http://journals.tubitak.gov.tr/math/
tübitak

Turk J Math
(2020) 44: 142 - 151
© TÜBİTAK
doi:10.3906/mat-1908-46

On the product of dilation of truncated Toeplitz operators

Zohra BENDAOUD © ${ }^{\text {© }}$, Nafissa SAOULI* ${ }^{*}$
Department of Mathematics, Faculty of Science, University Amar Theliji, Laghouat, Algeria

Received: 13.08.2019 \quad Accepted/Published Online: $11.11 .2019 \quad$ Final Version: 20.01 .2020

Abstract

In this paper we study when the product of two dilations of truncated Toeplitz operators gives a dilation of a truncated Toeplitz operator. We will use an approach established in a recent paper written by Ko and Lee. This approach allows us to represent the dilation of the truncated Toeplitz operator via a 2×2 block operator.

Key words: Model space, truncated Toeplitz operator, dilation of truncated Toeplitz operator

1. Introduction

Let \mathbb{T} be the unit circle in the complex plane \mathbb{C}. We start by recalling that the Hilbert space $L^{2}=L^{2}(\mathbb{T})$ is the space of all square-integrable functions on the unit circle \mathbb{T} equipped with the normalized Lebesgue measure $d m\left(e^{i \theta}\right)=\frac{d \theta}{2 \pi}$. This space is endowed with the scalar product $\langle f, g\rangle=\int_{\mathbb{T}} f \bar{g} d m$.

An orthonormal basis of L^{2} is given by the set $\left\{e_{n}(\theta): n \in \mathbb{Z}\right\}$, where $e_{n}(\theta)=e^{i n \theta}$ for $\theta \in \mathbb{R}$. The following orthonormal expansions are the classical Fourier series:

$$
\begin{gathered}
f=\sum_{n=-\infty}^{+\infty} f_{n} e_{n}=\sum_{n=-\infty}^{+\infty} f_{n} e^{i n \theta} \\
f_{n}=\left\langle f, e_{n}\right\rangle=\int_{0}^{2 \pi} f\left(e^{i \theta}\right) e^{-i n \theta} \frac{d \theta}{2 \pi}, n \in \mathbb{Z}
\end{gathered}
$$

For all $f, g \in L^{2}$, the tensor product $f \otimes g$ is the rank one operator in L^{2} and is defined by

$$
(f \otimes g) h=\langle h, g\rangle f
$$

for $h \in L^{2}$. Let L^{∞} be the Banach space of essentially bounded functions on \mathbb{T}. For any $\varphi \in L^{\infty}$, the bounded multiplication operator M_{φ} is defined by the formula

$$
M_{\varphi} f=\varphi f, f \in L^{2}
$$

An operator A is a multiplication operator if and only if $A M_{z}=M_{z} A$. It is well known that, for all $\varphi \in L^{\infty}$, the multiplication operator M_{φ} is invertible if and only if φ is invertible in L^{∞}. Moreover, $\left(M_{\varphi}\right)^{-1}=M_{\varphi^{-1}}$. The Hardy space of the circle H^{2} is the set of functions $f \in L^{2}$ such that $f_{n}=0$ for all $n<0$, and let

[^0]H^{∞} be the set of functions $f \in L^{\infty}$ such that $f_{n}=0$ for all $n<0$. We introduce now an important class of operators on spaces of analytic functions, which is the class of Toeplitz operators. Let P and $Q=I-P$ indicate the orthogonal projections that map L^{2} onto H^{2} and $\left(H^{2}\right)^{\perp}=\overline{z H^{2}}$, respectively. Given that $\varphi \in L^{\infty}$, the Toeplitz operator $T_{\varphi}: H^{2} \rightarrow H^{2}$ is defined by
$$
T_{\varphi} f=P(\varphi f), f \in H^{2}
$$
and the Hankel operator $H_{\varphi}: H^{2} \rightarrow\left(H^{2}\right)^{\perp}$ is defined by
$$
H_{\varphi} f=Q(\varphi f), f \in H^{2}
$$

Hankel operators play an important role in the study of Toeplitz operators, and vice versa. Note that the Toeplitz operator becomes bounded if and only if $\varphi \in L^{\infty}$. In this case, we have $\left\|T_{\varphi}\right\|=\|\varphi\|_{\infty}$ (see [1]). For any $\varphi, \psi \in L^{\infty}$, the singular integral operator $S_{\varphi, \psi}: L^{2} \rightarrow L^{2}$ is defined by

$$
S_{\varphi, \psi}(f)=\varphi P(f)+\psi Q(f), f \in L^{2}
$$

With respect to the decomposition $L^{2}=H^{2} \oplus\left(H^{2}\right)^{\perp}$, the operator $S_{\varphi, \psi}$ can be represented as follows:

$$
S_{\varphi, \psi}=\left(\begin{array}{cc}
T_{\varphi} & \widetilde{H_{\psi}} \\
H_{\varphi} & \widetilde{T_{\psi}}
\end{array}\right)
$$

where T_{φ} and H_{φ} are the Toeplitz operator and Hankel operator, respectively. For more information about the operators $\widetilde{T_{\psi}}$ and $\widetilde{H_{\psi}}$, see [6]. Ko and Lee concluded that the operator $S_{\varphi, \psi}$ is the dilation of a Toeplitz operator on L^{2} [5].

An inner function is an H^{∞} function that has unit modulus almost everywhere on \mathbb{T}. For a nonconstant inner function u, the model space K_{u}^{2} is defined by

$$
K_{u}^{2}=H^{2} \ominus u H^{2}=\left\{f \in H^{2}:\langle f, u g\rangle=0, \forall g \in H^{2}\right\}
$$

The space K_{u}^{∞} is defined by $K_{u}^{\infty}=K_{u}^{2} \cap L^{\infty}$, which is dense in K_{u}^{2}. For any $\varphi \in L^{\infty}$ and an inner function u , the truncated Toeplitz operator A_{φ}^{u} on K_{u}^{2} is defined by

$$
\begin{equation*}
A_{\varphi}^{u} f=P_{u}(\varphi f), f \in K_{u}^{2} \tag{1.1}
\end{equation*}
$$

where $P_{u}=P-M_{u} P M_{\bar{u}}$ denotes the orthogonal projection that maps L^{2} onto K_{u}^{2}.
For any $\varphi \in L^{\infty}$ and an inner function u, the dual of truncated Toeplitz operator $\widetilde{A_{\varphi}^{u}}$ is the operator on $\left(K_{u}^{2}\right)^{\perp}$ defined as follows:

$$
\begin{equation*}
\widetilde{A_{\varphi}^{u}}=Q_{u}(\varphi f), f \in\left(K_{u}^{2}\right)^{\perp} \tag{1.2}
\end{equation*}
$$

where $Q_{u}=I-P_{u}$ refers to the orthogonal projection that maps L^{2} onto $\left(K_{u}^{2}\right)^{\perp}=L^{2} \ominus K_{u}^{2}=\overline{z H^{2}} \oplus u H^{2}$. The truncated Hankel operator $\Gamma_{\varphi}^{u}: K_{u}^{2} \rightarrow\left(K_{u}^{2}\right)^{\perp}$ is defined by

$$
\begin{equation*}
\Gamma_{\varphi}^{u} f=Q_{u}(\varphi f), f \in K_{u}^{2} \tag{1.3}
\end{equation*}
$$

Let $\widetilde{\Gamma_{\varphi}^{u}}$ be the operator of $\left(K_{u}^{2}\right)^{\perp}$ to K_{u}^{2} such that

$$
\begin{equation*}
\widetilde{\Gamma_{\varphi}^{u}} f=P_{u}(\varphi f), f \in\left(K_{u}^{2}\right)^{\perp} \tag{1.4}
\end{equation*}
$$

From [5], we will use what can be helpful to us in our following work, notably the following identity:

$$
\begin{equation*}
\widetilde{\Gamma_{\varphi}^{u}}=\left(\Gamma_{\bar{\varphi}}^{u}\right)^{*} \tag{1.5}
\end{equation*}
$$

In 1963, in a famous paper on algebraic properties of Toeplitz operators [1], Brown and Halmos studied when the product of two Toeplitz operators itself becomes a Toeplitz operator. The same issue about truncated Toeplitz operators was solved by Sedlock in 2010 [8]. In 2015, Gu in [3] proved that the product $S_{\varphi_{1}, \psi_{1}} S_{\varphi_{2}, \psi_{2}}$ on L^{2} is a singular integral operator if and only if $\varphi_{2} \in H^{\infty}, \psi_{2} \in \overline{H^{\infty}}$.

Definition 1.1 [5] For $\varphi, \psi \in L^{\infty}$ and an inner function u, the dilation of truncated Toeplitz operator $S_{\varphi, \psi}^{u}: L^{2} \rightarrow L^{2}$ is defined by the formula

$$
S_{\varphi, \psi}^{u}(f)=\varphi P_{u}(f)+\psi Q_{u}(f), f \in L^{2}
$$

Obviously, the operator $S_{\varphi, \psi}^{u}$ is a bounded operator if and only if $\varphi, \psi \in L^{\infty}$, such that

$$
\left\|S_{\varphi, \psi}^{u}(f)\right\| \leq\left\|\varphi P_{u}(f)\right\|+\left\|\psi Q_{u}(f)\right\| \leq\left(\|\varphi\|_{\infty}+\|\psi\|_{\infty}\right)\|f\|
$$

Note that for $f \in L^{2}$, we have

$$
S_{\varphi, \psi}^{u} f=\varphi P_{u} f+\psi Q_{u} f=\varphi P_{u} f+\psi\left[f-P_{u} f\right]=(\varphi-\psi) P_{u} f+\psi f
$$

Hence, it is easy to see that $S_{\varphi, \psi}^{u}=M_{\psi}+S_{\varphi-\psi, 0}^{u}$ and $S_{\varphi, \varphi}^{u}=M_{\varphi}$.
The class of dilation of truncated Toeplitz operators was introduced in 2015 by Ko and Lee. For further details of the introduction of this class of operators, see [5]. Moreover, relying on the decomposition $L^{2}=K_{u}^{2} \oplus\left(K_{u}^{2}\right)^{\perp}$, they proved that the operator $S_{\varphi, \psi}^{u}$ has the following matrix representation:

$$
S_{\varphi, \psi}^{u}=\left(\begin{array}{cc}
A_{\varphi}^{u} & \widetilde{\Gamma_{\psi}^{u}} \tag{1.6}\\
\Gamma_{\varphi}^{u} & \widetilde{A_{\psi}^{u}}
\end{array}\right)
$$

where $A_{\varphi}^{u}, \widetilde{A_{\psi}^{u}}, \Gamma_{\varphi}^{u}$, and $\widetilde{\Gamma_{\psi}^{u}}$ are defined by equations (1.1), (1.2), (1.3), and (1.4), respectively. We refer to [5, Lemma 3.2] for more details about this representation.

Recently, Gu and Kang gave in [4] a complete characterization when $S_{\varphi, \psi}^{u}$ is a self-adjoint, isometric, coisometric, and normal operator using their important key observation where $S_{\varphi, \psi}^{u}$ and M_{z} are almost commuting. As shown in [4, lemma 3.1], Gu and Kang proved that the operator $S_{\varphi, \psi}^{u}$ satisfies the following equation:

$$
\begin{equation*}
S_{\varphi, \psi}^{u}-M_{z} S_{\varphi, \psi}^{u} M_{z}^{*}=(\varphi-\psi) \otimes e_{0}-(\varphi-\psi) u \otimes u e_{0} \tag{1.7}
\end{equation*}
$$

In this work, we study the product of two dilations of truncated Toeplitz operators $S_{\varphi_{1}, \psi_{1}}^{u}$ and $S_{\varphi_{2}, \psi_{2}}^{u}$.

2. Characterization

Let $B\left(L^{2}\right)$ be the algebra of all bounded linear operators on L^{2}. For an operator $A \in B\left(L^{2}\right)$, the operator A^{*} is called the adjoint of A. For an inner function $u \in H^{2}, D_{u}$ denotes the set of all dilations of truncated Toeplitz operators on L^{2} :

$$
D_{u}=\left\{S_{\varphi, \psi}^{u} \in B\left(L^{2}\right), \varphi, \psi, \in L^{\infty}\right\}
$$

In [4] Gu and Kang gave a full characterization of the class of operators D_{u} as described in the following lemma.

Lemma 2.1 [4] Let $A \in B\left(L^{2}\right)$. Then $A \in D_{u}$ if and only if there exists a $\chi \in L^{\infty}$ such that

$$
\begin{equation*}
A-M_{z} A M_{z}^{*}=\chi \otimes e_{0}-\chi u \otimes u e_{0} \tag{2.1}
\end{equation*}
$$

In this case, $A=S_{\chi+\theta, \theta}^{u}$ for some $\theta \in L^{\infty}$.

Remark 2.2 [4] Let φ, ψ be in L^{∞}. Then for all $f, g \in L^{2}$ we have

$$
\left\langle S_{\varphi, \psi}^{u} f, g\right\rangle=\left\langle\varphi P_{u}(f)+\psi Q_{u}(f), g\right\rangle=\left\langle f, P_{u}(\bar{\varphi} g)\right\rangle+\left\langle f, Q_{u}(\bar{\psi} g)\right\rangle
$$

Therefore,

$$
\left(S_{\varphi, \psi}^{u}\right)^{*} f=P_{u}(\bar{\varphi} f)+Q_{u}(\bar{\psi} f), f \in L^{2}
$$

Proposition 2.3 Let $\varphi \in L^{\infty}$ and let $S_{1,0}^{u}, S_{\varphi, 0}^{u} \in D_{u}$. Then

$$
\left(S_{1,0}^{u} S_{\varphi, 0}^{u}\right)^{*}=S_{1,0}^{u} S_{\bar{\varphi}, 0}^{u}
$$

Proof Since $S_{\varphi, 0}^{u}=M_{\varphi} S_{1,0}^{u}$ and $\left(S_{1,0}^{u}\right)^{*}=S_{1,0}^{u}$, we obtain

$$
\left(S_{1,0}^{u} S_{\varphi, 0}^{u}\right)^{*}=\left(S_{1,0}^{u} M_{\varphi} S_{1,0}^{u}\right)^{*}=\left(S_{1,0}^{u}\right)^{*} M_{\varphi}^{*}\left(S_{1,0}^{u}\right)^{*}=S_{1,0}^{u} M_{\bar{\varphi}} S_{1,0}^{u}=S_{1,0}^{u} S_{\bar{\varphi}, 0}^{u}
$$

3. Product of dilation of truncated Toeplitz operators

To arrive at the main result of this work, we need the following lemma and proposition.
Lemma 3.1 Letting $\varphi \in L^{\infty}$, the following statements hold:

1. $A_{\varphi}^{u}=0$ if and only if $\varphi \in u H^{\infty}+\overline{u H^{\infty}}$.
2. $\widetilde{A_{\varphi}^{u}}=0$ if and only if $\varphi=0$.
3. $\Gamma_{\varphi}^{u}=0$ if and only if $\varphi \in K_{u}^{\infty}$.
4. $\widetilde{\Gamma_{\varphi}^{u}}=0$ if and only if $\varphi \in \overline{K_{u}^{\infty}}$.

BENDAOUD and SAOULI/Turk J Math

Proof

1. This statement is an important result in Sarason's paper; see [7, Theorem 3.1].
2. Since $\varphi \in L^{\infty}$, it follows from Property 2.1 in [2] that $\widetilde{A_{\varphi}^{u}}$ is a bounded operator and $\left\|\widetilde{A_{\varphi}^{u}}\right\|=\|\varphi\|_{\infty}$. Then $\widetilde{A_{\varphi}^{u}}=0$ if and only if $\varphi=0$.

According to the proof of Theorem 3.14 in [5, p. 15] and equation (1.5), we deduce statements 3) and 4).

Proposition 3.2 Let u be an inner function, $\varphi_{1}, \psi_{1}, \varphi_{2}, \psi_{2} \in L^{\infty}$. Let $S_{\varphi_{1}, \psi_{1}}^{u}, S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$, and then the following statements hold:

1. $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$ if and only if $M_{\varphi_{1}-\psi_{1}} S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$.
2. If $\varphi_{1}-\psi_{1}$ is invertible in L^{∞} then $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$ if and only if $S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$.

Proof

1. It is clear that

$$
S_{\varphi_{1}, \psi_{1}}^{u}=M_{\psi_{1}}+S_{\varphi_{1}-\psi_{1}, 0}^{u}=M_{\psi_{1}}+M_{\varphi_{1}-\psi_{1}} S_{1,0}^{u} .
$$

Therefore,

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=\left(M_{\psi_{1}}+M_{\varphi_{1}-\psi_{1}} S_{1,0}^{u}\right) S_{\varphi_{2}, \psi_{2}}^{u}=S_{\varphi_{2} \psi_{1}, \psi_{2} \psi_{1}}^{u}+M_{\varphi_{1}-\psi_{1}} S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u} .
$$

We deduce that $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$ if and only if $M_{\varphi_{1}-\psi_{1}} S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$.
2. From the above, we obtain that

$$
M_{\varphi_{1}-\psi_{1}} S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}-S_{\varphi_{2} \psi_{1}, \psi_{2} \psi_{1}}^{u} .
$$

If $\varphi_{1}-\psi_{1}$ is invertible, then

$$
S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=M_{\left(\varphi_{1}-\psi_{1}\right)^{-1}}\left(S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}-S_{\varphi_{2} \psi_{1}, \psi_{2} \psi_{1}}^{u}\right) .
$$

Thus, we conclude that $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$ if and only if $S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$.

The main result of this paper is the following theorem.
Theorem 3.3 Let $\varphi, \psi \in L^{\infty}$ and let u be a nonconstant inner function. Then $S_{1,0}^{u} S_{\varphi, \psi}^{u} \in D_{u}$ if and only if $\varphi \in K_{u}^{\infty}+u H^{\infty}+\overline{u H^{\infty}}, \psi \in \overline{K_{u}^{\infty}}$. In this case,

$$
S_{1,0}^{u} S_{\varphi, \psi}^{u}=S_{P_{u} \varphi, 0}^{u} .
$$

Proof By the representation (1.6), we have

$$
S_{\varphi, \psi}^{u}=\left(\begin{array}{cc}
A_{\varphi}^{u} & \widetilde{\Gamma_{\psi}^{u}} \\
\Gamma_{\varphi}^{u} & \widetilde{A_{\psi}^{u}}
\end{array}\right)
$$

and

$$
S_{1,0}^{u}=\left(\begin{array}{cc}
A_{1}^{u} & \widetilde{\Gamma_{0}^{u}} \\
\Gamma_{1}^{u} & \widetilde{A_{0}^{u}}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right) .
$$

This means that

$$
S_{1,0}^{u} S_{\varphi, \psi}^{u}=\left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A_{\varphi}^{u} & \widetilde{\Gamma_{\psi}^{u}} \\
\Gamma_{\varphi}^{u} & \widetilde{A_{\psi}^{u}}
\end{array}\right)=\left(\begin{array}{cc}
A_{\varphi}^{u} & \widetilde{\Gamma_{\psi}^{u}} \\
0 & 0
\end{array}\right) .
$$

For each $\Phi, \Psi \in L^{\infty}$, we put

$$
S_{1,0}^{u} S_{\varphi, \psi}^{u}=S_{\Phi, \Psi}^{u}=\left(\begin{array}{cc}
A_{\Phi}^{u} & \widetilde{\Gamma_{\Psi}^{u}} \\
\Gamma_{\Phi}^{u} & \widetilde{A_{\Psi}^{u}}
\end{array}\right)
$$

Then

$$
\left(\begin{array}{cc}
A_{\Phi-\varphi}^{u} & \widetilde{\Gamma_{\Psi-\psi}^{u}} \\
\Gamma_{\Phi}^{u} & \widetilde{A_{\Psi}^{u}}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Hence,

$$
A_{\Phi-\varphi}^{u}=0, \widetilde{A_{\Psi}^{u}}=0, \Gamma_{\Phi}^{u}=0, \widetilde{\Gamma_{\Psi-\psi}^{u}}=0 .
$$

Since $A_{\Phi-\varphi}^{u}=0$ and $\tilde{A_{\Psi}^{u}}=0$, it follows from Lemma 3.1 that $\Phi-\varphi \in u H^{\infty}+\overline{u H^{\infty}}$ and $\Psi=0$. In the same way, since $\Gamma_{\Phi}^{u}=0$ and $\widetilde{\Gamma_{\Psi-\psi}^{u}}=0$ and seeing that

$$
0=\widetilde{\Gamma_{\Psi-\psi}^{u}}=\left(\Gamma_{\Psi-\psi}^{u}\right)^{*}
$$

is equivalent to $\Gamma_{\Psi-\psi}^{u}=0$, it results from Lemma 3.1 that $\Phi \in K_{u}^{\infty}$ and $\overline{\Psi-\psi} \in K_{u}^{\infty}$. From the above, we conclude that

$$
\varphi=\Phi+\varphi_{1}
$$

for $\Phi \in K_{u}^{\infty}$ and $\varphi_{1} \in u H^{\infty}+\overline{u H^{\infty}}$, and

$$
\psi \in \overline{K_{u}^{\infty}}
$$

At last, we have

$$
\varphi \in K_{u}^{\infty}+u H^{\infty}+\overline{u H^{\infty}}
$$

and

$$
\psi \in \overline{K_{u}^{\infty}}
$$

Observe that $\Phi=P_{u} \varphi$ and $\Psi=Q_{u}(\bar{\psi})$. In light of this,

$$
S_{1,0}^{u} S_{\varphi, \psi}^{u}=S_{\Phi, \Psi}^{u}=S_{P_{u} \varphi, Q_{u}(\bar{\psi})}^{u}=S_{P_{u} \varphi, 0}^{u}
$$

This finishes the proof of the theorem.

Corollary 3.4 Let $\varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2} \in L^{\infty}$ such that $\varphi_{1}-\psi_{1}$ is invertible in L^{∞}. Let $S_{\varphi_{1}, \psi_{1}}^{u}, S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$, and then $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$ if and only if $\varphi_{2} \in K_{u}^{\infty}+u H^{\infty}+\overline{u H^{\infty}}$ and $\psi_{2} \in \overline{K_{u}^{\infty}}$. In this case,

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{S_{\varphi_{1}, \psi_{1}}^{u} \varphi_{2}, \psi_{1} \psi_{2}}^{u}
$$

Proof The result easily follows from Proposition 3.2 and Theorem 3.3, and we also have

$$
\begin{aligned}
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} & \\
& =S_{\varphi_{2} \psi_{1}, \psi_{2} \psi_{1}}^{u}+M_{\varphi_{1}-\psi_{1}} S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \\
& =S_{\varphi_{2} \psi_{1}+\left(\varphi_{1}-\psi_{1}\right) P_{u}\left(\varphi_{2}\right), \psi_{2} \psi_{1}+\left(\varphi_{1}-\psi_{1}\right) Q_{u}\left(\overline{\psi_{2}}\right)}^{u} \\
& =S_{\varphi_{1} P_{u} \varphi_{2}+\psi_{1} Q_{u} \varphi_{2}, \psi_{2} \psi_{1}}^{u} \\
& =S_{\varphi_{1} P_{u} \varphi_{2}+\psi_{1} Q_{u} \varphi_{2}, \psi_{2} \psi_{1}}^{u}
\end{aligned}
$$

Remark 3.5 1) If $S_{\varphi_{1}, \psi_{1}}^{u}$ is a multiplication operator $S_{\varphi_{1}, \psi_{1}}^{u}=M_{\varphi_{1}}$, then $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$ for all $S_{\varphi_{2}, \psi_{2}}^{u}$ and $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{\varphi_{1} \varphi_{2}, \varphi_{1} \psi_{2}}^{u}$.
2) Let $\varphi_{1}, \psi_{1} \in L^{\infty}$ such that $\varphi_{1}-\psi_{1}$ is invertible in L^{∞}. If $S_{\varphi_{1}, \psi_{1}}^{u}$ is not a multiplication operator and $S_{\varphi_{2}, \psi_{2}}^{u}=M_{\varphi_{2}}$, and if $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u} \in D_{u}$, then, by Theorem 3.3, we have the following two cases:
(a) If $u(0)=0$, then $\lambda \in K_{u}^{\infty} \cap \overline{K_{u}^{\infty}}$ for some complex number λ. Therefore, $\varphi_{2}=\lambda$ and $S_{\varphi_{1}, \psi_{1}}^{u} M_{\varphi_{2}}=$ $S_{\lambda \varphi_{1}, \lambda \psi_{1}}^{u}$.
(b) If $u(0) \neq 0$, then $\lambda \notin K_{u}^{\infty}$ and $\lambda \notin \overline{K_{u}^{\infty}}$ for some complex number λ. Therefore, $\varphi_{2}=0$.

To study particular cases of the product of dilation of truncated Toeplitz operators, we need to construct the subsets K_{1} and K_{2} described below:

$$
\begin{gathered}
K_{1}=\left\{S_{\varphi, \psi}^{u} \in D_{u}, \varphi \in K_{u}^{\infty}, \psi \in \overline{K_{u}^{\infty}}\right\} \\
K_{2}=\left\{S_{\varphi, \psi}^{u} \in D_{u}, \varphi \in u H^{\infty}+\overline{u H^{\infty}}, \psi \in \overline{K_{u}^{\infty}}\right\} .
\end{gathered}
$$

Proposition 3.6 Let $\varphi_{1}, \psi_{1} \in L^{\infty}$ such that $\varphi_{1}-\psi_{1}$ is invertible in L^{∞}. For $S_{\varphi_{1}, \psi_{1}}^{u} \in D_{u}$, we have the following cases:
(a) If $S_{\varphi_{2}, \psi_{2}}^{u} \in K_{1}$ then

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{\varphi_{1} \varphi_{2}, \psi_{1} \psi_{2}}^{u}
$$

(b) If $S_{\varphi_{2}, \psi_{2}}^{u} \in K_{2}$ then

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{\psi_{1} \varphi_{2}, \psi_{1} \psi_{2}}^{u}
$$

Proof

(a) If $\varphi_{2} \in K_{u}^{\infty}$ and $\psi_{2} \in \overline{K_{u}^{\infty}}$, then by theorem 3.3 we have

$$
S_{1,0}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{P_{u} \varphi_{2}, 0}^{u}=S_{\varphi_{2}, 0}^{u}
$$

Therefore,

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{\psi_{1} \varphi_{2}+\left(\varphi_{1}-\psi_{1}\right) \varphi_{2}, \psi_{1} \psi_{2}}=S_{\varphi_{1} \varphi_{2}, \psi_{1} \psi_{2}}^{u}
$$

We are now able to give a sufficient condition under which the operator $S_{\varphi, \psi}^{u} \in D_{u}$ becomes invertible and whose inverse is also in D_{u}.

In all the following results we will assume that $\varphi_{1}-\psi_{1}$ is invertible in L^{∞}.
Corollary 3.7 Assume that $S_{\varphi, \psi}^{u}$ is not a multiplication operator. If $S_{\varphi, \psi}^{u} \in K_{1}$ and $\varphi, \bar{\psi}$ are invertible in K_{u}^{∞}, then $S_{\varphi, \psi}^{u}$ is invertible operator. In this case,

$$
\left(S_{\varphi, \psi}^{u}\right)^{-1}=S_{\varphi^{-1}, \psi^{-1}}^{u}
$$

Proof Let $S_{\varphi_{1}, \psi_{1}}^{u} \in D_{u}$ be the inverse of $S_{\varphi, \psi}^{u}$. Then $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi, \psi}^{u}=S_{1,1}^{u}$. Supposing that $\varphi, \bar{\psi} \in K_{u}^{\infty}$ are invertible functions, then by Proposition 3.6 we have

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi, \psi}^{u}=S_{\varphi_{1} \varphi, \psi_{1} \psi}^{u}=S_{1,1}^{u}
$$

Therefore, $\varphi_{1}=\varphi^{-1}$ and $\psi_{1}=\psi^{-1}$.

According to Proposition 3.6, we get the following results.

Corollary 3.8 Assuming that $S_{\varphi_{1}, \psi_{1}}^{u} \in D_{u}$ is not a multiplication operator, we have the following two cases:

1) If $S_{\varphi_{2}, \psi_{2}}^{u} \in K_{1}$ then the operator $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}$ is a multiplication operator if and only if $\varphi_{1} \varphi_{2}=\psi_{1} \psi_{2}$. In this case,

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=M_{\varphi_{1} \varphi_{2}}=M_{\psi_{1} \psi_{2}}
$$

2) If $S_{\varphi_{2}, \psi_{2}}^{u} \in K_{2}$ then the operator $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}$ is a multiplication operator if and only if $\psi_{1} \varphi_{2}=\psi_{1} \psi_{2}$. In this case,

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=M_{\psi_{1} \varphi_{2}}=M_{\psi_{1} \psi_{2}}
$$

The next corollary tells us when $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=0$.

Corollary 3.9 Assuming that $S_{\varphi_{1}, \psi_{1}}^{u} \in D_{u}$ is not a multiplication operator, we have the following:

1) If $S_{\varphi_{2}, \psi_{2}}^{u} \in K_{1}$ and $S_{\varphi_{2}, \psi_{2}}^{u} \neq 0$ then

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=0
$$

if and only if one of the following two assertions holds:
(a) $\varphi_{1} \neq 0, \psi_{1}=0, \varphi_{2}=0, \psi_{2} \in \overline{K_{u}^{\infty}}$,
(b) $\psi_{1} \neq 0, \varphi_{1}=0, \psi_{2}=0, \varphi_{2} \in K_{u}^{\infty}$.
2) If $S_{\varphi_{2}, \psi_{2}}^{u} \in K_{2}$ and $S_{\varphi_{2}, \psi_{2}}^{u} \neq 0$ then

$$
S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=0
$$

if and only if one of the following two assertions holds
(a) $\psi_{1}=0, \varphi_{2} \neq 0, \psi_{2} \neq 0$,
(b) $\psi_{1} \neq 0, \varphi_{2}=0, \psi_{2}=0$.

Proof

1) Since $S_{\varphi_{2}, \psi_{2}}^{u} \in K_{1}$, it follows from Proposition 3.6 that $\varphi_{2} \in K_{u}^{\infty}$ and $\psi_{2} \in \overline{K_{u}^{\infty}}$ and the equation $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=0$ is equivalent to $\varphi_{1} \varphi_{2}=\psi_{1} \psi_{2}=0$.
2) Again using Proposition 3.6, we obtain that the equation $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=0$ is equivalent to $\psi_{1} \varphi_{2}=$ $\psi_{1} \psi_{2}=0$.

The following corollary shows when $S_{\varphi_{1}, \psi_{1}}^{u}$ commutes with $S_{\varphi_{2}, \psi_{2}}^{u}$.

Corollary 3.10 The following statements hold:

1) Let $S_{\varphi_{1}, \psi_{1}}^{u}, S_{\varphi_{2}, \psi_{2}}^{u} \in K_{1}$. Then $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{\varphi_{2}, \psi_{2}}^{u} S_{\varphi_{1}, \psi_{1}}^{u}$.
2) Let $S_{\varphi_{1}, \psi_{1}}^{u}, S_{\varphi_{2}, \psi_{2}}^{u} \in K_{2}$. Then $S_{\varphi_{1}, \psi_{1}}^{u} S_{\varphi_{2}, \psi_{2}}^{u}=S_{\varphi_{2}, \psi_{2}}^{u} S_{\varphi_{1}, \psi_{1}}^{u}$ if and only if $\psi_{1} \varphi_{2}=\varphi_{1} \psi_{2}$.

BENDAOUD and SAOULI/Turk J Math

References

[1] Brown A, Halmos P. Algebraic properties of Toeplitz operators. Journal für die Reine und Angewandte Mathematik 1963; 213: 89-102.
[2] Ding X, Sang Y. Dual truncated Toeplitz operators. Journal of Mathematical Analysis and Applications 2018; 461 (1): 929-946. doi: 10.1016/j.jmaa.2017.12.032
[3] Gu C. Algebraic properties of Cauchy singular integral operators on the unit circle. Taiwanese Journal of Mathematics 2016; 20 (1): 161-189. doi: 10.11650/tjm.19.2015.6188
[4] Gu C, Kang DO. A commutator approach to truncated singular integral operators. Integral Equations and Operator Theory 2018; 90: 16. doi: 10.1007/s00020-018-2429-7
[5] Ko E, Lee JE. On the dilation of truncated Toeplitz operators. Complex Analysis and Operator Theory 2016; 10 (4): 815-833.
[6] Nakazi T, Yamamoto T. Normal singular integral operators with Cauchy kernel on L2. Integral Equations and Operator Theory 2014; 78 (2): 233-248.
[7] Sarason D. Algebraic properties of truncated Toeplitz operators. Operators and Matrices 2007; 1 (4): 491-526.
[8] Sedlock NA. Algebras of truncated Toeplitz operators. Operators and Matrices 2011; 5 (2): 309-326.

[^0]: *Correspondence: nafissa.saouli@gmail.com
 2010 AMS Mathematics Subject Classification: Primary: 47B35; Secondary: 47A05

