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Abstract: The neural rings and ideals as an algebraic tool for analyzing the intrinsic structure of neural codes were
introduced by C. Curto, V. Itskov, A. Veliz-Cuba, and N. Youngs in 2013. Since then they were investigated in several
papers, including the 2017 paper by S. Güntürkün, J. Jeffries, and J. Sun, in which the notion of polarization of neural
ideals was introduced. In our paper we extend their ideas by introducing the notions of polarization of motifs and neural
codes. We show that the notions that we introduce have very nice properties which allow the studying of the intrinsic
structure of neural codes of length n via the square-free monomial ideals in 2n variables and interpreting the results
back in the original neural code ambient space.

In the last section of the paper we introduce the notions of inactive neurons, partial neural codes, and partial
motifs, as well as the notions of polarization of these codes and motifs. We use these notions to give a new proof of a
theorem from the paper by Güntürkün, Jeffries, and Sun that we mentioned above.

Key words: Neural code, neural ideal, canonical form, minimal prime ideal, motifs, polarization, monomial ideal,
pseudomonomial ideal, square-free monomial ideal, inactive neurons, partial word, partial motif, partial neural code

1. Introduction
One of the problems that neuroscience is faced with is to analyze the intrinsic structure of the so-called neural
codes resulting from the activity of the certain type of neurons in the brain of an organism. An algebraic tool
(in the form of neural rings and ideals) was introduced for that purpose by Curto et al. in their pioneering 2013
paper [5]. This area of mathematics is very active ever since; let us just mention the papers [2, 6, 8, 10–12],
which are just a few of several papers that appeared in the last year or so.

The polarization of monomial ideals is a well-known operator in commutative algebra (see the 2018
paper [3] by Cimpoeaş for the most recent developments). As an analogue to that operator, Güntürkün et al.
introduced in 2017 in [8] the notion of polarization of neural ideals. In our paper we extend their ideas by
introducing the notions of polarization of motifs and neural codes. We show that these notions have very nice
properties which allow the studying of the intrinsic structure of neural codes of length n via the square-free
monomial ideals in 2n variables and interpreting the results back in the original neural code ambient space.

In the last section of the paper we introduce the notions of inactive neurons, partial neural codes, and
partial motifs, as well as the notions of polarization of these codes and motifs. We use these notions to give a
new proof of a theorem from the paper by Güntürkün et al. that we mentioned above.
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In order to make our paper self-contained, we will give in this section all the definitions and facts from
[5] that we are going to use, which are related to neural codes. All other notions and facts (that we assume are
well-known) can be found either in [5], or in the standard references [1] and [4].

Definition and basic facts 1.1 ([5]) Elements of Fn
2 will be written as vectors with concatenated coordinates,

for example w = w1 . . . wn . They are called words (of length n). A set C ⊆ Fn
2 is called a neural code, shortly

code (of length n). We also call the subsets of Fn
2 varietes in Fn

2 . The code D = Fn
2 \C is called the complement

of the code C and is denoted by cC . We denote M = {0, 1, ∗} . We say that this set is the set of motifs of length
1 . We define a partial order on M by declaring that 0 < ∗ and 1 < ∗ . A sequence a = a1 . . . an ∈ Mn is called
a motif (of length n).We define a partial order on the set Mn by declaring that a ≤ b if ai ≤ bi for every
i ∈ [n] . In other words, a ≤ b if for each i ∈ [n] , bi = 0 (resp. 1) implies ai = 0 (resp. 1).

For a ∈ Mn , the subset Va of Fn
2 consisiting of all the words w obtained by replacing the stars of a by

elements of F2 is called the variety of a . We have

a ≤ b ⇔ Va ⊆ Vb.

For a code C ⊆ Fn
2 , a motif a of length n is called a motif of C if Va ⊆ C . The set of all motifs of C is

denoted by Mot(C) . A motif a ∈ Mot(C) is called a maximal motif of C if for any motif b ∈ Mot(C) , a ≤ b

implies a = b . The set of all maximal motifs of C is denoted by MaxMot(C) . For any a ∈ Mot(C) there is a
b ∈ MaxMot(C) such that a ≤ b . We have C = ∅ if and only if MaxMot(C) = ∅ . Moreover, for any two codes
C1 and C2 ,

C1 = C2 ⇔ MaxMot(C1) = MaxMot(C2).

Remark 1.2 ([5], pages 1593 and 1594) We have

C = ∪{Va : a ∈ MaxMot(C)};

however, it can happen that for a proper subset M of MaxMot(C) we still have

C = ∪{Va : a ∈ M}.

For example, consider the neural code C = {000, 001, 011, 111} ⊆ F3
2 . Then MaxMot(C) = {00∗, 0∗1, ∗11} ;

however, C = V00∗ ∪ V∗11 .

Definition 1.3 ([4], [5]) For a variety V ⊆ Fn
2 we define the ideal of V , I(V ) ⊆ F2[X1, . . . , Xn] , in the

following way:
I(V ) = {f ∈ F2[X1, . . . , Xn] : f(w) = 0 for all w ∈ V }.

Note that for any variety V in Fn
2 we have I(V ) ⊇ B , where B = (X2

1 −X1, . . . , X
2
n−Xn) is the Boolean

ideal of F2[X1, . . . , Xn] . Moreover, for V ⊆ Fn
2 we have I(V ) = B if and only if V = Fn

2 .
For an ideal I ⊆ F2[X1, . . . , Xn] we define the variety of I , V(I) ⊆ Fn

2 , in the following way:

V(I) = {w ∈ Fn
2 : f(w) = 0 for all f ∈ I}.
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Theorem 1.4 ([5], [7]) For every variety V ⊆ Fn
2 we have

V(I(V )) = V.

For every ideal I ⊆ F2[X1, . . . , Xn] we have

I(V(I)) =
√
I = I + B.

The second formula in the previous theorem is called the Hilbert’s Nullstellensatz for F2 .

Definition 1.5 ([5, 7]) For a motif a ∈ Mn we define the Lagrange polynomial of a , La ∈ F2[X1, . . . , Xn] ,
in the following way:

La =
∏
ai=1

Xi

∏
aj=0

(1−Xj).

Note that for any word w ∈ Fn
2 , La(w) = 1 if and only if w ∈ Va (i.e. La(w) = 0 if and only if w /∈ Va ).

Definition 1.6 ([5], page 1582) For a neural code C ⊆ Fn
2 we define the neural ideal of C , JC ⊆ F2[X1, . . . , Xn] ,

in the following way:
JC = ({Lw : w ∈ cC}).

Proposition 1.7 ([5], Lemma 3.2) For a neural code C ⊆ Fn
2 we have:

V(JC) = C,

I(C) = JC + B.

Definition 1.8 ([5], page 1585) A polynomial f ∈ F2[X1, . . . , Xn] is called a pseudomonomial if it has the
form

f =
∏
i∈σ

Xi

∏
j∈τ

(1−Xj)

for some σ, τ ⊆ [n] = {1, . . . , n} with σ ∩ τ = ∅ .
An ideal I ⊆ F2[X1, . . . , Xn] is called a pseudomonomial ideal if I can be generated by (a finite set of)

pseudomonomials.

Definition 1.9 ([5], page 1585) Let I be an ideal in F2[X1, . . . , Xn] and f ∈ I a pseudomonomial. We say
that f is a minimal pseudomonomial of I if there does not exist another pseudomonomial g ∈ I such that
deg(g) < deg(f) and g | f in F2[X1, . . . , Xn] .

Definition 1.10 ([5], page 1585) Let I be a pseudomonomial ideal in F2[X1, . . . , Xn] . We call the (finite)
set CF (I) , consisting of all minimal pseudomonomials of I , the canonical form of I .

Remark 1.11 ([5], page 1585) Clearly, for any pseudomonomial ideal I of F2[X1, . . . , Xn] , CF (I) is unique
and I = (CF (I)) . On the other hand, CF (I) is not necessarily a minimal generating set of I . For example,
consider the ideal I = (X1(1 − X2), X2(1 − X3)) . This ideal contains a third minimal pseudomonomial:
X1(1−X3) = (1−X3)·[X1(1−X2)]+X1 ·[X2(1−X3)] , so that CF (I) = {(X1(1−X2), X2(1−X3), X1(1−X3)} ,
which is not a minimal generating set of I .
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Definition 1.12 For a motif a = a1 . . . an ∈ Mn we define a to be the motif b = b1 . . . bn ∈ Mn which satisfies
the following condition: for i = 1, 2 . . . , n , if ai 6= ∗ then bi = ai = 1− ai , and if ai = ∗ then bi = ∗ .

Example 1.13 1 ∗ 01 = 0 ∗ 10 .

Proposition 1.14 ([5], Proposition 4.5) Let C ⊆ Fn
2 be a code in Fn

2 and cC its complement. Let
MaxMot(C) = {a1, . . . ,al} . Then

MaxMot(cC) = {b = b1 . . . bn ∈ Mn :

[ (∀bi 6= ∗)(∃aj) bi = aji ] and

[ (∀aj 6= ∗ · · · ∗)(∃bi 6= ∗) bi = aji ] and

[b is maximal with respect to these two properties ]}.

In particular, if MaxMot(C) = {∗ · · · ∗} , then MaxMot(cC) = ∅ .

Proof The proposition follows from Proposition 4.5 and Corollary 5.5 from [5]. 2

Proposition 1.15 ([5], Lemma 5.7) Let C ⊆ Fn
2 be a neural code and JC the neural ideal of C . Then

CF (JC) = {La : a ∈ MaxMot(cC)}.

Remark 1.16 ([5], page 1594) Note that it can happen that JC = ({La : a ∈ M}) , where M is a
proper subset of MaxMot(cC) . For example, for the neural code C = {000, 001, 011, 111} ⊆ F3

2 , we have
cC = {100, 010, 110, 101} , so that MaxMot(cC) = {10∗, ∗10, 1 ∗ 0} . Hence, CF (JC) = {L10∗, L∗10, L1∗0} .
However, JC = (L10∗, L∗10) .

Definition 1.17 ([5], page 1594) For a motif a ∈ Mn we define a prime ideal of a , pa ⊆ F2[X1, . . . , Xn] ,
in the following way:

pa = ({Xi : ai = 0} ∪ {1−Xj : aj = 1}).

If a prime ideal p in F2[X1, . . . , Xn] is equal to pa for some motif a , we say that p is a motivic prime ideal.

Proposition 1.18 ([5], page 1594) Let a,b ∈ Mn be two motifs of length n . We have:

Va ⊆ Vb ⇔ pb ⊆ pa,

I(Va) = pa + B,

V(pa) = Va.

For an ideal I in F2[X1, . . . , Xn] we denote by Min(I) the set of all minimal prime ideals of I .

Proposition 1.19 ([5], Lemma 5.1, Lemma 5.3 and Corollary 5.5) Let C ⊆ Fn
2 be a neural code and

a ∈ Mn a motif. We have:

a ∈ Mot(C) ⇔ pa ⊇ JC ,

a ∈ MaxMot(C) ⇔ pa ∈ Min(JC).

4
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Moreover,
Min(JC) = {pa : a ∈ MaxMot(C)}. (1.1)

Proposition 1.20 ([5], Corollary 5.5) Let C ⊆ Fn
2 be a nonempty neural code. Then

JC = ∩{pa : a ∈ MaxMot(C)}

is the unique irredundant primary decomposition of JC .

The notions of polarization of pseudomonomials and pseudomonomial ideals were introduced in 2017 in
the paper [8] by Güntürkün et al..

Definition 1.21 ([8], page 6) For a pseudomonomial

f =
∏
i∈σ

Xi

∏
j∈τ

(1−Xj) ∈ F2[X1, . . . , Xn],

where σ, τ are two disjoint subsets of [n] , we define its polarization fp to be the square-free monomial

fp =
∏
i∈σ

Xi

∏
j∈τ

Yj ∈ F2[X1, . . . , Xn, Y1, . . . , Yn].

Proposition 1.22 ([8], Lemma 3.1) Let f, g ∈ F2[X1, . . . , Xn] be two pseudomonomials. Then

f | g ⇔ fp | gp.

Definition 1.23 ([8], Definition 3.3) Let J be a pseudomonomial ideal in F2[X1, . . . , Xn] and let CF (J) =

{f1, . . . , fl} be its canonical form. We define the polarization of J to be the ideal

Jp = (fp
1 , . . . , f

p
l ) ⊆ F2[X1, . . . , Xn, Y1, . . . , Yn].

Remark 1.24 (about definitions and notation related to F2n
2 vs those related to Fn

2 ) Square-free mo-
nomial ideals are the ideals generated by square-free monomials and they are easier to deal with than pseudomono-
mial ideals. The previous two definitions show that, in order to get some conclusions about the pseudomonomial
ideals in n variables X1, . . . , Xn , we can consider some related square-free monomial ideals in 2n variables,
which, however, are not denoted by X1, . . . , X2n , but by X1, . . . , Xn, Y1, . . . , Yn . Because of this difference in the
notation for variables, we should be aware that, for example, a pseudomonomial in F2[X1, . . . , Xn, Y1, . . . , Yn]

is a polynomial of the form

f =
∏
i∈σ

Xi

∏
j∈τ

(1−Xj)
∏
k∈µ

Yk

∏
l∈ν

(1− Yl),

where σ, τ, µ, ν ⊆ [n] , σ ∩ τ = ∅ , µ ∩ ν = ∅ . Similarly, we have, for example, that for a motif a =

b1 . . . bn c1 . . . cn ∈ M2n , the Lagrange polynomial La of a and the prime ideal pa of a are respectively given in
the following way:

La =
∏
ai=1

Xi

∏
aj=0

(1−Xj)
∏
bi=1

Yi

∏
bj=0

(1− Yj), (1.2)

5
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pa = ({Xi : bi = 0} ∪ {1−Xj : bj = 1} ∪ {Yi : ci = 0} ∪ {1− Yj : cj = 1}). (1.3)

Thus, the definitions of these notions with respect to F2n
2 are the same as the ones with respect to Fn

2 , we just
need to take into account the notation for the variables. This works for other notions as well (for example,
minimal pseudomonomials in an ideal, the neural ideal of a code, the canonical form of a pseudomonomial
ideal), while some notions (for example, minimal primes of an ideal) can be given in the form that does not
depend on the notation for the variables.

From now on we have the following convention: if the length of motifs and codes is denoted by n , then
the associated rings and ideals will always be in n variables X1, . . . , Xn , while for the length denoted by 2n the
associated rings and ideals will always be in 2n variables X1, . . . , Xn, Y1, . . . , Yn . For lengths given by concrete
numbers it will always be clear from the context if the number is n or 2n .

2. Definitions of the polarizations of motifs and codes
We would like to define the motif ap which is the polarization of a motif a = a1 . . . an ∈ Mn . Since for the
motifs from Mn we have that the Lagrange polynomials and the prime ideals of motifs are in n variables, and
the polarizations of those Lagrange polynomials and prime ideals of motifs are in 2n variables, it is natural to
try to define ap to be an element of M2n . Moreover, for any M ⊆ Mn we will use the notation

Mp = {ap : a ∈ M}.

After defining the polarization of the motifs, we would define the polarization of a neural code C ⊆ Fn
2 in the

following way:
Cp = ∪{Vap : a ∈ MaxMot(C)} ⊆ F2n

2 .

This would imply that
MaxMotp(C) = MaxMot(Cp). (2.1)

We would also like that the formula
Min(JCp) = Minp(JC) (2.2)

holds. Here Minp(JC) denotes the set of ideals consisting of polarized elements of Min(JC) . Our construction
of Cp will be a step toward finding the code corresponding to the polarization of the neural ideal, that goal will
eventually be realized in Theorem 3.17 below.

In the next definition we introduce a naturally looking candidate for the polarization of a motif, and it
will turn out that this definition works well.

Definition 2.1 Let a = a1 . . . an ∈ Mn . We define its polarization

ap = b1 . . . bn|c1 . . . cn ∈ M2n

in the following way:

if ai = 0 in a, then bi = 0, ci = ∗ in ap;

if ai = 1 in a, then bi = ∗, ci = 0 in ap;

if ai = ∗ in a, then bi = ∗, ci = ∗ in ap.

6



CHRISTENSEN and KULOSMAN/Turk J Math

Schematically:

. . . 0 . . . 7→ . . . 0 . . . | · · · ∗ . . .

. . . 1 . . . 7→ · · · ∗ . . . | . . . 0 . . . (2.3)

· · · ∗ . . . 7→ · · · ∗ . . . | · · · ∗ . . .

We now define the polarization of a code.

Definition 2.2 For any code C ⊆ Fn
2 we define its polarization Cp ⊆ F2n

2 in the following way:

Cp = ∪{Vap | a ∈ MaxMot(C)}.

Example 2.3 Let us determine Cp and Dp for C = {10} ⊆ F2
2 and D =c C :

Cp = {10}p

= V(10)p

= V∗00∗

= {0000, 1000, 0001, 1001},

Dp ={00, 01, 11}p

=V(0∗)p ∪ V(∗1)p

=V0∗∗∗ ∪ V∗∗∗0

={0000, 0100, 0010, 0110, 0001, 0101,

0011, 0111, 1000, 1100, 1010, 1110}.

Note that here Cp ∩ Dp = {0000} and Cp ∪ Dp = F4
2 \ {1111} . In general, Cp ∩ Dp can contain several

words and the complement of Cp ∪ Dp in F2n
2 can, as well, contain several words.

Definition 2.4 We say that a motif b ∈ M2n is a polar motif if there is a motif a ∈ Mn such that b = ap .
The motif a is unique and we then denote a = bd .

Note that we have

apd = a for every a ∈ Mn,

bdp = b for every polar motif b ∈ M2n.

3. Properties of the polarization of motifs and codes

Proposition 3.1 Let a,b ∈ Mn . Then
a ≤ b ⇔ ap ≤ bp.

7
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Proof Suppose a ≤ b . Let i ∈ [n] . If (bp)i = 0 , then (bp)n+i = ∗ and bi = 0 ; hence, ai = 0 ; hence,
(ap)i = 0 . If (bp)n+i = 0 , then (bp)i = ∗ and bi = 1 ; hence, ai = 1 ; hence, (ap)n+i = 0 . Thus, ap ≤ bp .

Suppose ap ≤ bp . Let i ∈ [n] . If bi = 0 , then (bp)i = 0 ; hence, (ap)i = 0 ; hence, ai = 0 . If bi = 1 ,
then (bp)n+i = 0 ; hence, (ap)n+i = 0 ; hence, ai = 1 . Thus, a ≤ b . 2

Corollary 3.2 For any code C ⊆ Fn
2 we have

Motp(C) ⊆ Mot(Cp).

Proof Let a ∈ Mot(C) and let b ∈ MaxMot(C) such that a ≤ b . By Proposition 3.1, ap ≤ bp . Since (by
the definition of Cp ) bp ∈ Mot(Cp) , we have ap ∈ Mot(Cp) . 2

Theorem 3.3 For any code C ⊆ Fn
2 we have

MaxMot(Cp) = MaxMotp(C).

Proof Claim 1. MaxMot(Cp) ⊆ {0, ∗}2n .
Proof of Claim 1. Suppose to the contrary, i.e. that b ∈ MaxMot(Cp) has a component bα = 1 for some
α ∈ [2n] . Let w ∈ Vb . Then wα = 1 . We have w ∈ Vap for some a ∈ MaxMot(C) . Then (ap)α = ∗ ; hence,
the word w′ obtained by replacing wα in w by 0 is also in Vap ; hence, in C . Hence, the motif b′ obtained by
replacing bα by ∗ is also a motif of Cp , contradicting to the maximality of b . Claim 1 is proved.

Claim 2. Let b ∈ MaxMot(Cp) . Then there is no i ∈ [n] such that bi = bn+i = 0 .
Proof of Claim 2. Suppose to the contrary. Let

A = {j ∈ [n] : bj = bn+j = ∗},

B = {j ∈ [n] : bj = 0, bn+j = ∗},

C = {j ∈ [n] : bj = ∗, bn+j = 0},

D = {j ∈ [n] : bj = bn+j = 0}.

Then the sets A,B,C,D form a partition of [n] and i ∈ D . Let w ∈ Vb be defined in the following way:

(∀ j ∈ A) wj = wn+j = 1;

(∀ j ∈ B) wj = 0, wn+j = 1;

(∀ j ∈ C) wj = 1, wn+j = 0;

(∀ j ∈ D) wj = wn+j = 0.

Since w ∈ Cp , there is an a ∈ MaxMot(C) such that w ∈ Vap . Since ap is a polar motif, we have:

(∀ j ∈ A) (ap)j = (ap)n+j = ∗;

(∀ j ∈ B) (ap)j = 0 or ∗, (ap)n+j = ∗;

(∀ j ∈ C) (ap)j = ∗, (ap)n+j = 0 or ∗;

(∀ j ∈ D) at least one of (ap)j , (ap)n+j is ∗, the other one is 0 or ∗.

8
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Since D contains at least one element, these relations imply ap > b , contradicting to the maximality of b .
Claim 2 is proved.

Claim 3. MaxMot(Cp) ⊆ MaxMotp(C) .
Proof of Claim 3. Let b ∈ MaxMot(Cp) . By the Claims 1 and 2, for each i ∈ [n] we have one the following
three cases: bi = bn+i = ∗ , or, bi = 0 , bn+i = ∗ , or, bi = ∗ , bn+i = 0 . Let w ∈ Vb be a word defined in the
following way: if bi = bn+i = ∗ , then wi = wn+i = 1 ; if bi = 0 and bn+i = ∗ , then wi = 0 , wn+i = 1 ; if bi = ∗
and bn+i = 0 , then wi = 1 , wn+i = 0 . This word belongs to some Vap , where a ∈ MaxMot(C) . Since ap is a
polar motif, we have the following cases: when wi = wn+i = 1 , then (ap)i = (ap)n+i = ∗ ; when wi = 0 and
wn+i = 1 , then (ap)i = 0 , (ap)n+i = ∗ ; when wi = 1 and wn+i = 0 , then (ap)i = ∗ , (ap)n+i = 0 . Hence,
ap ≥ b . Since ap ∈ Mot(C) and b ∈ MaxMot(C) , we have b = ap . Claim 3 is proved.

Claim 4. MaxMotp(C) ⊆ MaxMot(Cp) .
Proof of Claim 4. Suppose to the contrary. Let a ∈ MaxMot(C) such that ap /∈ MaxMot(Cp) . By the definition
of Cp , ap ∈ Mot(Cp) ; hence, there is a b ∈ MaxMot(Cp) such that ap < b . By Claim 3, b = cp for some
c ∈ MaxMot(C) . Now by Proposition 3.1, from ap < cp we get a < c , which is a contradiction since both a

and c are maximal motifs of C . Claim 4 is proved.
Now the statement of the theorem follows from Claim 3 and Claim 4. 2

Note that for two motifs a,b ∈ Mn we have

b = ap ⇔ a = b
d
. (3.1)

Moreover, if for any code C ⊆ Fn
2 and any M ⊆ Mot(C) we denote M = {a : a ∈ M} , then

Mot(C) = Mot(C), (3.2)

MaxMot(C) = MaxMot(C). (3.3)

Proposition 3.4 For any motif a ∈ Mn we have

Lp
a = La p .

Proof This follows from the definitions (1.21), (1.2), (2.1), and (1.12). 2

Example 3.5 Let n=4 and let a = 11 ∗ 0 ∈ M4 . Then

La = X1X2(1−X4).

Hence,
Lp
a = X1X2Y4.

On the other side, we have:

ap = 11 ∗ 0p

= 00 ∗ 11p

= 00 ∗ 0| ∗ ∗ ∗ 0

= 11 ∗ ∗| ∗ ∗ ∗ 1.

9
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Hence,
Lap = X1X2Y4 = Lp

a.

Definition 3.6 We say that two motifs a,b ∈ Mn are disjoint if there is an i ∈ [n] such that ai 6= ∗ and
ai = bi .

Definition 3.7 On the set M of motifs of length 1 we introduce a commutative operation of addition in the
following way:

0 + 0 = 0,

0 + 1 = 1,

1 + 1 = 0,

0 + ∗ = ∗,

1 + ∗ = ∗,

∗+ ∗ = ∗.

The first three lines represent the arithmetic in the field F2 , while the last three lines represent the max-arithmetic.
We then define the addition in Mn by adding two motifs componentwise.

It is easy to verify that with this operation and the partial order that we introduced before, Mn is a
partially ordered monoid.

The importance of above definition lies in the fact that the sum a + b of two motifs a,b ∈ Mn has a
1 -component if and only if the motifs a and b are disjoint. Thus, we can recognize the disjointness of two
motifs algebraically by considering their sum.

Proposition 3.8 Let a ∈ Mot(C) for some code C ⊆ Fn
2 and b ∈ Mn . Then b ∈ Mot(cC) if and only if b is

disjoint with a . Moreover, the maximal motifs of cC are the motifs b that are maximal among the motifs from
Mn that are disjoint with all the maximal motifs of C .

Proof Easy to see. 2

Proposition 3.9 Let a,b,b′ ∈ Mn . If a+b has an 1-component and b′ ≤ b , then a+b′ has an 1-component.
In particular, if C is a code in Mn , the maximal motifs of cC are the maximal elements b ∈ Mn such

that each a+ b (a ∈ MaxMot(C)) has an 1-component.

Proof Easy to see. 2

Corollary 3.10 Let C ⊆ Fn
2 be a code in Fn

2 . If b ∈ MaxMot(c(Cp)) , then every bi which is different from ∗
is equal to 1 .

Proof The statement follows from the previous proposition as each 0 could be replaced by a ∗ , which would
result in a strictly bigger motif disjoint with all maximal motifs of Cp . 2

10
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Proposition 3.11 The motifs a and b from Mn are disjoint if and only if the motifs ap and b
p from M2n

are disjoint.

Proof ⇒) Suppose that a and b are disjoint. We first consider the case ai = 1 , bi = 0 for some i ∈ [n] .

Then (ap)i = ∗ and (ap)n+i = 0 , while (b
p
)i = ∗ and (b

p
)n+i = 1 . Hence, ap and b

p are disjoint. The case
ai = 0 , bi = 1 for some i ∈ [n] is similar.

⇐) Suppose that ap and b
p are disjoint. We first consider the case (ap)i = 0 , (b

p
)i = 1 for some

i ∈ [n] . Then ai = 0 and (b
p
)i = 0 ; hence, (b)i = 0 . Hence, bi = 1 , so that a and b are disjoint. The case

(ap)i = 1 , (b
p
)i = 0 for some i ∈ [n] is similar. 2

Proposition 3.12 Let C,D be two codes in Fn
2 . Then:

D ⊆ cC ⇔ Dp ⊆ c(Cp).

Proof The next equivalences follow from Proposition 3.8, Proposition 3.11, Theorem 3.3, and Proposition 3.8,
respectively.

D ⊆ cC ⇔ (∀a ∈ MaxMot(C))(∀b ∈ MaxMot(D)) a and b are disjoint

⇔ (∀a ∈ MaxMot(C))(∀b ∈ MaxMot(D)) ap and b
p are disjoint

⇔ (∀ c ∈ MaxMot(Cp))(∀d ∈ MaxMot(Dp
)) c and d are disjoint

⇔ Dp ⊆ c(Cp).

2

Remark 3.13 Note that in the previous proposition the equality on the left hand side is not equivalent with the
equality on the right hand side, as we are going to see in Example 3.18.

Corollary 3.14 Let D = cC . Then

Cp ⊆
c

Dp
.

Proof It follows immediately from the previous proposition. 2

The reason for giving the next definition and using the terminology introduced in it will become clear
later, after Theorem 3.17 and Example 3.18.

Definition 3.15 Let C be a code in Fn
2 and let D be its complement. We call the code C[p] , defined by

C[p] =
c

Dp
, (3.4)

the formal polarization of the code C .

Proposition 3.16 Let C be a code in Fn
2 and D its complement. We have:

MaxMot(Cp) ⊆ MaxMot(C[p]), (3.5)

MaxMot(c(C[p])) = MaxMot(D)
p
⊆ MaxMot(c(Cp)). (3.6)

11
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Proof By Theorem 3.3 and the formula (3.4), (3.5) is equivalent with showing that

(∀a ∈ MaxMot(C))(∀b ∈ MaxMot(D)) ap and b
p are disjoint,

which is true by Proposition 3.11.

We now show (3.6). Let d ∈ MaxMot(c(C[p])) = MaxMot(Dp
) . Then d = b

p for some b ∈ MaxMot(D) .

Let e ∈ MaxMot(c(Cp)) such that d ≤ e , i.e. b
p ≤ e . Hence, b

p ≤ e . Since e is bigger than or equal to

a polar motif, e is a polar motif too, so e = f
p for some motif f . Hence, b

p ≤ f
p , so that b

p ≤ f
p
= e .

Hence, since e is disjoint with all the maximal motifs of Cp , then by Proposition 3.11, f is disjoint with all the
maximal motifs of C and f ≥ b , where b is one of the maximal motifs among the motifs that are disjoint with
all maximal motifs of C . Hence, f = b , so that d = e . 2

Theorem 3.17 Let C be a code in Fn
2 . We have:

CF (Jp
C ) = CF p(JC) = CF (JC[p]) ⊆ CF (JCp).

Proof Let CF (JC) = {f1, . . . , fk} . By definition, Jp
C = (fp

1 , . . . , f
p
k ) . Here fp

1 , …, fp
k are square-free

monomials. By [9, Corollary 1.10], the set {fp
1 , . . . , f

p
k} contains a minimal subset S (with respect to inclusion)

which generates Jp
C . By [9, Corollary 1.8], if fp

i /∈ S , then fp
i | fp

j for some fp
j ∈ S . Then by Proposition 1.22,

fi | fj , a contradiction. Thus, S = {fp
1 , . . . , f

p
k} . Hence, by [9, Proposition 1.11], CF (Jp

C ) = {fp
1 , . . . , f

p
k} =

CF p(JC) .

Let D be the complement of C . We have:

CF p(JC) = {Lp
a : a ∈ MaxMot(D)} (by Proposition 1.15)

= {Lap : a ∈ MaxMot(D)} (by Proposition 3.4)

= {Lb : b
d ∈ MaxMot(D)} (by (3.1))

= {Lb : b
d ∈ MaxMot(D)}

= {Lb : b ∈ MaxMot(Dp
)}

= {Lb : b ∈ MaxMot(Dp
)}

= CF (JC[p]). (by Proposition 1.15)

Finally, the inclusion in the statement of the theorem follows from Proposition 3.16 and Proposition 1.15.
2

Example 3.18 Consider the neural codes

C = {000, 100, 110, 011} and D = cC = {001, 010, 101, 111}

in F3
2 . We have

MaxMot(C) = {∗00, 1∗0, 011} and MaxMot(D) = {∗01, 1∗1, 010}.

12
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Then by Theorem 3.3,

MaxMot(Cp) = {∗00∗∗∗, ∗∗00∗∗, 0∗∗∗00}, (3.7)

MaxMot(Dp
) = {∗∗1∗1∗, 1∗1∗∗∗, ∗1∗1∗1}. (3.8)

By Proposition 3.12 we have Dp ⊆ c(Cp) . From (3.8) we have by Proposition 1.15,

CF (JC[p]) = {X3Y2, X1X3, X2Y1Y3} = CF p(JC).

By Proposition 3.8, a motif b ∈ M6 is a maximal motif of c(Cp) if and only if it is a maximal motif from M6

disjoint with all the maximal motifs of Cp . The sets

A1 = {2, 3}, A2 = {3, 4}, A3 = {1, 5, 6},

are the sets of coordinates which the maximal motifs a1 = ∗00∗∗∗, a2 = ∗∗00∗∗, and a3 = 0∗∗∗00 of Cp

have zeros at, respectively. To get a set B of coordinates where a motif b ∈ MaxMot(c(Cp)) has ones, we
need to take one element from each of the sets A1, A2, A3 , and then, out of all sets B obtained in that way
(2 × 2 × 3 = 12 of them) select the minimal ones with respect to inclusion. In that way we get the sets
B1 = {2, 4, 1}, B2 = {2, 4, 5}, B3 = {2, 4, 6}, B4 = {3, 1}, B5 = {3, 5}, and B6 = {3, 6} . For each of these
sets Bi we get an element bi ∈ MaxMot(c(Cp)) by putting ones at all the coordinates of Bi and stars at all
other coordinates. Thus,

MaxMot(c(Cp)) = {∗∗1∗1∗, 1∗1∗∗∗, ∗1∗1∗1, ∗∗1∗∗1,

∗1∗11∗, 11∗1∗∗}.

Hence, by Proposition 1.15,

CF (JCp) = {X3Y2, X1X3, X2Y1Y3, X3Y3, X2Y1Y2, X1X2Y1}.

In particular,
Cp ⊂ C[p].

(One can check that Cp has 29 words, while C[p] has 35 words.)

Example 3.19 Consider again the code C = {10} ⊆ F2
2 and its complement D = {00, 01, 11} from Example

2.3. We have:
MaxMot(C) = {10},

MaxMot(D) = {0∗, ∗1},

CF (JC) = {1−X1, X2},

CF (JC[p]) = CF p(JC) = {X2, Y1},

Cp = {0000, 1000, 0001, 1001},

MaxMot(c(Cp)) = {∗1∗∗, ∗∗1∗},

CF (JCp) = {X2, Y1}.

Thus in this example Cp = C[p] .

13
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Definition 3.20 The prime ideals p ⊆ F2[X1, . . . , Xn, Y1, . . . , Yn] such that p = pap for some a ∈ Mn are
called polar motivic primes.

For polar motivic primes we have the following formula:

pap = ppa. (3.9)

Indeed, if a = a1 . . . an ∈ MaxMot(C) and ap = b1 . . . bnc1 . . . cn , then

pap = ({Xi : bi = 0} ∪ {Yj : cj = 0})

= ({Xi | ai = 0} ∪ {Yj : aj = 1})

= ppa.

Theorem 3.21 For any code C ⊆ Fn
2 we have:

Min(JCp) = Minp(JC) ⊆ Min(JC[p]).

Proof We have

Min(JCp) = {pd : d ∈ MaxMot(Cp)} (by Proposition 1.19)

= {pap : a ∈ MaxMot(C)} (by Theorem 3.3)

= {pap : pa ∈ Min(JC)} (by Proposition 1.19)

= {ppa : pa ∈ Min(JC)}. (by the formula (3.9))

Hence,
Min(JCp) = Minp(JC).

The inclusion part of the statement follows from (3.5) and the relation (1.1) from Proposition 1.19. 2

Example 3.22 We continue Example 3.18. By (3.8) we have

MaxMot(c(C[p])) = {∗∗1∗1∗, 1∗1∗∗∗, ∗1∗1∗1}.

Now using the same technique as in Example 3.18 (for finding MaxMot(c(Cp)) given MaxMot(Cp)) we find
here that

MaxMot(C[p]) = {∗00∗∗∗, ∗∗00∗∗, ∗∗0∗∗0, 00∗∗0∗,

0∗∗00∗, 0∗∗∗00}.

Hence, by Proposition 1.19 we have:

Min(JCp) = {(X2, X3), (X3, Y1), (X1, Y2, Y3)} = Minp(JC),

Min(JC[p]) = {(X2, X3), (X3, Y1), (X1, Y2, Y3),

(X3, Y3), (X1, X2, Y2), (X1, Y1, Y2)}.

The minimal prime ideals of Jp
C (i.e. JC[p] ) were also calculated in [8, Example 5.4] in a different way.

14
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Note that among the minimal primes of JC[p] we have, in addition to all the minimal primes of JCp ,
three nonpolar minimal primes, namely p∗∗0∗∗0 = (X3, Y3) , p00∗∗0∗ = (X1, X2, Y2) , and p0∗∗00∗ = (X1, Y1, Y2) .
A natural question to ask is the following one: if for an a ∈ M2n we have pa ∈ Min(JC[p]) , how is then the
motif a related to C ? A statement related to this question is given in the next section in Theorem 4.5, which
is [8, Theorem 5.1]. We will give a different proof of this theorem.

Theorem 3.23 For any code C ⊆ Fn
2 , the ideal JCp has the unique irredundant primary decomposition and it

is obtained by polarizing the prime ideals from the unique irredundant primary decomposition of JC .

Proof By Proposition 1.20, the ideals JC and JCp have the unique irredundant primary decompositions

JC = ∩{pa : a ∈ MaxMot(C)},

JC = ∩{pb : b ∈ MaxMot(Cp)}.

Hence, the statement follows from Theorem 3.3 and the formula (3.9). 2

4. Partial motifs
Definition 4.1 We denote PM = {0, 1, ∗,_} . We say that this set is the set of partial motifs of length 1 . We
define a partial order on PM by declaring that 0 < ∗ and 1 < ∗ . Note that _ is comparable only with itself
(the same holds for 0 and 1). We define a partial order on the set PMn by declaring that a ≤ b if ai ≤ bi for
every i ∈ [n] . A partial motif (of length n) is an element of PMn . A partial word (of length n) is an element
of PWn = {0, 1,_}n . The neurons i ∈ [n] for which wi = _ are said to be inactive. A partial code (of length
n) is a subset of PWn . The variety of a partial motif a is the set of all partial words obtained by replacing all
the stars in a by zeros and ones. It is denoted by Va . If C ⊆ PWn is a a partial code, then a ∈ PMn is a
partial motif of C if Va ⊆ C . The set of all partial motifs of a partial code C is denoted by ParMot(C) . The
set of all maximal partial motifs of a partial code C is denoted by MaxParMot(C) .

Example 4.2 Intuitively, we can think of the partial word w = _01_00_1 as of a statement that the neurons
3 and 8 are firing, the neurons 2, 5 and 6 are not firing, and the neurons 1, 4, and 7 are also “participating
in the neural activity”; however, their status is not defined. That could happen, for example, when we delete
certain neurons, but we want to keep their spots for a possibility of their reactivation.

The set of all partial motifs a ∈ PMn (resp. partial words w ∈ PWn ) such that ai1 = · · · = aik = _ (resp.
wi1 = · · · = wik = _) and all the remaining neurons are active, is denoted by PMn

i1,...,ik
(resp. PWn

i1,...,ik
) . It

is naturally in a bijective correspondence with the set Mn−k (resp. Fn−k
2 ). If a (resp. w) is a motif (resp.

word), then the partial motif (resp. partial word) obtained by replacing each ai (resp. wi ), i = i1, . . . , ik , by
_ is called the partial motif (resp. partial word) obtained by deactivating the neurons i1, . . . , ik and is denoted
by a_

i1,...,ik
(resp. w_

i1,...,ik
).

If C ⊆ Fn
2 is a code and {i1, . . . , ik} ⊆ [n] , then the code obtained by replacing each wir (r = 1, . . . , k)

by _ in each word w ∈ C is called the partial code obtained by deactivating the neurons i1, . . . , ik and is denoted
by C_

i1,...,ik
. The partial code C_

i1,...,ik
is naturally in a bijective correspondence with the code Ci1,...,ik obtained

by deleting the neurons i1, . . . , ik .

15
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Proposition 4.3 Let C be a code in Fn
2 and let w ∈ PWn

i1,...,ik
. If w is not an element of C_

i1,...,ik
, then the

motif a obtained from w by replacing each _ by ∗ belongs to Mot(cC) .

Proof Easy to see. 2

Definition 4.4 If a ∈ PMn , then we define its polarization ap = b1 . . . bnbn+1 . . . b2n ∈ PM2n by:

bi = 0, bn+i = ∗, when ai = 0;

bi = ∗, bn+i = 0, when ai = 1;

bi = ∗, bn+i = ∗, when ai = ∗;

bi = _, bn+i = _, when ai = _.

A partial motif b ∈ PM2n is called a polar partial motif if b = ap for some partial motif a ∈ PMn . Then
a = bd is called the depolarization of the polar partial motif b .

Note that we have

apd = a for every a ∈ PMn,

bdp = b for every polar partial motif b ∈ PM2n.

The next theorem is a slight reformulation of Theorem 5.1 from [8]. We give a different proof.

Theorem 4.5 ([8], Theorem 5.1) Let c ∈ M2n and let a ∈ M2n be the motif obtained by replacing all ones
in c by stars. Let {i1, . . . , ik} be the set of all elements i of [n] such that ai = ai+n . Then pc ⊇ JC[p] if and
only if a_ d

i1,...,ik,i1+n,...,ik+n ∈ ParMot(C_

i1,...,ik
) .

Proof Let D = cC . Since
MaxMot(c(C[p])) = {bp

: b ∈ MaxMot(D)},

the motifs c of C[p] are the motifs from M2n that are disjoint with all b
p , b ∈ MaxMot(D) . They give the

primes pc , and these are all the motivic primes that contain JC[p] . Note, however, that pc ⊃ JC[p] if and only if

pa ⊃ JC[p] . It follows that a motivic prime pc contains JC[p] if and only if a+ b
p has at least one component

equal to 1 , or, equivalently, such that

a+ b
p
< ∗ · · · ∗ (4.1)

(as a ∈ {0, ∗}2n and b
p ∈ {1, ∗}2n ) for every b ∈ MaxMot(D) . Let {i1, . . . , ik} be the set of elements i of

[n] such that ai = ai+n = 0 . (This includes the possibility k = 0 .) Let a_ d denote a_ d
i1,...,ik,i1+n,...,ik+n . The

statement of the theorem follows if we now justify the claim that a satisfies (4.1) if and only if each partial
word w ≤ a_ d belongs to C_

i1,...,ik
, i.e. if and only if a_ d ∈ ParMot(C_

i1,...,ik
) . The necessity is clear. For

the sufficiency, there would otherwise be a partial word w ≤ a_ d which is not coming from any partial word
in C_

i1,...,ik
. Let w∗ be the motif obtained by replacing each _ in w by ∗ . Then w∗ ∈ Mot(D) ; hence,

w∗p ∈ Mot(c(C[p])) . This motif would have stars at all the components at which a has zeros and ones or stars

at all other components. Hence, a+w∗p = ∗ · · · ∗ , contradicting to the asumption that a satisfies (4.1). 2

16



CHRISTENSEN and KULOSMAN/Turk J Math

Example 4.6 In the context of the examples (3.18) and (3.22), let c = 00∗∗0∗ ∈ M6 . Then a = c and

a_ d
2,2 = 0_∗∗_∗d = 0_∗ .

Moreover,
C

_

2 = {000, 100, 110, 011}
_

2 = {0_0, 1_0, 0_1}.

Hence,
MaxParMot(C

_

2 ) = {∗_0, 0_∗}.

Thus,
a_ d
2,2 ∈ MaxParMot(C

_

2 ),

so that
pc = (X1, X2, Y2) ⊇ JC[p] .

In fact we have
pc = (X1, X2, Y2) ∈ Min(JC[p]).

Let now c = 0∗0∗∗0 ∈ M6 . Then a = c and

a_ d
3,3 = 0∗_∗∗_d = 0∗_.

Moreover,
C

_

3 = {000, 100, 110, 011}
_

3 = {00_, 10_, 11_, 01_}.

Hence,
MaxParMot(C

_

3 ) = {∗∗_}.

Thus,
a_ d
3,3 ∈ ParMot(C

_

3 ),

so that
pc = (X1, X3, Y3) ⊇ JC[p] .

Note that
pc = (X1, X3, Y3) /∈ Min(JC[p])

since it was shown in Example 3.22 that the prime (X3, Y3) is a minimal prime of JC[p] .

Finally, let c = 100∗0∗ ∈ M6 . Then a = ∗00∗0∗ and

a_ d
2,2 = ∗_0∗_∗d = ∗_0.

Moreover,
C

_

2 = {000, 100, 110, 011}
_

2 = {0_0, 1_0, 0_1}.

Hence,
MaxParMot(C

_

2 ) = {∗_0, 0_1}.
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Thus,
a_ d
2,2 ∈ MaxParMot(C

_

2 ),

so that
pa = (X2, X3, Y2) ⊇ JC[p]

and
pc = (1−X1, X2, X3, Y2) ⊇ JC[p] .

Note that
pa /∈ Min(JC[p])

even though a_ d
2,2 ∈ MaxParMot(C_

2 ) since it was shown in Example 3.22 that the prime (X2, X3) is a minimal
prime of JC[p] .
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