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Abstract: This paper is concerned with sensitivity analysis in parametric vector optimization problems via τw -
contingent derivatives. Firstly, relationships between the τw -contingent derivative of the Borwein proper perturbation
map and the τw -contingent derivative of feasible map in objective space are considered. Then, the formulas for estimating
the τw -contingent derivative of the Borwein proper perturbation map via the τw -contingent of the constraint map and
the Hadamard derivative of the objective map are obtained.
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1. Introduction
Sensitivity analysis is a quantitative analysis, i.e. the study of derivatives of perturbation maps. Due to
its importance not only for theoretical aspect, but also for practical application, sensitivity analysis has been
considered by numerous researchers. To deal with the nonsmooth perturbation maps, the generalized derivatives
in the primal space and coderivatives in the dual space were utilized in sensitivity analysis. In dual space
approach, many interesting results in sensitivity analysis via Mordukhovich coderivatives were obtained; see the
books [14, 15] for comprehensive expositions. In primal space approach, one of the first results for sensitivity
analysis via contingent derivatives was given by Tanino in [24]. The paper [22] presented TP-derivative and this
derivative was put to use to weaken some assumptions in [10]. In [6, 9], the Clarke derivatives were employed for
analyzing sensitivity. Properties of the contingent derivatives of some types of proper perturbation maps of a
parameterized optimization problem were discussed in [1, 7, 16, 23, 25]. Some results in the proto-differentiability
and semidifferentiability of the perturbation maps were obtained in [11, 13, 17, 26].

When the sensitivity analysis was considered in Banach space, the weak/the weak star coderivatives
were utilized in [14, 15]. In primal space approach, the τw -contingent epiderivative has been introduced and
applied to consider the optimality conditions for a set-valued optimization problem in [18]. In [8], the weak
subdifferentials were presented and applied to obtain the optimality conditions for nonconvex optimization
problems in reflexive Banach spaces. However, to the best of our knowledge, the sensitivity analysis terms of the
τw -contingent derivatives was not considered. Motivated by the above notices, we aim to have a consideration
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of the τw -contingent derivatives of the Borwein perturbation map in this paper. The paper is organized as
follows. In Section 2, we recollect some important notions and present some auxiliary results, which will be
useful hereafter. Then, the relations between the τw -contingent derivative of the Borwein proper perturbation
map and the τw -contingent derivative of feasible map in objective space are derived in Section 3. In Section
4, we investigate the formulas for computing the τw -contingent derivative of the Borwein proper perturbation
map via the τw -contingent of the constraint map and the Hadamard derivative of the objective map.

2. Preliminaries
Throughout this paper, let P,X , and Y be Banach spaces, where the space Y is partially ordered by a pointed,
closed, and convex cone with apex at the origin K . The closed ball centered at origin of radius λ > 0 is denoted
by B(0, λ) . The Cartesian product of Banach spaces of P and Y , denoted by P×Y , is a Banach space with the
norm ∥(p, y)∥ = ∥p∥P + ∥y∥Y . For A ⊆ X ; intA, clA, ∂A , and coneA denote its interior, closure, boundary,
and the cone {λa | λ ≥ 0, a ∈ A} , respectively. A set B ⊂ Y is called a base for K if 0 /∈ clB and
K = {λb : λ > 0, b ∈ B} . If B is compact we say that K has a compact base B . The cone K has a compact
base if and only if K ∩ ∂B is compact (see in [22]). The set of all neighborhoods of y ∈ Y is represented by
N (y) . For the set-valued map G : P ⇒ Y , the domain, graph, and epigraph of G are respectively defined by:

domG := {p ∈ P | G(p) ̸= ∅} ,
grG := {(p, y) ∈ P × Y | y ∈ G(p)} ,
epiG := {(p, y) ∈ P × Y | p ∈ domF, y ∈ G(p) +K} .

The profile map of G is G+K , defined by (G+K)(p) := G(p)+K . We recall notions of efficiency in set-valued
vector optimization, for ȳ ∈ Ω ⊆ Y .

(i) ȳ is said to be a local (Pareto) efficient/minimal point of Ω with respect to (shortly wrt) K , and denoted
by ȳ ∈ locMinKΩ , iff there exists U ∈ N (ȳ) such that

(Ω ∩ U − ā) ∩ −K = {0}.

(ii) ȳ is said to be a local Borwein efficient/minimal [5] of Ω wrt K , and denoted by ȳ ∈ locBoMinKΩ , iff
there exists U ∈ N (ȳ) such that

cl cone(Ω ∩ U − ā) ∩ (−K) = {0}.

If U = Y , the word “local” is dropped. In this case, the minimal point sets and the Borwein minimal point sets
of Ω are denoted by MinKΩ and BoMinKΩ , respectively. It is easy to check that BoMinKΩ ⊂ MinKΩ and
the inclusion may be strict as in the following example.

Example 2.1 Let Y = R2 , K = R2
+ and Ω = {(x1, x2) ∈ R2 | x2

2 ≤ x1 ≤ 1} . Then, we can check that

MinKΩ = {(x1, x2) ∈ R2 | x1 = x2
2, 0 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 0},

BoMinKΩ = {(x1, x2) ∈ R2 | x1 = x2
2, 0 < x1 ≤ 1,−1 ≤ x2 < 0}.

Hence,
BoMinKΩ ⫋ MinKΩ.
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In the sequel by →/−→
w

/−−→
w∗

we denote the convergence with respect to the norm topology/the weak

topology/the weak star topology. Given (pn, yn) ∈ P × Y and (p̄, ȳ) ∈ P × Y , by (pn, yn) −−→
s,w

(p̄, ȳ)

((pn, yn) −−−→
s,w∗

(p̄, ȳ)) we mean pn → p̄, yn −→
w

ȳ (pn → p̄, yn −−→
w∗

ȳ , resp).

Definition 2.2 Let G : P ⇒ Y and (p̄, ȳ) ∈ grG .

(i) [2] The contingent derivative of G at (p̄, ȳ) is the set-valued map DG(p̄, ȳ) : P ⇒ Y defined by

DG(p̄, ȳ)(p) := {y ∈ Y | ∃tn > 0,∃(pn, yn) ∈ grG : (pn, yn) → (p̄, ȳ), tn(pn − p̄, yn − ȳ) → (p, y)}.

(ii) [18] The τw−contingent derivative of G at (p̄, ȳ) is the set-valued map DwG(p̄, ȳ) : P ⇒ Y defined by

DwG(p̄, ȳ)(p) :={y ∈ Y | ∃tn > 0,∃(pn, yn) ∈ grG

such that (pn, yn) −−→
s,w

(p̄, ȳ), tn(pn − p̄, yn − ȳ) −−→
s,w

(p, y)}.

(iii) The τw∗−contingent derivative of G at (p̄, ȳ) is the set-valued map DwG(p̄, ȳ) : P ⇒ Y defined by

Dw∗G(p̄, ȳ)(p) :={y ∈ Y | ∃tn > 0,∃(pn, yn) ∈ grG

such that (pn, yn) −−−→
s,w∗

(p̄, ȳ), tn(pn − p̄, yn − ȳ) −−−→
s,w∗

(p, y)}.

Remark 2.3 It is easy to see that

(i) DG(p̄, ȳ))(p) ⊂ DwG(p̄, ȳ))(p) ⊂ Dw∗G(p̄, ȳ))(p),∀p ∈ P.

(ii)

DwG(p̄, ȳ)(p) ={(y ∈ Y | ∃tn ↓ 0,∃(pn, yn) ∈ grG

such that (pn, yn) −−→
s,w

(p, y) with ȳ + tnyn ∈ G(p̄+ tnpn),∀n ∈ N}.

Definition 2.4 The lower τw−contingent derivative of a set-valued map G : P ⇒ Y at (p̄, ȳ) is the set-valued
map DwG(p̄, ȳ) : P ⇒ Y such that

DwG(p̄, ȳ)(p) :={y ∈ Y | ∀tn > 0,∃{(pn, yn)}n ⊂ grG

such that (pn, yn) −−→
s,w

(p̄, ȳ), tn(pn − p̄, yn − ȳ) −−→
s,w

(p, y),∀n ∈ N}.

If DwG(p̄, ȳ)(p)) = DwG(p̄, ȳ)(p)) for any p ∈ domDwG(p̄, ȳ) , then G is said to have a weak contingent
proto-derivative at (p̄, ȳ) .

Definition 2.5 Let (p̄, ȳ) ∈ grG .

(i) The weak radial-contingent cone of G at (p̄, ȳ) , denoted by Tw
S (grG; (p̄, ȳ)) , is defined by

Tw
S (grG; (p̄, ȳ)) :={(p, y) ∈ P × Y | ∃tn > 0,∃(pn, yn) ∈ grG

such that (pn, yn) −−→
s,w

(p̄, ȳ), with ȳ + tnyn ∈ G(p̄+ tnpn),∀n ∈ N, tnpn → 0}.
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(ii) The τw−TP-derivative of a set-valued map G : P ⇒ Y at (p̄, ȳ) is the set-valued map Dw
SG(p̄, ȳ) : P ⇒ Y

such that
gph (Dw

SG(p̄, ȳ)) = Tw
S (grG; (p̄, ȳ)).

Definition 2.6 [21]

(i) The set Ω ⊂ Y is said to have the domination property if

Ω ⊂ MinKΩ+K.

(ii) We say the domination property satisfies for G : P ⇒ Y around p̄ ∈ P if there exists a neighborhood
U ∈ N (p̄) such that

G(p) ⊂ MinKG(p) +K, ∀p ∈ U.

Based on the notion of directional compact [3] of a set-valued map at a point of its graph, we propose the
notion of weak directional compact as follows.

Definition 2.7 G is called weak/weak∗ directional compact at (p̄, ȳ) ∈ grG in the direction p ∈ P if for every
sequence {tn}n ⊂ (0,+∞), tn → 0 and for any sequence {pn}n ⊂ P, pn → p ∈ P , any sequence {yn}n ⊂ Y

with ȳ + tnyn ∈ G(p̄+ tnpn) for each n includes a weak/weak∗ convergent subsequence. If G is weak/weak∗

directional compact at (p̄, ȳ) for every p ∈ P , then G is said to be weak/weak∗ directional compact at (p̄, ȳ) .

Example 2.8 Let X = R+ and Y = l2 be the space of all scalar sequences x = {xi}i∈N ⊂ R with
∞∑
i=1

|xi|2 < +∞ . By {ei}i∈N ⊂ l2 we indicate its standard unit basis. We note the ordering cone on l2 as

follows
K =

{
y = {yi}i∈N ∈ l2 : yi ≥ 0 for every i ∈ N

}
.

K is a closed, convex, and pointed cone with intK = ∅ . Let the set-valued map G : X ⇒ 2Y be defined by

G(x) =

{
{−2xen} , if x =

1

n
,

{x2(e1 + e2)}, elsewhere in R+,

and (p̄, x̄) = (0, 0) ∈ grG . Then, we can check that G is weak directional compact at (p̄, ȳ) . Let un = u = 1 ,
tn = 1

n . Then, for sequence vn with ȳ + tnvn ∈ G(x̄+ tnun) , one has

0 +
1

n
vn ∈ G(0 +

1

n
.1) = −2

1

n
en,

i.e. vn = −2en and vn has no convergent subsequence. Hence, G is not directional compact at (p̄, ȳ) .

Example 2.9 Let X = R+ and Y = l1 be the space of all scalar sequences x = {xi}i∈N ⊂ R with
∞∑
i=1

|xi| < +∞ . We designate by {ei}i∈N ⊂ l1 its standard unit basis. The ordering cone on l1 is considered as

follows
K =

{
y = {yi}i∈N ∈ l1 : yi ≥ 0 for every i ∈ N

}
.
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K is a closed, convex, and pointed cone with intK = ∅ . The set-valued map G : X ⇒ 2Y is given by

G(x) =

{
{3xen} , if x =

1

n
,

{|x|e1}, elsewhere in R+,

and (p̄, x̄) = (0, 0) ∈ grG . Then, we can check that G is weak∗ directional compact at (p̄, ȳ) . Let un = u = 1 ,
tn = 1

n . Then, for sequence vn with ȳ + tnvn ∈ G(x̄+ tnun) , one has

0 +
1

n
vn ∈ G(0 +

1

n
.1) = 3

1

n
en,

i.e. vn = 3en and vn has no weak convergent subsequence. Hence, G is not weak directional compact at (p̄, ȳ) .

In the line of [12], we propose the following notion.

Definition 2.10 A set-valued map G : X ⇒ Y is said to be weak lower semidifferentiable at (p̄, ȳ) ∈ grG in
the direction p ∈ P iff for any sequence hn > 0 and any sequence xn → p̄ with hn(xn − p̄) → p , there exists
a sequence vn ∈ F (xn) in order that hn(vn − ȳ) has a weak convergence subsequence. If G is weak lower
semidifferentiable at (p̄, ȳ) for every p ∈ P , then G is said to be weak lower semidifferentiable at (p̄, ȳ) .

Definition 2.11 A set-valued map G : X ⇒ Y is said to be stable [19] (or local Lipschitz calm) at (p̄, ȳ) ∈ grG

if there exist a real constant M > 0 and a neighborhood U of p̄ such that

G(p) ⊂ {ȳ}+M∥p− p̄∥B(0, 1),∀p ∈ U \ {p̄}.

Lemma 2.12 [19] Let G(p̄) = {ȳ} and let G be stable at (p̄, ȳ) . Then,

DwG(p̄, ȳ)(p) +K = Dw(G+K)(p̄, ȳ)(p),∀p ∈ P.

Lemma 2.13 Let G : P ⇒ Y, (p̄, ȳ) ∈ grG and Tw(epi(G), (p̄, ȳ)) = T (epi(G), (p̄, ȳ)) . Then,

(i) [20] If G is directional compact at (p̄, ȳ) , then DG(p̄, ȳ) = DwG(p̄, ȳ) .

(ii) If G is weak directional compact at (p̄, ȳ) , then DwG(p̄, ȳ) = Dw∗G(p̄, ȳ) .

Lemma 2.14 Let G : X ⇒ Y , (p̄, ȳ) ∈ grG .

(i) If Y is a reflexive Banach space and G is stable at (p̄, ȳ) then Dw
SG(p̄, ȳ)(0) = {0} .

(ii) If G is weak lower semidifferentiable at (p̄, ȳ) then G is weak directional compact at (p̄, ȳ) .

Proof (i) Consider an arbitrary y ∈ Dw
SG(p̄, ȳ)(0) . Then, there exist yn −→

w
y , xn → 0 and tn > 0 in order

that ȳ + tnyn ∈ G(p̄ + tnxn) and tnxn → 0 . Since G is stable at (p̄, ȳ) , we imply that for n large enough,
there exists M > 0 satisfying

ȳ + tnyn ∈ ȳ +M∥tnxn∥B(0, 1).

Consequently,
yn ∈ M∥xn∥B(0, 1).
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Taking the above equation into account, xn → 0 and yn −→
w

y , one infers that y = 0 .

(ii) Let p ∈ P , tn ↓ 0 , pn → p ∈ P , and {yn}n be arbitrary sequence in Y satisfying ȳ + tnyn ∈ G(p̄+ tnpn)

for all n . Setting hn := 1
tn

, xn := p̄ + tnpn , vn := ȳ + tnyn , then hn > 0 , yn = hn(vn − ȳ) , xn → p̄ , and
hn(xn − p̄) = pn → p . As G is weak lower semidifferentiable at (p̄, ȳ) , hn > 0 , xn → p̄ and hn(xn − p̄) → p ,
one can find a sequence vn ∈ G(xn) such that yn = hn(vn − ȳ) has a weak convergence subsequence. 2

Proposition 2.15 For all p ∈ P , one has

DwG(p̄, ȳ)(p) +K ⊆ Dw(G+K)(p̄, ȳ)(p). (2.1)

Proof Let z = y + k for some y ∈ DwG(p̄, ȳ)(p) and k ∈ K . Then, there exist sequence tn ↓ 0 and
{(pn, yn)}n ⊂ grG with (pn, yn) −−→

s,w
(p, y) such that ȳ + tnyn ∈ G(p̄ + tnpn) for al n . Setting y′n := yn + k ,

one has y′n −→
w

y + k and ȳ + tny
′
n ∈ (G+K)(p̄+ tnpn) . Therefore, z = y + k ∈ Dw(G+K)(p̄, ȳ)(p) . 2

The following example shows that the inverse inclusion of (2.1) does not hold.

Example 2.16 Let X = R+ and Y = l1 be the space of all scalar sequences x = {xi}i∈N ⊂ R with
∞∑
i=1

|xi| < +∞ . The standard unit basis of l1 is denoted by {ei}i∈N . The ordering cone of l1 is

K =
{
y = {yi}i∈N ∈ l1 : y1 ≥ 0 for every i ∈ N

}
.

K is a closed, convex, and pointed cone with intK = ∅ . We consider the following set-valued map G : X ⇒ 2Y

as

G(x) =

{
{2xen} , if x =

1

n
,

{xe2 − x2e1}, otherwise in R+

.

Then, for (p̄, ȳ) = (0, 0) and p = 1 ,

Dw(G+K)(0, 0)(1) = K ̸= DwG(0, 0)(1) +K = e2 +K.

Proposition 2.17 Assume that either of the following conditions holds:

(i) G has the weak directional compact property at (p̄, ȳ) ;

(ii) K has a compact base and Dw
SG(p̄, ȳ)(0) ∩ (−K) = {0} ;

(iii) K has a compact base and Dw(G+K)(p̄, ȳ)(p) has domination property.

Then, for all p ∈ P ,
DwG(p̄, ȳ)(p) +K = Dw(G+K)(p̄, ȳ)(p),∀p ∈ P.

Proof By Proposition 2.15, it is sufficient to show the converse inclusion of (2.1).
(i) Now we prove Dw(G + K)(p, y)(p) ⊂ DwG(p, y)(p) + K, ∀p ∈ P . Let y ∈ Dw(G + K)(p, y)(p) be chosen
arbitrarily. By definition there exist sequences tn ↓ 0 and (pn, yn) ∈ grG with (pn, yn) −−→

s,w
(p, y) such that
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y+ tnyn ∈ G(p+ tnpn) . This deduces the existence of {kn}n ⊂ K in order that y+ tn(yn−
kn
tn

) ∈ G(p+ tnpn) .

Because G is weak directionally compact at (p, y) , we ensure that yn−
kn
tn

−→
w

y ∈ Y . Then, kn
tn

−→
w

k = y−y ∈

K and y ∈ DwG(p, y)(p) +K .
(ii) Let p ∈ P and y ∈ Dw(G + K)(p, y)(p) be chosen arbitrarily. According to definition, there are
sequences tn ↓ 0 and {(pn, yn)}n ⊂ grG with (pn, yn) −−→

s,w
(p, y) and the sequence kn ∈ K such that

y + tnyn ∈ G(p + tnpn) + kn . If there exists n0 such that kn = 0 for all n > n0 , then y ∈ Dw(G)(p, y)(p) ⊂
Dw(G)(p, y)(p) +K . Now, assume that kn ̸= 0 . Since K has a compact base, we can denote by kn = αnbn

with αn > 0 and bn → b ̸= 0 . One gets, kn
||kn||

=
bn

||bn||
→ b with b ̸= 0 . Thus, kn

||kn||
−→
w

b .

Case 1: ||kn||
tn

→ +∞ . We obtain ||kn||
(

tn
||kn||

)
pn = tnpn → 0 . Since

y + ||kn||
(

tn
||kn||

yn − kn
||kn||

)
∈ G

(
p+ ||kn||

tn
||kn||

pn

)
,

tn
||kn||

yn − kn
||kn||

−→
w

−b and tn
||kn||

pn → 0 , one has −b ∈ Dw
SG(p̄, ȳ)(0) , which contradicts with Dw

SG(p̄, ȳ)(0)∩

(−K) = {0} .

Case 2: ||kn||
tn

is bounded. Since K has a compact base, we can write that kn = αnbn with αn > 0 and

bn → b ̸= 0 . One has, ||kn||
tn

=
αn

tn
||bn|| →

αn

tn
||b|| with b ̸= 0 . Setting αn

tn
||b|| = λ , we have ||kn||

tn
−→
w

λ ≥ 0 .

Then, since

y + tn

(
yn − ||kn||

tn

kn
||kn||

)
∈ G (p+ tnpn) ,

yn − ||kn||
tn

kn
||kn||

−→
w

y − λk and pn → p , one gets, y − λk ∈ DwG(p, y)(p) ; hence, y ∈ DwG(p, y)(p) +K .

(iii) Since Dw(G+K)(p̄, ȳ)(p) has domination property, for any p ∈ P ,

Dw(G+K)(p̄, ȳ)(p) ⊂ MinKDw(G+K)(p̄, ȳ)(p) +K.

We will prove that MinKDw(G + K)(p̄, ȳ)(p) ⊂ DwG(p̄, ȳ)(p) , for all p ∈ P . Indeed, let y ∈ MinKDw(G +

K)(p̄, ȳ)(p) . The definition gives us the existence of the sequences tn ↓ 0 and {(pn, yn)}n ⊂ grG with
(pn, yn) −−→

s,w
(p, y) and kn ∈ K such that y + tn(yn − kn) ∈ G(p + tnpn) . Since K has a compact base,

we conclude that kn = αnbn with αn > 0 and bn → b ̸= 0 . Then, bn −→
w

b ̸= 0 . Now we prove that αn → 0 .

Reasoning by contraposition, assume that αn ↛ 0 . This provides a positive scalar ε > 0 such that αn ≥ ε for

all n . Setting k′n =
ε

αn
kn . Then, for any n , kn − k′n =

(
1− ε

αn

)
kn ∈ K and

y + tn(yn − k′n) = y + tn(yn − kn) + tn(kn − k′n) ∈ G(p+ tnpn) +K = (G+K)(p+ tnpn).
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Since yn− k′n = yn−
ε

αn
kn = yn− εbn −→

w
y− εb , we have v− εb ∈ Dw(G+K)(p̄, ȳ)(p) and y− (y− εb) = εb ∈

K\{0} , which contradicts y ∈ MinKDw(G+K)(p̄, ȳ)(p) . Therefore, αn → 0 and yn − kn = vn − αnbn −→
w

v .

Hence, y ∈ DwG(p̄, ȳ)(p) . Thus, MinKDw(G + K)(p̄, ȳ)(p) ⊂ DwG(p̄, ȳ)(p) and Dw(G + K)(p̄, ȳ)(p) ⊂
MinKDw(G+K)(p̄, ȳ)(p) +K . It follows that Dw(G+K)(p, y)(p) ⊂ DwG(p, y)(p) +K .

This completes the proof. 2

Corollary 2.18 Let (p̄, ȳ) ∈ grG and suppose that G is weak directionally compact at (p̄, ȳ) . Then, for any
y ∈ Dw(G+K)(p̄, ȳ)(p) , there exists y′ ∈ DwG(p̄, ȳ)(p) , such that y − y′ ∈ K .

Definition 2.19 Let ϕ : X → Y be a vector-valued map.

(i) ϕ is said to be Fréchet differentiable [2] at x ∈ X , iff there exists a linear continuous operator ϕ′
F (x) :

X → Y , such that
ϕ(x) = ϕ(x) + ϕ′

F (x)(x− x) + o(||x− x||),

where o(||x− x||) satisfies o(||x− x||)
||x− x||

→ 0 when x → x .

(ii) ϕ is said to be Hadamard differentiable [4] at x ∈ X in a direction u ∈ X iff there exist a linear continuous
operator ϕ′

H(x) : X → Y , for any sequence un ∈ X with un → u and any sequence tn ↓ 0 :

ϕ′
H(x̄)(u) = lim

un→u,tn↓0

ϕ(x̄+ tnun)− ϕ(x̄)

tn
.

If ϕ is Hadamard differentiable at x ∈ X in any direction u ∈ X , then ϕ is said to be Hadamard
differentiable at x .

Note that if ϕ is be Fréchet differentiable at x , then ϕ is be Hadamard differentiable at x and ϕ′
H(x̄)(u) =

ϕ′
F (x̄)(u) . The following example establishes the statement that the inversion is not true in general.

Example 2.20 Let Y = R and X = l2 = {x = {xi}i∈N |
∞∑
i=1

|xi|2 < +∞} and with standard unit basis

{ei}i∈N ⊂ l2 . Let ϕ : X → Y be a vector-valued map given by

ϕ(x) =


(

1

m

) 1
m+1

, if x =
em
m

,m = 1, 2, ...,

0, otherwise .

Then, ϕ is Hadamard differentiable at x = 0 and ϕ′
H(x̄) = 0l2 . However, with sequence un =

en
n
, ||un||l2 =

1

n
→ 0 , one has

lim
||un||l2→0

|ϕ(un)− ϕ(0)− 0l2(un)|
||un||l2

= lim
n→∞

(
1

n

) 1
n+1

1

n

= lim
n→∞

(
1

n

) 1
n

= 1 ̸= 0.

Hence, ϕ is not Fréchet differentiable at x = 0 .
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Now, let f : P ×X → Y be the objective function, C : P ⇒ X be the feasible decision set-valued map
and the feasible set-valued map F : P ⇒ Y be defined by

F (p) := f (p, C(p)) = {f(p, x) : x ∈ C(p)} . (2.2)

In this paper, the following parameterized vector optimization problem is discussed:

(PVOp) MinK{f(p, x) : x ∈ C(p)} = MinKF (p),

where x is a decision variable and p is a parameter.
The Borwein perturbation/frontier map B : P ⇒ Y of a family of parametric vector optimization problem

is given by
B(p) := BoMinK{f(p, x) | x ∈ C(p)} = BoMinKF (p), (2.3)

and the Borwein efficient solution map S : P ⇒ X is defined by

S(p) := {x ∈ C(p) | f(p, x) ∈ B(p)}. (2.4)

3. The τw -contingent derivative of the Borwein frontier map without constraints
In this part, we derive only the formula for computing the τw -contingent derivative of the Borwein perturbation
solution map B via the Borwein efficient point of the τw -contingent derivative of F . However, by some suitable
changes, most of the results of this part and the next one are still true for τw∗ -contingent derivative.

Lemma 3.1 Suppose that (p̄, ȳ) ∈ grF and F is weak directionally compact at (p̄, ȳ) . Then,

BoMinKDw(F +K)(p̄, ȳ)(p) ⊂ MinKDw(F +K)(p̄, ȳ)(p) ⊂ DwF (p̄, ȳ)(p),∀p ∈ P.

Proof The first inclusion is from the definition. Suppose that y ∈ MinKDw(F + K)(p̄, ȳ)(p) . Then,
y ∈ Dw(F + K)(p̄, ȳ)(p) . According to Corollary 2.18, there exist y′ ∈ DwF (p̄, ȳ)(p) ⊂ Dw(F + K)(p̄, ȳ)(p) ,
which satisfies y − y′ = k′ ∈ K . We will prove that k′ = 0 . Suppose to the contrary that k′ ̸= 0 . Then, we
derive that y /∈ MinKDw(F +K)(p̄, ȳ)(p) , a contradiction. Thus, y = y′ ∈ DwF (p̄, ȳ)(p) . 2

Lemma 3.2 Let (p̄, ȳ) ∈ grF . If F has the weak directionally compact property at (p̄, ȳ) then

BoMinKDwF (p̄, ȳ)(p) ⊂ BoMinKDw(F +K)(p̄, ȳ)(p),∀p ∈ P.

Proof Let y ∈ BoMinKDwF (p̄, ȳ)(p) . One has, y ∈ DwF (p̄, ȳ)(p) ⊂ Dw(F + K)(p̄, ȳ)(p) . Reasoning ad
absurdum, assume that y /∈ BoMinKDw(F + K)(p̄, ȳ)(p) . This arrives at the existence of ŷm ∈ Dw(F +

K)(p̄, ȳ)(p) , hm > 0 such that
lim

m→∞
hm(ŷm − y) ∈ K \ {0}. (3.1)

From Corollary 2.18, there exist ŷ′m ∈ DwF (p̄, ȳ)(p) , such that ŷm − ŷ′m ∈ K , for all m . Thus,

hm(y′ − ŷ′m) = hm(y′ − ŷm) + hm(ŷm − ŷ′m) ∈ K +K \ {0} ⊂ K \ {0}.

Consequently,
lim

m→∞
hm(ŷm − y) ∈ K,

which contradicts (3.1). Thus, y ∈ BoMinKDw(F +K)(p̄, ȳ)(p) . 2
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Definition 3.3 We say that F is K -minicomplete by B around p̄ , iff there exists a neighborhood U of p̄ in
order that, F (p) ⊂ B(p) +K, ∀p ∈ U .

Proposition 3.4 Let (p̄, ȳ) ∈ grB . If F is K -minicomplete by B around p̄ and F is weak directionally
compact at (p̄, ȳ) , then,

BoMinKDwF (p̄, ȳ)(p) ⊂ DwB(p̄, ȳ)(p),∀p ∈ P.

Proof Since B(p) ⊂ F (p) for any p ∈ P and the domination property fulfills for F around p̄ , there is a set
U ∈ N (p̄) such that

B(p) +K = F (p) +K, ∀p ∈ U.

Therefore,
Dw(B +K)(p̄, ȳ)(p) = Dw(F +K)(p̄, ȳ)(p),∀p ∈ P.

It follows from the weak directionally compactness of F at (p̄, ȳ) that B is weak directionally compact at (p̄, ȳ) .
Hence,

BoMinKDwF (p̄, ȳ)(p) ⊂ BoMinKDw(F +K)(p̄, ȳ)(p)

= BoMinKDw(B +K)(p̄, ȳ)(p)

⊂ MinKDw(B +K)(p̄, ȳ)(p)

⊂ DwB(p̄, ȳ)(p),∀p ∈ P.

Here the first inclusion follows from Lemma 3.2, and the second one is attained from Lemma 3.1. 2

Proposition 3.5 Let (p̄, ȳ) ∈ grB . Suppose that the following provisos are fulfilled:

(i) F has the local Lipschitzness at p̄ ;

(ii) F has a weak contingent proto-derivative at (p̄, ȳ) ;

(iii) F is K -minicomplete by B around p̄ ;

(iv) there is a set U ∈ U(p̄) in order that for every p ∈ U,B(p) includes only one element.

Then,
DwB(p̄, ȳ)(p) ⊂ BoMinKDwF (p̄, ȳ)(p),∀p ∈ P.

Proof Let y ∈ DwB(p̄, ȳ)(p) . Then, it amounts to the existence of the sequence tn ↓ 0 and the sequence
(pn, yn) −−→

s,w
(p, y) satisfying

ȳ + tnyn ∈ B(p̄+ tnpn) ⊂ F (p̄+ tnpn),∀n.

Consequently, y ∈ DwF (p̄, ȳ)(p) . Arguing by contradiction, suppose that y ̸∈ BoMinKDwF (p̄, ȳ)(p) . Then,
there exist hm > 0 , ŷm ∈ DwF (p̄, ȳ)(p) such that

lim
m→∞

hm(ŷm − y) ∈ −K \ {0}. (3.2)
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It follows from (ii) and ŷm ∈ DwF (p̄, ȳ)(p) that, for the preceding sequence tn , there exists sequence
(p̂mn , ŷmn) −−→

s,w
(p̄, ŷm) in order that

ȳ + tnŷmn
∈ F (p̄+ tnp̂n),∀n. (3.3)

Since F is K -dominated by B near p̄ , there exists U1 ∈ U(p̄) such that, for all p ∈ U1 ,

F (p) ⊆ B(u) +K. (3.4)

By using the locally Lipschitz of F , one concludes that there exist U2 ∈ U(p̄) and L > 0 such that, for all
u1, u2 ∈ U2 and

F (p1) ⊆ F (p2) + L∥p1 − p2∥BY . (3.5)

Naturally, since tn ↓ 0 , there exists N > 0 such that

p̄+ tnp̂mn , p̄+ tnpn ∈ U ∩ U1 ∩ U2,∀n > N, ∀m. (3.6)

Therefore, from (3.3), (3.6), (3.5), and (3.4), there exists bn ∈ BY in order that, for every n large enough,

ȳ + tn(ŷmn
− L∥p̂mn

− pn∥bn) ∈ F (p̄+ tnpn) ⊆ B(p̄+ tnpn) +K, ∀m. (3.7)

Thus, it follows from (3.7), and assumption (iv), one gets

ȳ + tn(ŷmn
− L∥p̂mn

− pn∥bn)− (ȳ + tnyn) = tn(ŷmn
− L∥p̂mn

− pn∥bn − yn) ∈ K, ∀m.

Thus, ŷmn
− L∥p̂mn

− pn∥bn − yn −→
w

ŷm − y for all m . Since K is a pointed closed convex cone in Banach

space Y (locally convex space), K is also weak closed; hence, ŷm− y ∈ K for all m . Therefore, we derive from
hm > 0 and K is a pointed closed convex cone that

lim
m→∞

hm(ŷm − y) ∈ K,

contradicting (3.2). 2

4. The τw -contingent derivative of the Borwein perturbation map and the Borwein efficient
solution map with constraints

Now, we derive the formulas for computing the τw -contingent derivative of the Borwein proper frontier map
via the Hadamard derivative of the objective function and the τw -contingent derivative of the constraint map.

Proposition 4.1 Let p̄ be in P , x̄ ∈ S(p̄) and ȳ = f(p̄, x̄) . If f is Hadamard differentiable at the point (p̄, x̄)

with its derivative f ′
H(p̄, x̄) and the weak directionally compactness of C at (p̄, x̄) holds, then, one obtains

DwS(p̄, x̄)(p) = {x ∈ X | x ∈ DwC(p̄, x̄)(p) : f ′
H(p̄, x̄)(p, x) ∈ DwB(p̄, ȳ)(p)},∀p ∈ P. (4.1)

Proof Firstly, we will justify that

{x ∈ X | x ∈ DwC(p̄, x̄)(p) : f ′
H(p̄, x̄)(p, x) ∈ DwB(p̄, ȳ)(p)} ⊂ DwS(p̄, x̄)(p),∀p ∈ P.
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Let x be in DwC(p̄, x̄)(p) such that y := f ′
H(p̄, x̄)(p, x) ∈ DwB(p̄, ȳ)(p) . Thus, one yields the existence of the

sequence tn ↓ 0 and the sequence (pn, yn) ⊂ grB in order that (pn, yn) −−→
s,w

(p, y) and

ȳ + tnyn ∈ B(p̄+ tnpn). (4.2)

This leads the existence of sequence xn in X such that xn ∈ C(p̄ + tnpn) and ȳ + tnpn = f(p̄ + tnpn, xn) .

Setting x̂n :=
xn − x̄

tn
, we get

xn = x̄+ tnx̂n ∈ C(p̄+ tnpn), (4.3)

and
ȳ + tnyn = f(p̄+ tnpn, x̄+ tnx̃n). (4.4)

We derive from (4.3) and the weak directionally compactness of C at (p̄, x̄) that the sequence x̄n contains a weak
convergent subsequence. We can assume x̂n −→

w
x̂ with no loss of generality. Then, one has x̄ ∈ DwC(p̄, x̄)(p) .

Moreover, we can infer from (i) and (4.4) that

yn =
f(p̄+ tnpn, x̄+ tnx̂n)− f(p̄, x̄)

tn
→ y.

Taking (4.2), (4.3), and (4.4) into account, one ensures the existence of the sequence tn ↓ 0 and the sequence
(pn, xn) in grS such that (pn, xn) −−→

s,w
(p, x) and

x̄+ tnxn ∈ S(p̄+ tnpn),∀n,

leading to x is in DwS(p̄, x̄)(p) .
Now, we prove that

DwS(p̄, x̄)(p) ⊂ {x ∈ X | x ∈ DwC(p̄, x̄)(p) : f ′
H(p̄, x̄)(p, x) ∈ DwB(p̄, ȳ)(p)}.

Let x ∈ DwS(p̄, x̄)(p) . Then, there exist sequence tn ↓ 0 and the sequence (pn, xn) in P × X such that
(pn, xn) −−→

s,w
(p, x) and

x̄+ tnxn ∈ S(p̄+ tnpn).

This yields that x̄+ tnxn ∈ C(p̄+ tnpn) and

f (p̄+ tnpn, x̄+ tnxn) ∈ B(p̄+ tnpn).

Hence, we obtain that x ∈ DwC(p̄, x̄)(p) . Setting

yn :=
f(p̄+ tnpn, x̄+ tnxn)− f(p̄, x̄)

tn
, (4.5)

one has
ȳ + tnyn ∈ B(p̄+ tnpn).

Moreover, we deduce from the Hadamard differentiability of f at (p̄, x̄) and (4.5) that

yn → f ′
H(p̄, x̄)(p, x).
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Therefore, there exist tn ↓ 0 and (pn, yn) → (p, f ′
H(p̄, x̄)(p, x)) such that

ȳ + tnyn ∈ B(p̄+ tnpn),

which implies that f ′
H(p̄, x̄)(p, x) ∈ DB(p̄+ tnpn) ⊂ DwB(p̄+ tnpn) .

The proof is complete. 2

Proposition 4.2 Let p̄ be a point in P , x̄ ∈ S(p̄) and ȳ = f(p̄, x̄) . If the weak directionally compactness of
C at (p̄, x̄) is satisfied and the Hadarmad derivative f ′

H(p̄, x̄) exists, then,

DwF (p̄, ȳ)(p) = {y ∈ Y | ∃x ∈ DwC(p̄, x̄))(p), y = f ′
H(p̄, x̄)(p, x)},∀p ∈ P. (4.6)

Proof We firstly check that

{y ∈ Y | ∃x ∈ DwC(p̄, x̄))(p), y = f ′
H(p̄, x̄)(p, x)} ⊂ DwF (p̄, ȳ)(p).

Let y ∈ Y such that there exist p ∈ P and x ∈ DwC(x̄, p̄)(p) and y = f ′
H(p̄, x̄)(p, x) . Since x ∈ DwC(p̄, x̄)(p) ,

there exist the sequences tn ↓ 0 and (pn, xn) −−→
s,w

(p, x) in order that, for all n , x̄+ tnxn ∈ C(p̄+ tnpn) . Then,

f((p̄, x̄) + tn(xn, pn)) = f(p̄+ tnpn, x̄+ tnxn) ∈ F (p̄+ tnpn),∀n. (4.7)

Setting vn := 1
tn
(f((p̄, x̄) + tn(pn, xn)) − f(p̄, x̄)) , then we derive from (4.7) and the fact that f is Hadamard

differentiable f at (p̄, x̄) that

ȳ + tnvn ∈ F (p̄+ tnun) and vn → f ′
Hf(p̄, x̄)(p, x).

Hence, y = f ′
H(p̄, x̄)(p, x) ∈ DF (p̄, ȳ)(p) ⊂ DwF (p̄, ȳ)(p) .

Conversely, let y ∈ DwF (p̄, ȳ)(p) . Then, there exist tn ↓ 0 and (pn, yn) −−→
s,w

(p, y) with the property that

ȳ + tnyn ∈ F (p̄+ tnpn) , for all n . Hence, we can find the sequence xn ∈ C(p̄+ tnpn) in order that

ȳ + tnyn = f(xn, p̄+ tnpn),∀n.

Setting x̃n := xn−x̄
tn

, we have
x̄+ tnx̃n ∈ C(p̄+ tnpn)

and
ȳ + tnyn = f(p̄+ tnpn, x̄+ tnx̃n),∀n. (4.8)

As the weak directionally compactness of C at (p̄, x̄) holds, for preceding tn, pn , and x̃n , we imply the existence
of a subsequence, denoted also by x̃n , satisfying x̃n −→

w
x̃ ∈ DwC(p̄, x̄)(p) . It follows from (4.8) and the existence

of the Hadamard derivative of f ′
H(p̄, x̄) that one has

yn =
f(p̄+ tnpn, x̄+ tnx̃n)− ȳ

tn
→ f ′

H(p̄, x̄)(p, x).

Hence, y = f ′
H(p̄, x̄)(p, x) , which justifies the conclusion. 2

By employing Propositions 3.4, 3.5, and 4.1, we obtain the following result:
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Proposition 4.3 Let p̄ be a point in P , x̄ ∈ S(p̄) , and ȳ = f(p̄, x̄) . Assume that all of the following conditions
hold:

(i) the weak directionally compactness of F at (p̄, ȳ) is satisfied;

(ii) F is K -minicomplete by B around p̄ ;

(iii) F has the local Lipschitzness at p̄ ;

(iv) F has a weak contingent proto-derivative at (p̄, ȳ) ;

(v) there exists a neighborhood U of p̄ in order that for any p ∈ U,B(p) contains only one point;

(vi) f has the Hadamard derivative f ′
H(p̄, x̄);

(vii) C has the weak directionally compact property at (p̄, x̄) .

Then, for any p ∈ P ,
DwB(p̄, ȳ)(p) = BoMinKDwF (p̄, ȳ)(p)

= BoMinK{y ∈ Y | ∃x ∈ DwC(p̄, x̄))(p), y = f ′
H(p̄, x̄)(p, x)}.

The obtained results in Section 4 is illustrated in the following example.

Example 4.4 Let P = X = Y = l2 , K = l2+ , f(p, x) = p+ x , and C : l2 ⇒ l2 be defined by

C(p) =

{
{x ∈ X | x ∈ p+K, ∥x∥ ≤ 2∥p∥} ∪ {2p+ p2}, if p ∈ l2+ ∩B(0, 1),
∅, otherwise.

Then,

F (p) =

{
{y ∈ Y | y ∈ 2p+K, ∥y∥ ≤ 3∥p∥} ∪ {3p+ p2}, if p ∈ l2+ ∩B(0, 1),
∅, otherwise,

B(p) =
{

{2p}, if p ∈ l2+ ∩B(0, 1),
∅, otherwise.

Taking (p̄, x̄) = (0, 0) , one has ȳ = f(p̄, x̄) = 0 . We can check easily that the assumptions (ii), (iii), and (v) in
Proposition 4.3 are fulfilled.

Now we will justify that the assumptions (i) and (vii) in Proposition 4.3 hold. Let tn ↓ 0 , pn → p ∈ P

and yn ∈ Y satisfying
ȳ + tnyn ∈ F (p̄+ tnpn).

Then, there are only two cases.
∗ Case 1. If tnyn ∈ 2tnpn +K and ∥tnyn∥ ≤ 3∥tnpn∥ , then one has yn ∈ 2pn +K and ∥yn∥ ≤ 3∥pn∥ . Since
pn → p , there exists M > 0 such that ∥pn∥ < M for all n . Hence, ∥yn∥ ≤ 3∥pn∥ < M , which ensures the
existence of a weak convergent subsequence of yn .
∗ Case 2. If tnyn = 3tnpn + t2npn , then yn = 3pn + tnp

2
n → 3p .

Hence, (i) is fulfilled and (vii) can be checked similarly.
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Moreover, one has, for every p, x ∈ l2 ,

f ′
H(p̄, x̄)(p, x) = p+ x,

i.e. the assumption (vi) in Proposition 4.3 holds.
Straightforward calculations show that

DwC(p̄, ȳ)(p) =

{
{x ∈ X | x ∈ p+K, ∥x∥ ≤ 2∥p∥}, if p ∈ l2+,
∅, otherwise. (4.9)

Indeed, let x ∈ DwC(p̄, ȳ)(p) . Then, we can find the sequences tn ↓ 0 and (pn, xn) −−→
s,w

(p, x) in order that

x̄+ tnxn ∈ C(p̄+ tnpn) for all n , i.e.

tnpn ∈ l2+ ∩B(0, 1), tnxn ∈ tnpn +K, ∥tnxn∥ ≤ 2∥tnpn∥ or tnxn = 2tnpn + t2np
2
n.

Consequently,
pn ∈ l2+, xn ∈ pn +K, ∥xn∥ ≤ 2∥pn∥or xn = 2pn + tnp

2
n.

Letting n → ∞ , one gets
p ∈ l2+, x ∈ p+K, ∥x∥ ≤ 2∥p∥.

Therefore, x is in the right hand side of (4.9).
Conversely, let p ∈ l2+ and x ∈ p +K with ∥x∥ ≤ 2∥p∥ . Then, by taking tn = 1

n , pn = p and xn = x , one
verifies that the sequence tn ↓ 0 and the sequence (pn, xn) → (p, x) satisfying x̄ + tnxn ∈ C(p̄ + tnpn) for all
n . Hence, x ∈ DwC(p̄, ȳ)(p) .

Furthermore, we can check that

DwF (p̄, ȳ)(p) = DwF (p̄, ȳ)(p) =

{
{y ∈ Y | y ∈ 2p+K, ∥y∥ ≤ 3∥p∥}, if p ∈ l2+,
∅, otherwise,

DwB(p̄, ȳ)(p) =
{

{2p}, if p ∈ l2+,
∅, otherwise.

Thus, all the assumptions in Proposition 4.3 are satisfied. Thus, for any p ∈ l2 ,
DwB(p̄, ȳ)(p) = BoMinKDwF (p̄, ȳ)(p)

= BoMinK{y ∈ Y | ∃x ∈ DwC(p̄, x̄))(p), y = f ′
H(p̄, x̄)(p, x)}.

Remark 4.5 In the case that P,X , and Y are Euclidean spaces, i.e. τw -contingent derivatives coincide with
contingent derivatives, the results in Sections 3 and 4 also may be new.
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