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On the product of dilation of truncated Toeplitz operators
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Abstract: In this paper we study when the product of two dilations of truncated Toeplitz operators gives a dilation
of a truncated Toeplitz operator. We will use an approach established in a recent paper written by Ko and Lee. This

approach allows us to represent the dilation of the truncated Toeplitz operator via a 2 x 2 block operator.
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1. Introduction

Let T be the unit circle in the complex plane C. We start by recalling that the Hilbert space L? = L?(T) is the
space of all square-integrable functions on the unit circle T equipped with the normalized Lebesgue measure

dm(e?)

%. This space is endowed with the scalar product (f,g) = fT fgdm.
An orthonormal basis of L? is given by the set {e,(f) : n € Z}, where e,(0) = ™ for § € R. The

following orthonormal expansions are the classical Fourier series:

+oo +oo )
f= Z fnen = Z fnelnev

n=—oo n=—oo

fo=tfen= [ e ez
n — 3y €n) = ) e e 27T,n .

For all f,g € L?, the tensor product f ® g is the rank one operator in L? and is defined by

(fe@g)h=/ hg)f

for h € L?. Let L™ be the Banach space of essentially bounded functions on T. For any ¢ € L>, the bounded
multiplication operator M, is defined by the formula

Myf =of f e L%

An operator A is a multiplication operator if and only if AM, = M_A. It is well known that, for all ¢ € L™

the multiplication operator M,, is invertible if and only if ¢ is invertible in L°°. Moreover, (MLP)_1 = Mg,-1.

The Hardy space of the circle H? is the set of functions f € L? such that f, = 0 for all n < 0, and let
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H*® be the set of functions f € L*> such that f, = 0 for all n < 0. We introduce now an important class

of operators on spaces of analytic functions, which is the class of Toeplitz operators. Let P and Q@ =1 — P
indicate the orthogonal projections that map L? onto H? and (H?)* = zH?2, respectively. Given that ¢ € L™,
the Toeplitz operator T, : H 2 — H? is defined by

T@f:P(SDf)7f€H2

and the Hankel operator H,, : H?> — (H?)* is defined by

Hyf = Q(of), f € H™.

Hankel operators play an important role in the study of Toeplitz operators, and vice versa. Note that the
Toeplitz operator becomes bounded if and only if ¢ € L. In this case, we have ||T, || = |||l (see [1]). For
any ¢,1 € L, the singular integral operator S, : L? — L? is defined by

Sew(f) = ¢P(f) +4Q(f), f € L.

With respect to the decomposition L? = H? @ (H?)*, the operator S, can be represented as follows:

T, H,
S@ﬂb = v )
H, Ty
where T, and H, are the Toeplitz operator and Hankel operator, respectively. For more information about

the operators i//, and I,{vw, see [6]. Ko and Lee concluded that the operator S, is the dilation of a Toeplitz
operator on L? [5].
An inner function is an H®° function that has unit modulus almost everywhere on T. For a nonconstant

inner function u, the model space K2 is defined by

K? = H*cuH?={feH*:(fug)=0,Yg € H*}.

u

The space K° is defined by K2° = K2 N L*, which is dense in K2. For any ¢ € L and an inner

function u, the truncated Toeplitz operator Ay on K2 is defined by

Agf:Pu((Pf)vfeKza (1.1)

where P, = P — M, PMy denotes the orthogonal projection that maps L? onto K2.

For any ¢ € L* and an inner function u, the dual of truncated Toeplitz operator ;1\13; is the operator on

(K2)* defined as follows:
A = Qulef). [ e (K™, (12)

where Q, = I — P, refers to the orthogonal projection that maps L? onto (K2)* = L?© K2 = zH? @ uH?.
The truncated Hankel operator I'% : K2 — (K2)* is defined by

Lef = Qulef), f € K. (1.3)
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Let 1:?; be the operator of (K2)* to K2 such that

Tef=Puef), f e (K" (1.4)
From [5], we will use what can be helpful to us in our following work, notably the following identity:
Iy = (I'g)" (1.5)

In 1963, in a famous paper on algebraic properties of Toeplitz operators [1], Brown and Halmos studied
when the product of two Toeplitz operators itself becomes a Toeplitz operator. The same issue about truncated
Toeplitz operators was solved by Sedlock in 2010 [8]. In 2015, Gu in [3] proved that the product Sy, 4, Se, b,

on L? is a singular integral operator if and only if @y € H™® 1)y € H®.

Definition 1.1 [5] For ¢,¢b € L™ and an inner function w, the dilation of truncated Toeplitz operator
Sg’w : L2 — L? is defined by the formula

o (f) = Pu(f) +¥Qu(f), f € L*.

Obviously, the operator S&w is a bounded operator if and only if ¢, € L* such that

1Sa6 (O < NePulHIl + 1¥Qu(NI < (lellso + 1llsa) IL£1I-
Note that for f € L?, we have
Sg,wf = @Puf+wQuf:¢Puf+¢[f_Puf]:(@_w)Puf'*'wf

Hence, it is easy to see that Sgﬂ# =My + SZ—w,o and SZ,«: =M,.
The class of dilation of truncated Toeplitz operators was introduced in 2015 by Ko and Lee. For
further details of the introduction of this class of operators, see [5]. Moreover, relying on the decomposition

L? = K2 @ (K2)1, they proved that the operator Sg  has the following matrix representation:

Av Tu
o = ( M Nﬁ) ’ (16)
re Ay

where Ag,%,Fg, and fi are defined by equations (1.1), (1.2), (1.3), and (1.4), respectively. We refer to [5,
Lemma 3.2] for more details about this representation.

Recently, Gu and Kang gave in [4] a complete characterization when S s a self-adjoint, isometric,
coisometric, and normal operator using their important key observation where Sg, and M. are almost
commuting. As shown in [4, lemma 3.1], Gu and Kang proved that the operator Sg,w satisfies the following
equation:

Sgp — M.SS M = (0 — 1) ®eo — (¢ — ¥)u® ueo. (1.7)

In this work, we study the product of two dilations of truncated Toeplitz operators S;hwl and ng)wz.
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2. Characterization
Let B(L?) be the algebra of all bounded linear operators on L?. For an operator A € B(L?), the operator
A* is called the adjoint of A. For an inner function v € H?, D, denotes the set of all dilations of truncated

Toeplitz operators on L?:

Dy ={Si, € B(L?),¢,,€ L*>}.

In [4] Gu and Kang gave a full characterization of the class of operators D,, as described in the following

lemma.
Lemma 2.1 [}/ Let A € B(L?). Then A € D, if and only if there exists a x € L™ such that
A— M, AM; = x ®eg — xu ® ueg. (2.1)

In this case, A = S\io, for some 6 € L™,

Remark 2.2 [}/ Let ©,v be in L>=. Then for all f,g € L? we have

(Spufrg) = {ePulf) +vQu(f).9) = (f. Pu(@9)) + (f. Qu(vg)).
Therefore,
(Sp.)"f = Pu(@f) + Qu(¥f), f € L*.
Proposition 2.3 Let ¢ € L and let S, S%, € D,,. Then
(51056.0)" = ST055,0-

Proof Since Sg, = M,St, and (S7,)" = St, we obtain

(ST05%.0)" = (S1,0MpSt)" = (S10)" Mg (S10)" = St0MzSio = 51055.,0-

3. Product of dilation of truncated Toeplitz operators

To arrive at the main result of this work, we need the following lemma and proposition.
Lemma 3.1 Letting ¢ € L*>, the following statements hold:

1. AG =0 if and only if ¢ € uH*> +uH>.

2. ;lz‘,:() if and only if p =0.

3. Iy, =0 if and only if ¢ € Ki°.

4. 1:?';:0 if and only if o € K.
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Proof

1. This statement is an important result in Sarason’s paper; see [7, Theorem 3.1].

2. Since ¢ € L* it follows from Property 2.1 in [2] that ;17’; is a bounded operator and HA\:%H = [|¢]co -
Then :4\:7; =0 if and only if ¢ =0.

According to the proof of Theorem 3.14 in [5, p. 15] and equation (1.5), we deduce statements 3) and 4).
O

Proposition 3.2 Let u be an inner function, p1,11, 2,9 € L. Let S S

o117 € D,, and then the

u
p2,%2

following statements hold:

1. 52, 5%, b, € Du if and only if My, —y, ST oS,

P11 p2,P2 € Dy

2. If o1 — 1 is invertible in L*> then Sghwl ngﬂpz € D, if and only if Si"OSZL% eD,.

Proof

1. It is clear that

zlﬂl}l = M% + Sgl—wl,O = Mwl + Mtpl—msﬁo'
Therefore,
S;lﬂ/"l 522#’2 = (Mwl + M‘»"l—d’l Sﬁo) S$27¢2 = 5221#171/121111 + M%’l—wl Si‘,Osgxwz'

We deduce that S*

o1 1 Oy € Du if and only if Moy, —y, 57055 eD,.

p2,92 P2,P2

2. From the above, we obtain that

M<P1—’¢11 Slu,OS;Q,wz = 5;171[11 S$2,w2 - 5521#171/)21/)1'

If ¢1 — 11 is invertible, then

SﬁOSZmlM = M(Wlfwl)*l(S;1,¢1S;27¢2 - 52%,@02@01)'

Thus, we conclude that S* , S“

o 1 O pp € Du if and only if 5S¢ eD,.

p2,92

The main result of this paper is the following theorem.

Theorem 3.3 Let ¢,9) € L™ and let u be a nonconstant inner function. Then S7 (S , € Dy if and only if

p € K +uH>*® +uH>, ¢ € K. In this case,
51090 = Sk

up,0°
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Proof By the representation (1.6), we have

and

This means that

For each &, ¥ € L*°, we put

Then

Hence,
%—w =0,4}, =0,y = 0,IG_, =0.

Since Ag_, =0 and ff(f, =0, it follows from Lemma 3.1 that ® —p € uH*° 4+ uH>® and ¥ = 0. In the same

way, since I'j = 0 and I‘%_w = 0 and seeing that

0= szlﬂp = (Fh)*

is equivalent to I”\;,_w = 0, it results from Lemma 3.1 that ® € K° and W — ¢ € KZ°. From the above, we

conclude that
=2+ ¢
for ® € K° and ¢ € uH* 4+ uH>, and
Y e K.
At last, we have
pe KX +uH™+uH>
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and

Y e K.

Observe that ® = P, and ¥ = Q,(¢)). In light of this,

StoSew = Sew=5p,0.@) = P
This finishes the proof of the theorem. O
Corollary 3.4 Let @1, p2,101,%9 € L™ such that @1 — 11 is invertible in L*°. Let SW1 b1 ngﬂh e D,, and
then SSD 1Sy € Du if and only if w2 € K3° +uH™ +uH> and 2 € K. In this case,
u u
S‘Plﬂ/)l P22 T 55;1 v, P2Y12
Proof The result easily follows from Proposition 3.2 and Theorem 3.3, and we also have
;171&1 Szzawz
59722¢1,¢2¢1 + M<P1—¢1 5?705;277#2
S —
P21+(p1—Y1) Pu(p2),291+(p1—9%1) Qu(2)
. Su
- ©1 Pup2a+11Qup2, Y211
— Su
- p1Pupa+11Qupz, P21
O
Remark 3.5 1) If S“hw is a multiplication operator S% v, = My, , then Ssal %Sw by € Du for all Ssa o
and S</71 Y1 302 P2 90180279011/)2 :

2) Let p1,9Y1 € L such that ¢1 — 11 is invertible in L. If Sghwl is not a multiplication operator and

Syipe = My, and if S5, Sg, s, € Du, then, by Theorem 3.3, we have the following two cases:

P1,91

(a) If u(0) =0, then A € K NKZ® for some complex number . Therefore, o3 = X and S*
Su

Ap1,Atp1”

1, 1111

(b) If u(0) # 0, then A & K and X ¢ K for some complex number \. Therefore, oo = 0.

To study particular cases of the product of dilation of truncated Toeplitz operators, we need to construct
the subsets K; and K> described below:

Kl*{S wGDu7SDE u’qpeKOO}
Ky ={S3, € Du,p € uH>™ +uH>,9 € K:*}.
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Proposition 3.6 Let ¢1,17 € L*™ such that @1 — 1 is invertible in L*. For Sghwl € D, , we have the

following cases:

(a) If S3, 4, € K1 then

Szlﬂbl ngawz = S;1902,¢1¢2'

(b) If S%, ., € K2 then

S$171/’1 532,1/12 = ’5%1392,#11%02 :
Proof

(a) If po € K° and 9y € K2°, then by theorem 3.3 we have

5?70’5‘;277/)2 = S}éu@zaoz’s;zvo'
Therefore,
P1,91 P2, 1p2+(p1—1P1)p2, 9192 P1p2,P12"

O
We are now able to give a sufficient condition under which the operator S; ,, € D, becomes invertible

and whose inverse is also in D,,.

In all the following results we will assume that ¢ — 1 is invertible in L*°.

Corollary 3.7 Assume that Sg y is mot a multiplication operator. If Sg , € Ki and ©,1 are invertible in

K, then S:{j’w is invertible operator. In this case,

(Sgp) ™" = Sg1 -

Proof Let S;hwl € D, be the inverse of Sg,w. Then ngmsgﬂb = S51. Supposing that 0, € K are

invertible functions, then by Proposition 3.6 we have

u

Sorw1 %00 = Serpmw = ST
Therefore, p; = ¢~ ! and 9 = ¢~ 1.
According to Proposition 3.6, we get the following results.
Corollary 3.8 Assuming that S € D, is not a multiplication operator, we have the following two cases:

®1,9%1

1) If Siy s € K1 then the operator Sgl,wngwh is a multiplication operator if and only if w12 = Y13 .

In this case,

Zl,wl ;zﬂllz =My, = My, y,-
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2) If Siaus € K2 then the operator Sg  S2. ., is a multiplication operator if and only if P1pa = P12 .

In this case,

Zlﬂlﬁ Szzﬂbz = My,p, = My, yp,-

The next corollary tells us when 5’317%5;27% =0.

Corollary 3.9 Assuming that S;hwl € D, is not a multiplication operator, we have the following:

1) If 55, 4, € K1 and Sg, ,, # 0 then

u U — 0
P1,%1" p2,92

if and only if one of the following two assertions holds:

(a) o1 # 0,91 =0,¢02 =0,1p € Kg°,
(b) 1/’1 #07@1 :0”17[}2 :OaWQ EKSO

2) If 53, 4, € K2 and S3, . # 0 then

SZlﬂ/Jl ngﬂﬁz =0

if and only if one of the following two assertions holds

(CL) w1:079027é07¢27£05
(b) 1 # 0,02 = 0,93 = 0.

Proof

1) Since Sg, ,, € Ki, it follows from Proposition 3.6 that ¢ € K7° and s € K and the equation
S 150, 4, = 0 s equivalent to 192 = 192 = 0.

2) Again using Proposition 3.6, we obtain that the equation S* S

o110 s = 0 is equivalent to 12 =
P1)g = 0.

The following corollary shows when S’gl,wl commutes with S;sz .

Corollary 3.10 The following statements hold:

1) Let 519;1 P10

S:;m?l& € Ki. Then S;lﬂ/’l ngawz =55

8027'/125

u
P11 "

2) Let Sgl)wl’sgzﬂﬂz € K. Then Sglﬂbl ngxwz = ngﬂbz Sglﬂh Zf and only Zf wle = 5011!]2'
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