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Abstract: In this paper we study when the product of two dilations of truncated Toeplitz operators gives a dilation
of a truncated Toeplitz operator. We will use an approach established in a recent paper written by Ko and Lee. This
approach allows us to represent the dilation of the truncated Toeplitz operator via a 2 × 2 block operator.
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1. Introduction
Let T be the unit circle in the complex plane C . We start by recalling that the Hilbert space L2 = L2(T) is the
space of all square-integrable functions on the unit circle T equipped with the normalized Lebesgue measure
dm(eiθ) = dθ

2π . This space is endowed with the scalar product ⟨f, g⟩ =
∫
T fḡdm .

An orthonormal basis of L2 is given by the set {en(θ) : n ∈ Z} , where en(θ) = einθ for θ ∈ R . The
following orthonormal expansions are the classical Fourier series:

f =

+∞∑
n=−∞

fnen =

+∞∑
n=−∞

fne
inθ,

fn = ⟨f, en⟩ =
∫ 2π

0

f(eiθ)e−inθ
dθ

2π
, n ∈ Z.

For all f, g ∈ L2 , the tensor product f ⊗ g is the rank one operator in L2 and is defined by

(f ⊗ g)h = ⟨h, g⟩f

for h ∈ L2 . Let L∞ be the Banach space of essentially bounded functions on T . For any φ ∈ L∞ , the bounded
multiplication operator Mφ is defined by the formula

Mφf = φf, f ∈ L2.

An operator A is a multiplication operator if and only if AMz =MzA . It is well known that, for all φ ∈ L∞ ,
the multiplication operator Mφ is invertible if and only if φ is invertible in L∞ . Moreover, (Mφ)

−1 = Mφ−1 .

The Hardy space of the circle H2 is the set of functions f ∈ L2 such that fn = 0 for all n < 0 , and let
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H∞ be the set of functions f ∈ L∞ such that fn = 0 for all n < 0 . We introduce now an important class
of operators on spaces of analytic functions, which is the class of Toeplitz operators. Let P and Q = I − P

indicate the orthogonal projections that map L2 onto H2 and (H2)⊥ = zH2 , respectively. Given that φ ∈ L∞ ,
the Toeplitz operator Tφ : H2 → H2 is defined by

Tφf = P (φf), f ∈ H2

and the Hankel operator Hφ : H2 → (H2)⊥ is defined by

Hφf = Q(φf), f ∈ H2.

Hankel operators play an important role in the study of Toeplitz operators, and vice versa. Note that the
Toeplitz operator becomes bounded if and only if φ ∈ L∞ . In this case, we have ∥Tφ∥ = ∥φ∥∞ (see [1]). For
any φ,ψ ∈ L∞ , the singular integral operator Sφ,ψ : L2 → L2 is defined by

Sφ,ψ(f) = φP (f) + ψQ(f), f ∈ L2.

With respect to the decomposition L2 = H2 ⊕ (H2)⊥ , the operator Sφ,ψ can be represented as follows:

Sφ,ψ =

(
Tφ H̃ψ

Hφ T̃ψ

)
,

where Tφ and Hφ are the Toeplitz operator and Hankel operator, respectively. For more information about

the operators T̃ψ and H̃ψ , see [6]. Ko and Lee concluded that the operator Sφ,ψ is the dilation of a Toeplitz
operator on L2 [5].

An inner function is an H∞ function that has unit modulus almost everywhere on T . For a nonconstant
inner function u , the model space K2

u is defined by

K2
u = H2 ⊖ uH2 = {f ∈ H2 : ⟨f, ug⟩ = 0,∀g ∈ H2}.

The space K∞
u is defined by K∞

u = K2
u ∩ L∞ , which is dense in K2

u . For any φ ∈ L∞ and an inner
function u, the truncated Toeplitz operator Auφ on K2

u is defined by

Auφf = Pu(φf), f ∈ K2
u, (1.1)

where Pu = P −MuPMu denotes the orthogonal projection that maps L2 onto K2
u .

For any φ ∈ L∞ and an inner function u, the dual of truncated Toeplitz operator Ãuφ is the operator on

(K2
u)

⊥ defined as follows:

Ãuφ = Qu(φf), f ∈ (K2
u)

⊥, (1.2)

where Qu = I − Pu refers to the orthogonal projection that maps L2 onto (K2
u)

⊥ = L2 ⊖K2
u = zH2 ⊕ uH2 .

The truncated Hankel operator Γuφ : K2
u → (K2

u)
⊥ is defined by

Γuφf = Qu(φf), f ∈ K2
u. (1.3)
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Let Γ̃uφ be the operator of (K2
u)

⊥ to K2
u such that

Γ̃uφf = Pu(φf), f ∈ (K2
u)

⊥. (1.4)

From [5], we will use what can be helpful to us in our following work, notably the following identity:

Γ̃uφ = (Γuφ)
∗. (1.5)

In 1963, in a famous paper on algebraic properties of Toeplitz operators [1], Brown and Halmos studied
when the product of two Toeplitz operators itself becomes a Toeplitz operator. The same issue about truncated
Toeplitz operators was solved by Sedlock in 2010 [8]. In 2015, Gu in [3] proved that the product Sφ1,ψ1

Sφ2,ψ2

on L2 is a singular integral operator if and only if φ2 ∈ H∞, ψ2 ∈ H∞ .

Definition 1.1 [5] For φ,ψ ∈ L∞ and an inner function u , the dilation of truncated Toeplitz operator
Suφ,ψ : L2 → L2 is defined by the formula

Suφ,ψ(f) = φPu(f) + ψQu(f), f ∈ L2.

Obviously, the operator Suφ,ψ is a bounded operator if and only if φ,ψ ∈ L∞ , such that

∥Suφ,ψ(f)∥ ≤ ∥φPu(f)∥+ ∥ψQu(f)∥ ≤ (∥φ∥∞ + ∥ψ∥∞)∥f∥.

Note that for f ∈ L2 , we have

Suφ,ψf = φPuf + ψQuf = φPuf + ψ[f − Puf ] = (φ− ψ)Puf + ψf.

Hence, it is easy to see that Suφ,ψ =Mψ + Suφ−ψ,0 and Suφ,φ =Mφ .

The class of dilation of truncated Toeplitz operators was introduced in 2015 by Ko and Lee. For
further details of the introduction of this class of operators, see [5]. Moreover, relying on the decomposition
L2 = K2

u ⊕ (K2
u)

⊥ , they proved that the operator Suφ,ψ has the following matrix representation:

Suφ,ψ =

(
Auφ Γ̃uψ
Γuφ Ãuψ

)
, (1.6)

where Auφ, Ã
u
ψ,Γ

u
φ , and Γ̃uψ are defined by equations (1.1), (1.2), (1.3), and (1.4), respectively. We refer to [5,

Lemma 3.2] for more details about this representation.
Recently, Gu and Kang gave in [4] a complete characterization when Suφ,ψ is a self-adjoint, isometric,

coisometric, and normal operator using their important key observation where Suφ,ψ and Mz are almost
commuting. As shown in [4, lemma 3.1], Gu and Kang proved that the operator Suφ,ψ satisfies the following
equation:

Suφ,ψ −MzS
u
φ,ψM

∗
z = (φ− ψ)⊗ e0 − (φ− ψ)u⊗ ue0. (1.7)

In this work, we study the product of two dilations of truncated Toeplitz operators Suφ1,ψ1
and Suφ2,ψ2

.
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2. Characterization
Let B(L2) be the algebra of all bounded linear operators on L2 . For an operator A ∈ B(L2) , the operator
A∗ is called the adjoint of A . For an inner function u ∈ H2 , Du denotes the set of all dilations of truncated
Toeplitz operators on L2 :

Du = {Suφ,ψ ∈ B(L2), φ, ψ,∈ L∞}.

In [4] Gu and Kang gave a full characterization of the class of operators Du as described in the following
lemma.

Lemma 2.1 [4] Let A ∈ B(L2) . Then A ∈ Du if and only if there exists a χ ∈ L∞ such that

A−MzAM
∗
z = χ⊗ e0 − χu⊗ ue0. (2.1)

In this case, A = Suχ+θ,θ for some θ ∈ L∞ .

Remark 2.2 [4] Let φ,ψ be in L∞ . Then for all f, g ∈ L2 we have

⟨Suφ,ψf, g⟩ = ⟨φPu(f) + ψQu(f), g⟩ = ⟨f, Pu(φg)⟩+ ⟨f,Qu(ψg)⟩.

Therefore,

(Suφ,ψ)
∗f = Pu(φf) +Qu(ψf), f ∈ L2.

Proposition 2.3 Let φ ∈ L∞ and let Su1,0, Suφ,0 ∈ Du . Then

(Su1,0S
u
φ,0)

∗ = Su1,0S
u
φ,0.

Proof Since Suφ,0 =MφS
u
1,0 and (Su1,0)

∗ = Su1,0 , we obtain

(Su1,0S
u
φ,0)

∗ = (Su1,0MφS
u
1,0)

∗ = (Su1,0)
∗M∗

φ(S
u
1,0)

∗ = Su1,0MφS
u
1,0 = Su1,0S

u
φ,0.

2

3. Product of dilation of truncated Toeplitz operators
To arrive at the main result of this work, we need the following lemma and proposition.

Lemma 3.1 Letting φ ∈ L∞ , the following statements hold:

1. Auφ = 0 if and only if φ ∈ uH∞ + uH∞ .

2. Ãuφ = 0 if and only if φ = 0 .

3. Γuφ = 0 if and only if φ ∈ K∞
u .

4. Γ̃uφ = 0 if and only if φ ∈ K∞
u .
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Proof

1. This statement is an important result in Sarason’s paper; see [7, Theorem 3.1].

2. Since φ ∈ L∞ , it follows from Property 2.1 in [2] that Ãuφ is a bounded operator and ∥Ãuφ∥ = ∥φ∥∞ .

Then Ãuφ = 0 if and only if φ = 0 .

According to the proof of Theorem 3.14 in [5, p. 15] and equation (1.5), we deduce statements 3) and 4).
2

Proposition 3.2 Let u be an inner function, φ1, ψ1, φ2, ψ2 ∈ L∞ . Let Suφ1,ψ1
, Suφ2,ψ2

∈ Du , and then the
following statements hold:

1. Suφ1,ψ1
Suφ2,ψ2

∈ Du if and only if Mφ1−ψ1
Su1,0S

u
φ2,ψ2

∈ Du .

2. If φ1 − ψ1 is invertible in L∞ then Suφ1,ψ1
Suφ2,ψ2

∈ Du if and only if Su1,0Suφ2,ψ2
∈ Du .

Proof

1. It is clear that

Suφ1,ψ1
= Mψ1

+ Suφ1−ψ1,0 =Mψ1
+Mφ1−ψ1

Su1,0.

Therefore,

Suφ1,ψ1
Suφ2,ψ2

=
(
Mψ1

+Mφ1−ψ1
Su1,0

)
Suφ2,ψ2

= Suφ2ψ1,ψ2ψ1
+Mφ1−ψ1

Su1,0S
u
φ2,ψ2

.

We deduce that Suφ1,ψ1
Suφ2,ψ2

∈ Du if and only if Mφ1−ψ1
Su1,0S

u
φ2,ψ2

∈ Du .

2. From the above, we obtain that

Mφ1−ψ1
Su1,0S

u
φ2,ψ2

= Suφ1,ψ1
Suφ2,ψ2

− Suφ2ψ1,ψ2ψ1
.

If φ1 − ψ1 is invertible, then

Su1,0S
u
φ2,ψ2

=M(φ1−ψ1)−1(Suφ1,ψ1
Suφ2,ψ2

− Suφ2ψ1,ψ2ψ1
).

Thus, we conclude that Suφ1,ψ1
Suφ2,ψ2

∈ Du if and only if Su1,0Suφ2,ψ2
∈ Du .

2

The main result of this paper is the following theorem.

Theorem 3.3 Let φ,ψ ∈ L∞ and let u be a nonconstant inner function. Then Su1,0S
u
φ,ψ ∈ Du if and only if

φ ∈ K∞
u + uH∞ + uH∞ , ψ ∈ K∞

u . In this case,

Su1,0S
u
φ,ψ = SuPuφ,0.
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Proof By the representation (1.6), we have

Suφ,ψ =

(
Auφ Γ̃uψ
Γuφ Ãuψ

)

and

Su1,0 =

(
Au1 Γ̃u0
Γu1 Ãu0

)
=

(
I 0
0 0

)
.

This means that

Su1,0S
u
φ,ψ =

(
I 0
0 0

)(
Auφ Γ̃uψ
Γuφ Ãuψ

)
=

(
Auφ Γ̃uψ
0 0

)
.

For each Φ,Ψ ∈ L∞ , we put

Su1,0S
u
φ,ψ = SuΦ,Ψ =

(
AuΦ Γ̃uΨ
ΓuΦ ÃuΨ

)
.

Then

(
AuΦ−φ Γ̃uΨ−ψ
ΓuΦ ÃuΨ

)
=

(
0 0
0 0

)
.

Hence,

AuΦ−φ = 0, ÃuΨ = 0,ΓuΦ = 0, Γ̃uΨ−ψ = 0.

Since AuΦ−φ = 0 and ÃuΨ = 0 , it follows from Lemma 3.1 that Φ− φ ∈ uH∞ + uH∞ and Ψ = 0 . In the same

way, since ΓuΦ = 0 and Γ̃uΨ−ψ = 0 and seeing that

0 = Γ̃uΨ−ψ = (Γu
Ψ−ψ)

∗

is equivalent to Γu
Ψ−ψ = 0 , it results from Lemma 3.1 that Φ ∈ K∞

u and Ψ− ψ ∈ K∞
u . From the above, we

conclude that

φ = Φ+ φ1

for Φ ∈ K∞
u and φ1 ∈ uH∞ + uH∞ , and

ψ ∈ K∞
u .

At last, we have

φ ∈ K∞
u + uH∞ + uH∞
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and

ψ ∈ K∞
u .

Observe that Φ = Puφ and Ψ = Qu(ψ) . In light of this,

Su1,0S
u
φ,ψ = SuΦ,Ψ = Su

Puφ,Qu(ψ)
= SuPuφ,0.

This finishes the proof of the theorem. 2

Corollary 3.4 Let φ1, φ2, ψ1, ψ2 ∈ L∞ such that φ1 − ψ1 is invertible in L∞ . Let Suφ1,ψ1
, Suφ2,ψ2

∈ Du , and

then Suφ1,ψ1
Suφ2,ψ2

∈ Du if and only if φ2 ∈ K∞
u + uH∞ + uH∞ and ψ2 ∈ K∞

u . In this case,

Suφ1,ψ1
Suφ2,ψ2

= SuSuφ1,ψ1φ2,ψ1ψ2

.
Proof The result easily follows from Proposition 3.2 and Theorem 3.3, and we also have

Suφ1,ψ1
Suφ2,ψ2

= Suφ2ψ1,ψ2ψ1
+Mφ1−ψ1

Su1,0S
u
φ2,ψ2

= Su
φ2ψ1+(φ1−ψ1)Pu(φ2),ψ2ψ1+(φ1−ψ1)Qu(ψ2)

= Suφ1Puφ2+ψ1Quφ2,ψ2ψ1

= Suφ1Puφ2+ψ1Quφ2,ψ2ψ1
.

2

Remark 3.5 1) If Suφ1,ψ1
is a multiplication operator Suφ1,ψ1

=Mφ1 , then Suφ1,ψ1
Suφ2,ψ2

∈ Du for all Suφ2,ψ2

and Suφ1,ψ1
Suφ2,ψ2

= Suφ1φ2,φ1ψ2
.

2) Let φ1, ψ1 ∈ L∞ such that φ1 − ψ1 is invertible in L∞ . If Suφ1,ψ1
is not a multiplication operator and

Suφ2,ψ2
=Mφ2

, and if Suφ1,ψ1
Suφ2,ψ2

∈ Du , then, by Theorem 3.3, we have the following two cases:

(a) If u(0) = 0 , then λ ∈ K∞
u ∩K∞

u for some complex number λ . Therefore, φ2 = λ and Suφ1,ψ1
Mφ2

=

Suλφ1,λψ1
.

(b) If u(0) ̸= 0 , then λ ̸∈ K∞
u and λ ̸∈ K∞

u for some complex number λ . Therefore, φ2 = 0 .

To study particular cases of the product of dilation of truncated Toeplitz operators, we need to construct
the subsets K1 and K2 described below:

K1 = {Suφ,ψ ∈ Du, φ ∈ K∞
u , ψ ∈ K∞

u }

K2 = {Suφ,ψ ∈ Du, φ ∈ uH∞ + uH∞, ψ ∈ K∞
u }.

148



BENDAOUD and SAOULI/Turk J Math

Proposition 3.6 Let φ1, ψ1 ∈ L∞ such that φ1 − ψ1 is invertible in L∞ . For Suφ1,ψ1
∈ Du , we have the

following cases:

(a) If Suφ2,ψ2
∈ K1 then

Suφ1,ψ1
Suφ2,ψ2

= Suφ1φ2,ψ1ψ2
.

(b) If Suφ2,ψ2
∈ K2 then

Suφ1,ψ1
Suφ2,ψ2

= Suψ1φ2,ψ1ψ2
.

Proof

(a) If φ2 ∈ K∞
u and ψ2 ∈ K∞

u , then by theorem 3.3 we have

Su1,0S
u
φ2,ψ2

= SuPuφ2,0 = Suφ2,0.

Therefore,

Suφ1,ψ1
Suφ2,ψ2

= Sψ1φ2+(φ1−ψ1)φ2,ψ1ψ2
= Suφ1φ2,ψ1ψ2

.

2

We are now able to give a sufficient condition under which the operator Suφ,ψ ∈ Du becomes invertible
and whose inverse is also in Du .

In all the following results we will assume that φ1 − ψ1 is invertible in L∞ .

Corollary 3.7 Assume that Suφ,ψ is not a multiplication operator. If Suφ,ψ ∈ K1 and φ,ψ are invertible in
K∞
u , then Suφ,ψ is invertible operator. In this case,

(Suφ,ψ)
−1 = Suφ−1,ψ−1 .

Proof Let Suφ1,ψ1
∈ Du be the inverse of Suφ,ψ . Then Suφ1,ψ1

Suφ,ψ = Su1,1 . Supposing that φ,ψ ∈ K∞
u are

invertible functions, then by Proposition 3.6 we have

Suφ1,ψ1
Suφ,ψ = Suφ1φ,ψ1ψ = Su1,1.

Therefore, φ1 = φ−1 and ψ1 = ψ−1.

2

According to Proposition 3.6, we get the following results.

Corollary 3.8 Assuming that Suφ1,ψ1
∈ Du is not a multiplication operator, we have the following two cases:

1) If Suφ2,ψ2
∈ K1 then the operator Suφ1,ψ1

Suφ2,ψ2
is a multiplication operator if and only if φ1φ2 = ψ1ψ2 .

In this case,

Suφ1,ψ1
Suφ2,ψ2

=Mφ1φ2
=Mψ1ψ2

.
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2) If Suφ2,ψ2
∈ K2 then the operator Suφ1,ψ1

Suφ2,ψ2
is a multiplication operator if and only if ψ1φ2 = ψ1ψ2 .

In this case,

Suφ1,ψ1
Suφ2,ψ2

=Mψ1φ2
=Mψ1ψ2

.

The next corollary tells us when Suφ1,ψ1
Suφ2,ψ2

= 0 .

Corollary 3.9 Assuming that Suφ1,ψ1
∈ Du is not a multiplication operator, we have the following:

1) If Suφ2,ψ2
∈ K1 and Suφ2,ψ2

̸= 0 then

Suφ1,ψ1
Suφ2,ψ2

= 0

if and only if one of the following two assertions holds:

(a) φ1 ̸= 0, ψ1 = 0, φ2 = 0, ψ2 ∈ K∞
u ,

(b) ψ1 ̸= 0, φ1 = 0, ψ2 = 0, φ2 ∈ K∞
u .

2) If Suφ2,ψ2
∈ K2 and Suφ2,ψ2

̸= 0 then

Suφ1,ψ1
Suφ2,ψ2

= 0

if and only if one of the following two assertions holds

(a) ψ1 = 0, φ2 ̸= 0, ψ2 ̸= 0,

(b) ψ1 ̸= 0, φ2 = 0, ψ2 = 0.

Proof

1) Since Suφ2,ψ2
∈ K1 , it follows from Proposition 3.6 that φ2 ∈ K∞

u and ψ2 ∈ K∞
u and the equation

Suφ1,ψ1
Suφ2,ψ2

= 0 is equivalent to φ1φ2 = ψ1ψ2 = 0 .

2) Again using Proposition 3.6, we obtain that the equation Suφ1,ψ1
Suφ2,ψ2

= 0 is equivalent to ψ1φ2 =

ψ1ψ2 = 0.

2

The following corollary shows when Suφ1,ψ1
commutes with Suφ2,ψ2

.

Corollary 3.10 The following statements hold:

1) Let Suφ1,ψ1
, Suφ2,ψ2

∈ K1 . Then Suφ1,ψ1
Suφ2,ψ2

= Suφ2,ψ2
Suφ1,ψ1

.

2) Let Suφ1,ψ1
, Suφ2,ψ2

∈ K2 . Then Suφ1,ψ1
Suφ2,ψ2

= Suφ2,ψ2
Suφ1,ψ1

if and only if ψ1φ2 = φ1ψ2 .
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