

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2020) 44: 142 – 151 © TÜBİTAK doi:10.3906/mat-1908-46

Research Article

On the product of dilation of truncated Toeplitz operators

Zohra BENDAOUD[®], Nafissa SAOULI^{*}[®]

Department of Mathematics, Faculty of Science, University Amar Theliji, Laghouat, Algeria

Received: 13.08.2019	•	Accepted/Published Online: 11.11.2019	•	Final Version: 20.01.2020

Abstract: In this paper we study when the product of two dilations of truncated Toeplitz operators gives a dilation of a truncated Toeplitz operator. We will use an approach established in a recent paper written by Ko and Lee. This approach allows us to represent the dilation of the truncated Toeplitz operator via a 2×2 block operator.

Key words: Model space, truncated Toeplitz operator, dilation of truncated Toeplitz operator

1. Introduction

Let \mathbb{T} be the unit circle in the complex plane \mathbb{C} . We start by recalling that the Hilbert space $L^2 = L^2(\mathbb{T})$ is the space of all square-integrable functions on the unit circle \mathbb{T} equipped with the normalized Lebesgue measure $dm(e^{i\theta}) = \frac{d\theta}{2\pi}$. This space is endowed with the scalar product $\langle f, g \rangle = \int_{\mathbb{T}} f\bar{g}dm$.

An orthonormal basis of L^2 is given by the set $\{e_n(\theta) : n \in \mathbb{Z}\}$, where $e_n(\theta) = e^{in\theta}$ for $\theta \in \mathbb{R}$. The following orthonormal expansions are the classical Fourier series:

$$f = \sum_{n = -\infty}^{+\infty} f_n e_n = \sum_{n = -\infty}^{+\infty} f_n e^{in\theta},$$
$$f_n = \langle f, e_n \rangle = \int_0^{2\pi} f(e^{i\theta}) e^{-in\theta} \frac{d\theta}{2\pi}, n \in \mathbb{Z}.$$

For all $f, g \in L^2$, the tensor product $f \otimes g$ is the rank one operator in L^2 and is defined by

$$(f \otimes g) h = \langle h, g \rangle f$$

for $h \in L^2$. Let L^{∞} be the Banach space of essentially bounded functions on \mathbb{T} . For any $\varphi \in L^{\infty}$, the bounded multiplication operator M_{φ} is defined by the formula

$$M_{\varphi}f = \varphi f, f \in L^2.$$

An operator A is a multiplication operator if and only if $AM_z = M_z A$. It is well known that, for all $\varphi \in L^{\infty}$, the multiplication operator M_{φ} is invertible if and only if φ is invertible in L^{∞} . Moreover, $(M_{\varphi})^{-1} = M_{\varphi^{-1}}$. The Hardy space of the circle H^2 is the set of functions $f \in L^2$ such that $f_n = 0$ for all n < 0, and let

^{*}Correspondence: nafissa.saouli@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: Primary: 47B35; Secondary: 47A05

 H^{∞} be the set of functions $f \in L^{\infty}$ such that $f_n = 0$ for all n < 0. We introduce now an important class of operators on spaces of analytic functions, which is the class of Toeplitz operators. Let P and Q = I - Pindicate the orthogonal projections that map L^2 onto H^2 and $(H^2)^{\perp} = \overline{zH^2}$, respectively. Given that $\varphi \in L^{\infty}$, the Toeplitz operator $T_{\varphi}: H^2 \to H^2$ is defined by

$$T_{\varphi}f = P(\varphi f), f \in H^2$$

and the Hankel operator $H_{\varphi}: H^2 \to (H^2)^{\perp}$ is defined by

$$H_{\varphi}f = Q(\varphi f), f \in H^2$$

Hankel operators play an important role in the study of Toeplitz operators, and vice versa. Note that the Toeplitz operator becomes bounded if and only if $\varphi \in L^{\infty}$. In this case, we have $||T_{\varphi}|| = ||\varphi||_{\infty}$ (see [1]). For any $\varphi, \psi \in L^{\infty}$, the singular integral operator $S_{\varphi,\psi} : L^2 \to L^2$ is defined by

$$S_{\varphi,\psi}(f) = \varphi P(f) + \psi Q(f), f \in L^2$$

With respect to the decomposition $L^2 = H^2 \oplus (H^2)^{\perp}$, the operator $S_{\varphi,\psi}$ can be represented as follows:

$$S_{\varphi,\psi} = \begin{pmatrix} T_{\varphi} & \widetilde{H_{\psi}} \\ H_{\varphi} & \widetilde{T_{\psi}} \end{pmatrix},$$

where T_{φ} and H_{φ} are the Toeplitz operator and Hankel operator, respectively. For more information about the operators $\widetilde{T_{\psi}}$ and $\widetilde{H_{\psi}}$, see [6]. Ko and Lee concluded that the operator $S_{\varphi,\psi}$ is the dilation of a Toeplitz operator on L^2 [5].

An inner function is an H^{∞} function that has unit modulus almost everywhere on \mathbb{T} . For a nonconstant inner function u, the model space K_u^2 is defined by

$$K_u^2 = H^2 \ominus uH^2 = \{f \in H^2 : \langle f, ug \rangle = 0, \forall g \in H^2\}.$$

The space K_u^{∞} is defined by $K_u^{\infty} = K_u^2 \cap L^{\infty}$, which is dense in K_u^2 . For any $\varphi \in L^{\infty}$ and an inner function u, the truncated Toeplitz operator A_{φ}^u on K_u^2 is defined by

$$A^u_{\varphi}f = P_u(\varphi f), f \in K^2_u, \tag{1.1}$$

where $P_u = P - M_u P M_{\overline{u}}$ denotes the orthogonal projection that maps L^2 onto K_u^2 .

For any $\varphi \in L^{\infty}$ and an inner function u, the dual of truncated Toeplitz operator $\widetilde{A}_{\varphi}^{u}$ is the operator on $(K_{u}^{2})^{\perp}$ defined as follows:

$$\widetilde{A_{\varphi}^{u}} = Q_{u}(\varphi f), f \in (K_{u}^{2})^{\perp},$$
(1.2)

where $Q_u = I - P_u$ refers to the orthogonal projection that maps L^2 onto $(K_u^2)^{\perp} = L^2 \ominus K_u^2 = \overline{zH^2} \oplus uH^2$. The truncated Hankel operator $\Gamma_{\varphi}^u : K_u^2 \to (K_u^2)^{\perp}$ is defined by

$$\Gamma^u_{\varphi}f = Q_u(\varphi f), f \in K^2_u. \tag{1.3}$$

143

Let $\widetilde{\Gamma_{\varphi}^{u}}$ be the operator of $(K_{u}^{2})^{\perp}$ to K_{u}^{2} such that

$$\widetilde{\Gamma_{\varphi}^{u}}f = P_{u}(\varphi f), f \in (K_{u}^{2})^{\perp}.$$
(1.4)

From [5], we will use what can be helpful to us in our following work, notably the following identity:

$$\widetilde{\Gamma_{\varphi}^{u}} = (\Gamma_{\overline{\varphi}}^{u})^{*}. \tag{1.5}$$

In 1963, in a famous paper on algebraic properties of Toeplitz operators [1], Brown and Halmos studied when the product of two Toeplitz operators itself becomes a Toeplitz operator. The same issue about truncated Toeplitz operators was solved by Sedlock in 2010 [8]. In 2015, Gu in [3] proved that the product $S_{\varphi_1,\psi_1}S_{\varphi_2,\psi_2}$ on L^2 is a singular integral operator if and only if $\varphi_2 \in H^{\infty}, \psi_2 \in \overline{H^{\infty}}$.

Definition 1.1 [5] For $\varphi, \psi \in L^{\infty}$ and an inner function u, the dilation of truncated Toeplitz operator $S^{u}_{\varphi,\psi}: L^{2} \to L^{2}$ is defined by the formula

$$S^{u}_{\varphi,\psi}(f) = \varphi P_{u}(f) + \psi Q_{u}(f), f \in L^{2}.$$

Obviously, the operator $S^u_{\varphi,\psi}$ is a bounded operator if and only if $\varphi, \psi \in L^{\infty}$, such that

$$||S_{\varphi,\psi}^{u}(f)|| \leq ||\varphi P_{u}(f)|| + ||\psi Q_{u}(f)|| \leq (||\varphi||_{\infty} + ||\psi||_{\infty})||f||.$$

Note that for $f \in L^2$, we have

$$S^{u}_{\varphi,\psi}f = \varphi P_{u}f + \psi Q_{u}f = \varphi P_{u}f + \psi [f - P_{u}f] = (\varphi - \psi)P_{u}f + \psi f.$$

Hence, it is easy to see that $S^u_{\varphi,\psi} = M_\psi + S^u_{\varphi-\psi,0}$ and $S^u_{\varphi,\varphi} = M_\varphi$.

The class of dilation of truncated Toeplitz operators was introduced in 2015 by Ko and Lee. For further details of the introduction of this class of operators, see [5]. Moreover, relying on the decomposition $L^2 = K_u^2 \oplus (K_u^2)^{\perp}$, they proved that the operator $S_{\varphi,\psi}^u$ has the following matrix representation:

$$S^{u}_{\varphi,\psi} = \begin{pmatrix} A^{u}_{\varphi} & \widetilde{\Gamma^{u}_{\psi}} \\ \Gamma^{u}_{\varphi} & \widetilde{A^{u}_{\psi}} \end{pmatrix}, \tag{1.6}$$

where $A^{u}_{\varphi}, \widetilde{A^{u}_{\psi}}, \Gamma^{u}_{\varphi}$, and $\widetilde{\Gamma^{u}_{\psi}}$ are defined by equations (1.1), (1.2), (1.3), and (1.4), respectively. We refer to [5, Lemma 3.2] for more details about this representation.

Recently, Gu and Kang gave in [4] a complete characterization when $S^{u}_{\varphi,\psi}$ is a self-adjoint, isometric, coisometric, and normal operator using their important key observation where $S^{u}_{\varphi,\psi}$ and M_z are almost commuting. As shown in [4, lemma 3.1], Gu and Kang proved that the operator $S^{u}_{\varphi,\psi}$ satisfies the following equation:

$$S^{u}_{\varphi,\psi} - M_z S^{u}_{\varphi,\psi} M^*_z = (\varphi - \psi) \otimes e_0 - (\varphi - \psi) u \otimes u e_0.$$

$$(1.7)$$

In this work, we study the product of two dilations of truncated Toeplitz operators $S^u_{\varphi_1,\psi_1}$ and $S^u_{\varphi_2,\psi_2}$.

2. Characterization

Let $B(L^2)$ be the algebra of all bounded linear operators on L^2 . For an operator $A \in B(L^2)$, the operator A^* is called the adjoint of A. For an inner function $u \in H^2$, D_u denotes the set of all dilations of truncated Toeplitz operators on L^2 :

$$D_u = \{ S^u_{\varphi,\psi} \in B(L^2), \varphi, \psi, \in L^\infty \}.$$

In [4] Gu and Kang gave a full characterization of the class of operators D_u as described in the following lemma.

Lemma 2.1 [4] Let $A \in B(L^2)$. Then $A \in D_u$ if and only if there exists a $\chi \in L^{\infty}$ such that

$$A - M_z A M_z^* = \chi \otimes e_0 - \chi u \otimes u e_0.$$

$$\tag{2.1}$$

In this case, $A = S^u_{\chi+\theta,\theta}$ for some $\theta \in L^{\infty}$.

Remark 2.2 [4] Let φ, ψ be in L^{∞} . Then for all $f, g \in L^2$ we have

$$\langle S^{u}_{\varphi,\psi}f,g\rangle = \langle \varphi P_{u}(f) + \psi Q_{u}(f),g\rangle = \langle f, P_{u}(\overline{\varphi}g)\rangle + \langle f, Q_{u}(\overline{\psi}g)\rangle$$

Therefore,

$$(S^u_{\omega,\psi})^* f = P_u(\overline{\varphi}f) + Q_u(\overline{\psi}f), f \in L^2$$

Proposition 2.3 Let $\varphi \in L^{\infty}$ and let $S_{1,0}^u, S_{\varphi,0}^u \in D_u$. Then

$$(S_{1,0}^u S_{\varphi,0}^u)^* = S_{1,0}^u S_{\overline{\varphi},0}^u$$

Proof Since $S_{\varphi,0}^u = M_{\varphi}S_{1,0}^u$ and $(S_{1,0}^u)^* = S_{1,0}^u$, we obtain

$$(S_{1,0}^u S_{\varphi,0}^u)^* = (S_{1,0}^u M_{\varphi} S_{1,0}^u)^* = (S_{1,0}^u)^* M_{\varphi}^* (S_{1,0}^u)^* = S_{1,0}^u M_{\overline{\varphi}} S_{1,0}^u = S_{1,0}^u S_{\overline{\varphi},0}^u.$$

3. Product of dilation of truncated Toeplitz operators

To arrive at the main result of this work, we need the following lemma and proposition.

Lemma 3.1 Letting $\varphi \in L^{\infty}$, the following statements hold:

- 1. $A^u_{\varphi} = 0$ if and only if $\varphi \in uH^{\infty} + \overline{uH^{\infty}}$.
- 2. $\widetilde{A^u_{\varphi}} = 0$ if and only if $\varphi = 0$.
- 3. $\Gamma_{\varphi}^{u} = 0$ if and only if $\varphi \in K_{u}^{\infty}$.
- 4. $\widetilde{\Gamma_{\omega}^{u}} = 0$ if and only if $\varphi \in \overline{K_{u}^{\infty}}$.

Proof

- 1. This statement is an important result in Sarason's paper; see [7, Theorem 3.1].
- 2. Since $\varphi \in L^{\infty}$, it follows from Property 2.1 in [2] that $\widetilde{A}^{u}_{\varphi}$ is a bounded operator and $\|\widetilde{A}^{u}_{\varphi}\| = \|\varphi\|_{\infty}$. Then $\widetilde{A}^{u}_{\varphi} = 0$ if and only if $\varphi = 0$.

According to the proof of Theorem 3.14 in [5, p. 15] and equation (1.5), we deduce statements 3) and 4).

Proposition 3.2 Let u be an inner function, $\varphi_1, \psi_1, \varphi_2, \psi_2 \in L^{\infty}$. Let $S^u_{\varphi_1,\psi_1}, S^u_{\varphi_2,\psi_2} \in D_u$, and then the following statements hold:

- 1. $S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} \in D_{u}$ if and only if $M_{\varphi_{1}-\psi_{1}}S^{u}_{1,0}S^{u}_{\varphi_{2},\psi_{2}} \in D_{u}$.
- 2. If $\varphi_1 \psi_1$ is invertible in L^{∞} then $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} \in D_u$ if and only if $S^u_{1,0}S^u_{\varphi_2,\psi_2} \in D_u$.

Proof

1. It is clear that

$$S^{u}_{\varphi_{1},\psi_{1}} = M_{\psi_{1}} + S^{u}_{\varphi_{1}-\psi_{1},0} = M_{\psi_{1}} + M_{\varphi_{1}-\psi_{1}}S^{u}_{1,0}$$

Therefore,

$$S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} = \left(M_{\psi_{1}} + M_{\varphi_{1}-\psi_{1}}S^{u}_{1,0}\right)S^{u}_{\varphi_{2},\psi_{2}} = S^{u}_{\varphi_{2}\psi_{1},\psi_{2}\psi_{1}} + M_{\varphi_{1}-\psi_{1}}S^{u}_{1,0}S^{u}_{\varphi_{2},\psi_{2}}.$$

We deduce that $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} \in D_u$ if and only if $M_{\varphi_1-\psi_1}S^u_{1,0}S^u_{\varphi_2,\psi_2} \in D_u$.

2. From the above, we obtain that

$$M_{\varphi_1-\psi_1}S^u_{1,0}S^u_{\varphi_2,\psi_2} = S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} - S^u_{\varphi_2\psi_1,\psi_2\psi_1}$$

If $\varphi_1 - \psi_1$ is invertible, then

$$S_{1,0}^{u}S_{\varphi_{2},\psi_{2}}^{u} = M_{(\varphi_{1}-\psi_{1})^{-1}}(S_{\varphi_{1},\psi_{1}}^{u}S_{\varphi_{2},\psi_{2}}^{u} - S_{\varphi_{2}\psi_{1},\psi_{2}\psi_{1}}^{u}).$$

Thus, we conclude that $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} \in D_u$ if and only if $S^u_{1,0}S^u_{\varphi_2,\psi_2} \in D_u$.

The main result of this paper is the following theorem.

Theorem 3.3 Let $\varphi, \psi \in L^{\infty}$ and let u be a nonconstant inner function. Then $S_{1,0}^{u}S_{\varphi,\psi}^{u} \in D_{u}$ if and only if $\varphi \in K_{u}^{\infty} + uH^{\infty} + \overline{uH^{\infty}}, \ \psi \in \overline{K_{u}^{\infty}}$. In this case,

$$S^u_{1,0}S^u_{\varphi,\psi} = S^u_{P_u\varphi,0}.$$

Proof By the representation (1.6), we have

$$S^{u}_{\varphi,\psi} = \begin{pmatrix} A^{u}_{\varphi} & \widetilde{\Gamma^{u}_{\psi}} \\ \Gamma^{u}_{\varphi} & \widetilde{A^{u}_{\psi}} \end{pmatrix}$$

and

$$S_{1,0}^{u} = \begin{pmatrix} A_{1}^{u} & \widetilde{\Gamma_{0}^{u}} \\ \Gamma_{1}^{u} & \widetilde{A_{0}^{u}} \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$

This means that

$$S_{1,0}^{u}S_{\varphi,\psi}^{u} = \begin{pmatrix} I & 0\\ 0 & 0 \end{pmatrix} \begin{pmatrix} A_{\varphi}^{u} & \widetilde{\Gamma_{\psi}^{u}}\\ \Gamma_{\varphi}^{u} & \widetilde{A_{\psi}^{u}} \end{pmatrix} = \begin{pmatrix} A_{\varphi}^{u} & \widetilde{\Gamma_{\psi}^{u}}\\ 0 & 0 \end{pmatrix}$$

For each $\Phi, \Psi \in L^{\infty}$, we put

$$S^{u}_{1,0}S^{u}_{\varphi,\psi} = S^{u}_{\Phi,\Psi} = \begin{pmatrix} A^{u}_{\Phi} & \widetilde{\Gamma^{u}_{\Psi}} \\ \Gamma^{u}_{\Phi} & \widetilde{A^{u}_{\Psi}} \end{pmatrix}$$

Then

$$\begin{pmatrix} A^u_{\Phi-\varphi} & \widetilde{\Gamma^u_{\Psi-\psi}} \\ \Gamma^u_{\Phi} & \widetilde{A^u_{\Psi}} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Hence,

$$A^{u}_{\Phi-\varphi} = 0, \widetilde{A^{u}_{\Psi}} = 0, \Gamma^{u}_{\Phi} = 0, \widetilde{\Gamma^{u}_{\Psi-\psi}} = 0.$$

Since $A^{u}_{\Phi-\varphi} = 0$ and $\widetilde{A^{u}_{\Psi}} = 0$, it follows from Lemma 3.1 that $\Phi - \varphi \in uH^{\infty} + \overline{uH^{\infty}}$ and $\Psi = 0$. In the same way, since $\Gamma^{u}_{\Phi} = 0$ and $\widetilde{\Gamma^{u}_{\Psi-\psi}} = 0$ and seeing that

$$0 = \widetilde{\Gamma^u_{\Psi-\psi}} = (\Gamma^u_{\overline{\Psi-\psi}})^*$$

is equivalent to $\Gamma^{u}_{\overline{\Psi}-\psi} = 0$, it results from Lemma 3.1 that $\Phi \in K^{\infty}_{u}$ and $\overline{\Psi-\psi} \in K^{\infty}_{u}$. From the above, we conclude that

$$\varphi = \Phi + \varphi_1$$

for $\Phi \in K_u^{\infty}$ and $\varphi_1 \in uH^{\infty} + \overline{uH^{\infty}}$, and

 $\psi \in \overline{K_u^{\infty}}.$

At last, we have

$$\varphi \in K_u^\infty + uH^\infty + \overline{uH^\infty}$$

and

$$\psi\in\overline{K^\infty_u}$$

Observe that $\Phi = P_u \varphi$ and $\Psi = Q_u(\overline{\psi})$. In light of this,

$$S^{u}_{1,0}S^{u}_{\varphi,\psi} \quad = \quad S^{u}_{\Phi,\Psi} = S^{u}_{P_{u}\varphi,Q_{u}}(\overline{\psi}) = S^{u}_{P_{u}\varphi,0}.$$

This finishes the proof of the theorem.

Corollary 3.4 Let $\varphi_1, \varphi_2, \psi_1, \psi_2 \in L^{\infty}$ such that $\varphi_1 - \psi_1$ is invertible in L^{∞} . Let $S^u_{\varphi_1,\psi_1}, S^u_{\varphi_2,\psi_2} \in D_u$, and then $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} \in D_u$ if and only if $\varphi_2 \in K^{\infty}_u + uH^{\infty} + \overline{uH^{\infty}}$ and $\psi_2 \in \overline{K^{\infty}_u}$. In this case,

$$S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} = S^{u}_{S^{u}_{\varphi_{1},\psi_{1}}\varphi_{2},\psi_{1}\psi_{2}}$$

Proof The result easily follows from Proposition 3.2 and Theorem 3.3, and we also have

$$S_{\varphi_{1},\psi_{1}}^{u}S_{\varphi_{2},\psi_{2}}^{u}$$

$$= S_{\varphi_{2}\psi_{1},\psi_{2}\psi_{1}}^{u} + M_{\varphi_{1}-\psi_{1}}S_{1,0}^{u}S_{\varphi_{2},\psi_{2}}^{u}$$

$$= S_{\varphi_{2}\psi_{1}+(\varphi_{1}-\psi_{1})P_{u}(\varphi_{2}),\psi_{2}\psi_{1}+(\varphi_{1}-\psi_{1})Q_{u}(\overline{\psi_{2}})}$$

$$= S_{\varphi_{1}P_{u}\varphi_{2}+\psi_{1}Q_{u}\varphi_{2},\psi_{2}\psi_{1}}^{u}$$

$$= S_{\varphi_{1}P_{u}\varphi_{2}+\psi_{1}Q_{u}\varphi_{2},\psi_{2}\psi_{1}}^{u}.$$

- **Remark 3.5** 1) If $S^u_{\varphi_1,\psi_1}$ is a multiplication operator $S^u_{\varphi_1,\psi_1} = M_{\varphi_1}$, then $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} \in D_u$ for all $S^u_{\varphi_2,\psi_2}$ and $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} = S^u_{\varphi_1\varphi_2,\varphi_1\psi_2}$.
 - 2) Let $\varphi_1, \psi_1 \in L^{\infty}$ such that $\varphi_1 \psi_1$ is invertible in L^{∞} . If $S^u_{\varphi_1,\psi_1}$ is not a multiplication operator and $S^u_{\varphi_2,\psi_2} = M_{\varphi_2}$, and if $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} \in D_u$, then, by Theorem 3.3, we have the following two cases:
 - (a) If u(0) = 0, then $\lambda \in K_u^{\infty} \cap \overline{K_u^{\infty}}$ for some complex number λ . Therefore, $\varphi_2 = \lambda$ and $S_{\varphi_1,\psi_1}^u M_{\varphi_2} = S_{\lambda\varphi_1,\lambda\psi_1}^u$.
 - (b) If $u(0) \neq 0$, then $\lambda \notin K_u^{\infty}$ and $\lambda \notin \overline{K_u^{\infty}}$ for some complex number λ . Therefore, $\varphi_2 = 0$.

To study particular cases of the product of dilation of truncated Toeplitz operators, we need to construct the subsets K_1 and K_2 described below:

$$K_1 = \{ S^u_{\varphi,\psi} \in D_u, \varphi \in K^\infty_u, \psi \in \overline{K^\infty_u} \}$$
$$K_2 = \{ S^u_{\varphi,\psi} \in D_u, \varphi \in uH^\infty + \overline{uH^\infty}, \psi \in \overline{K^\infty_u} \}.$$

Proposition 3.6 Let $\varphi_1, \psi_1 \in L^{\infty}$ such that $\varphi_1 - \psi_1$ is invertible in L^{∞} . For $S^u_{\varphi_1,\psi_1} \in D_u$, we have the following cases:

(a) If $S^u_{\varphi_2,\psi_2} \in K_1$ then

$$S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} = S^u_{\varphi_1\varphi_2,\psi_1\psi_2}$$

(b) If $S^u_{\varphi_2,\psi_2} \in K_2$ then

$$S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} = S^{u}_{\psi_{1}\varphi_{2},\psi_{1}\psi_{2}}.$$

Proof

(a) If $\varphi_2 \in K_u^{\infty}$ and $\psi_2 \in \overline{K_u^{\infty}}$, then by theorem 3.3 we have

$$S^{u}_{1,0}S^{u}_{\varphi_2,\psi_2} = S^{u}_{P_u\varphi_2,0} = S^{u}_{\varphi_2,0}$$

Therefore,

$$S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} = S_{\psi_{1}\varphi_{2}+(\varphi_{1}-\psi_{1})\varphi_{2},\psi_{1}\psi_{2}} = S^{u}_{\varphi_{1}\varphi_{2},\psi_{1}\psi_{2}}.$$

We are now able to give a sufficient condition under which the operator $S^u_{\varphi,\psi} \in D_u$ becomes invertible and whose inverse is also in D_u .

In all the following results we will assume that $\varphi_1 - \psi_1$ is invertible in L^{∞} .

Corollary 3.7 Assume that $S_{\varphi,\psi}^u$ is not a multiplication operator. If $S_{\varphi,\psi}^u \in K_1$ and $\varphi, \overline{\psi}$ are invertible in K_u^∞ , then $S_{\varphi,\psi}^u$ is invertible operator. In this case,

$$(S^u_{\varphi,\psi})^{-1} = S^u_{\varphi^{-1},\psi^{-1}}.$$

Proof Let $S^u_{\varphi_1,\psi_1} \in D_u$ be the inverse of $S^u_{\varphi,\psi}$. Then $S^u_{\varphi_1,\psi_1}S^u_{\varphi,\psi} = S^u_{1,1}$. Supposing that $\varphi, \overline{\psi} \in K^\infty_u$ are invertible functions, then by Proposition 3.6 we have

$$S^u_{\varphi_1,\psi_1}S^u_{\varphi,\psi} = S^u_{\varphi_1\varphi,\psi_1\psi} = S^u_{1,1}.$$

Therefore, $\varphi_1 = \varphi^{-1}$ and $\psi_1 = \psi^{-1}$.

According to Proposition 3.6, we get the following results.

Corollary 3.8 Assuming that $S^u_{\varphi_1,\psi_1} \in D_u$ is not a multiplication operator, we have the following two cases:

1) If $S^{u}_{\varphi_{2},\psi_{2}} \in K_{1}$ then the operator $S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}}$ is a multiplication operator if and only if $\varphi_{1}\varphi_{2} = \psi_{1}\psi_{2}$. In this case,

$$S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} = M_{\varphi_1\varphi_2} = M_{\psi_1\psi_2}$$

149

2) If $S^{u}_{\varphi_{2},\psi_{2}} \in K_{2}$ then the operator $S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}}$ is a multiplication operator if and only if $\psi_{1}\varphi_{2} = \psi_{1}\psi_{2}$. In this case,

$$S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} = M_{\psi_{1}\varphi_{2}} = M_{\psi_{1}\psi_{2}}.$$

The next corollary tells us when $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2}=0$.

Corollary 3.9 Assuming that $S^u_{\varphi_1,\psi_1} \in D_u$ is not a multiplication operator, we have the following:

1) If $S^u_{\varphi_2,\psi_2} \in K_1$ and $S^u_{\varphi_2,\psi_2} \neq 0$ then

$$S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2}=0$$

if and only if one of the following two assertions holds:

- (a) $\varphi_1 \neq 0, \psi_1 = 0, \varphi_2 = 0, \psi_2 \in \overline{K_u^{\infty}},$
- (b) $\psi_1 \neq 0, \varphi_1 = 0, \psi_2 = 0, \varphi_2 \in K_u^{\infty}$.
- 2) If $S^u_{\varphi_2,\psi_2} \in K_2$ and $S^u_{\varphi_2,\psi_2} \neq 0$ then

$$S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2}=0$$

if and only if one of the following two assertions holds

(a) $\psi_1 = 0, \varphi_2 \neq 0, \psi_2 \neq 0,$ (b) $\psi_1 \neq 0, \varphi_2 = 0, \psi_2 = 0.$

Proof

- 1) Since $S^u_{\varphi_2,\psi_2} \in K_1$, it follows from Proposition 3.6 that $\varphi_2 \in K^{\infty}_u$ and $\psi_2 \in \overline{K^{\infty}_u}$ and the equation $S^u_{\varphi_1,\psi_1}S^u_{\varphi_2,\psi_2} = 0$ is equivalent to $\varphi_1\varphi_2 = \psi_1\psi_2 = 0$.
- 2) Again using Proposition 3.6, we obtain that the equation $S^{u}_{\varphi_1,\psi_1}S^{u}_{\varphi_2,\psi_2} = 0$ is equivalent to $\psi_1\varphi_2 = \psi_1\psi_2 = 0$.

The following corollary shows when $S^u_{\varphi_1,\psi_1}$ commutes with $S^u_{\varphi_2,\psi_2}$.

Corollary 3.10 The following statements hold:

- 1) Let $S^{u}_{\varphi_{1},\psi_{1}}, S^{u}_{\varphi_{2},\psi_{2}} \in K_{1}$. Then $S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} = S^{u}_{\varphi_{2},\psi_{2}}S^{u}_{\varphi_{1},\psi_{1}}$.
- 2) Let $S^{u}_{\varphi_{1},\psi_{1}}, S^{u}_{\varphi_{2},\psi_{2}} \in K_{2}$. Then $S^{u}_{\varphi_{1},\psi_{1}}S^{u}_{\varphi_{2},\psi_{2}} = S^{u}_{\varphi_{2},\psi_{2}}S^{u}_{\varphi_{1},\psi_{1}}$ if and only if $\psi_{1}\varphi_{2} = \varphi_{1}\psi_{2}$.

BENDAOUD and SAOULI/Turk J Math

References

- Brown A, Halmos P. Algebraic properties of Toeplitz operators. Journal f
 ür die Reine und Angewandte Mathematik 1963; 213: 89-102.
- [2] Ding X, Sang Y. Dual truncated Toeplitz operators. Journal of Mathematical Analysis and Applications 2018; 461
 (1): 929-946. doi: 10.1016/j.jmaa.2017.12.032
- [3] Gu C. Algebraic properties of Cauchy singular integral operators on the unit circle. Taiwanese Journal of Mathematics 2016; 20 (1): 161–189. doi: 10.11650/tjm.19.2015.6188
- [4] Gu C, Kang DO. A commutator approach to truncated singular integral operators. Integral Equations and Operator Theory 2018; 90: 16. doi: 10.1007/s00020-018-2429-7
- [5] Ko E, Lee JE. On the dilation of truncated Toeplitz operators. Complex Analysis and Operator Theory 2016; 10 (4): 815–833.
- [6] Nakazi T, Yamamoto T. Normal singular integral operators with Cauchy kernel on L2. Integral Equations and Operator Theory 2014; 78 (2): 233–248.
- [7] Sarason D. Algebraic properties of truncated Toeplitz operators. Operators and Matrices 2007; 1 (4): 491–526.
- [8] Sedlock NA. Algebras of truncated Toeplitz operators. Operators and Matrices 2011; 5 (2): 309–326.