeq(T 12)_{1} \simeq \mathbb{A}_{4}$ for any $i=1,2, \ldots 10$. However, this is impossible by Theorem 2.4.

Finally, suppose $G_{M} \simeq \frac{G}{M} \simeq T 13$. Since $M \simeq \mathbb{Z}_{p}$, by Lemma 3.4, $G \simeq \mathbb{Z}_{p} \rtimes_{\varphi} \mathbb{S}_{5}$ for some homomorphism $\varphi: \mathbb{S}_{5} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p}\right)$. From $\left[G: G_{u}\right]=10 p$ we have $\left|G_{u}\right|=12$ for any vertex u, so if $\{u, v\}$ is a fixed edge of Γ, then it follows from Theorem 2.4, that $\left(G_{u}, G_{v}\right) \simeq\left(D_{12}, D_{12}\right)$ or $\left(D_{12}, \mathbb{A}_{4}\right)$. Of course, $\left(G_{u}, G_{v}\right) \simeq\left(\mathbb{A}_{4}, D_{12}\right)$ is nothing new, since then we can change the roles of u and v.

Also, $\Gamma \simeq C\left(G ; G_{u}, G_{v}\right)$ by Proposition 2.9. Now it follows from part (ii) of Proposition 2.8 that $G=\left\langle G_{u}, G_{v}\right\rangle$ and from part (i) of the same Proposition that $\left|G_{u} \cap G_{v}\right|=4$, i.e. $G_{u} \cap G_{v}$ is a common Sylow 2-subgroup of G_{u} and G_{v}. However, the existence of G_{u} and G_{v} with all these properties contradicts Lemma 3.7.

Since every case for G_{M} is contradictory, part (ii) follows.
Next we turn to part (i) of Theorem 3.1. For $p \neq 2,11$ there is no connected cubic semisymmetric graph of order $20 p$ according to part (ii). Also, there is no such graph of order 20×2 according to [5], and by the same reference, there is only one connected cubic semisymmetric graph of order 20×11, namely $\mathbf{S 2 2 0}$.

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments. The second author was supported in part by a grant from the IMU-CDC.

References

[1] Alaeiyan M, Ghasemi M. Cubic edge-transitive graphs of order $8 p^{2}$. Bulletin of the Australian Mathematical Society 2008; 77 (2): 315-323.
[2] Alaeiyan M, Onagh BN. On semisymmetric cubic graphs of order $10 p^{3}$. Hacettepe Journal of Mathematics and Statistics 2011; 40 (4): 531-535.
[3] Bugeand Y, Cao Z, Mignotte M. On simple K_{4}-groups. Journal of Algebra 2001; 241(2):658-668.
[4] Butler G, McKay J. The transitive groups of degree up to eleven. Communications in Algebra 1983; 11 (8): 863-911.
[5] Conder M, Malnič A, Marušič D, Potočnik P. A census of semisymmetric cubic graphs on up to 768 vertices. Journal of Algebraic Combinatorics 2006; 23 (3): 255-294.
[6] Conder M, Nedela R. A refined classification of symmetric cubic graphs. Journal of Algebra 2009; 322: 722-740.
[7] Du S, Xu M. A classification of semisymmetric graphs of order 2pq. Communications in Algebra 2000; 28 (6): 2685-2715.
[8] Feng Y, Ghasemi M, Changqun W. Cubic semisymmetric graphs of order $6 p^{3}$. Discrete Mathematics 2010; 310 (17): 2345-2355.
[9] Folkman J. Regular line-symmetric graphs. Journal of Combinatorial Theory 1967; 3 (3): 215-232.
[10] Goldschmidt DM. Automorphisms of trivalent graphs. Annals of Mathematics 1980; 111 (2): 377-406.
[11] Han H, Lu Z. Semisymmetric graphs of order $6 p^{2}$ and prime valency. Science China Mathematics 2012; 55 (12): 2579-2592.
[12] Herzog M. On finite simple groups of order divisible by three primes only. Journal of Algebra 1968; 120 (10): 383-388.
[13] Hua X, Feng Y. Cubic semisymmetric graphs of order $8 p^{3}$. Science China Mathematics 2011; 54 (9): 1937-1949.
[14] Kwak JH, Nedela R. Graphs and Their Coverings. Lecture Notes Series Vol. 17. Bratislava, Slovakia: Slovak Academy of Sciences, 2007.
[15] Lu Z, Wang C, Xu M. On semisymmetric cubic graphs of order $6 p^{2}$. Science in China, Series A: Mathematics 2004; 47 (1): 1-17.
[16] Malnič A, Marušič D, Wang C. Cubic Semisymmetric Graphs of Order $2 p^{3}$. Ljubljana, Slovenia: University of Ljubljana Preprint Series, 2000.
[17] Malnič A, Marušič D, Wang C. Cubic edge-transitive graphs of order $2 p^{3}$. Discrete Mathematics 2004; 274 (1-3): 187-198.
[18] Robinson DJ. A Course in the Theory of Groups. New York, NY, USA: Springer-Verlag, 1982.
[19] Shi WJ. On simple K_{4}-groups. Chinese Science Bulletin 1991; 36 (17): 1281-1283.
[20] Suzuki M. Group Theory. New York, USA: Springer-Verlag, 1986.
[21] Talebi A, Mehdipoor N. Classifying cubic semisymmetric graphs of order $18 p^{n}$. Graphs and Combinatorics 2014; 30 (4): 1037-1044.
[22] The GAP Group. Groups, Algorithms and Programming. Version 4.8.6, 2016; http://www.gap-system.org.
[23] Tutte WT. Connectivity in Graphs. Toronto, Canada: University of Toronto Press, 1966.
[24] Zhang S, Shi WJ. Revisiting the number of simple K_{4}-groups. arXiv: 1307.8079v1 [math.NT], 2013.

[^0]: *Correspondence: darafsheh@ut.ac.ir
 2010 AMS Mathematics Subject Classification: 05E18, 20D60, 05C25, 20B25

