

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2020) 44: 169 – 178 © TÜBİTAK doi:10.3906/mat-1910-71

Research Article

Locally d_{δ} -connected and locally D_{δ} -compact spaces

Harshit MATHUR¹, Davinder SINGH^{2*}

¹ Department of Mathematics, University of Delhi, Delhi, India ²Department of Mathematics, Sri Aurobindo College, University of Delhi-South Campus, Delhi, India

Received: 21.10.2019	•	Accepted/Published Online: 19.11.2019	•	Final Version: 20.01.2020
----------------------	---	---------------------------------------	---	----------------------------------

Abstract: The local analogues of the notions of d_{δ} -connectedness and D_{δ} -compactness of a topological space are introduced, and are named respectively, locally d_{δ} -connectedness and locally D_{δ} -compactness. Several properties including characterization of the concepts are discussed.

Key words: d_{δ} -separation relative to a space, d_{δ} -connected relative to a space, D_{δ} -closed relative to a space, locally d_{δ} -connected space, locally D_{δ} -compact space

1. Introduction

In a topological space (X, \mathfrak{F}) , a point x is in the d_{δ} -closure of $S \subset X$, denoted by $[S]_{d_{\delta}}$, if every regular F_{σ} -set containing x intersects S. The set S is d_{δ} -closed if $[S]_{d_{\delta}} = S$ and the complement of a d_{δ} -closed set is d_{δ} -open. We say that S is d_{δ} -connected relative to X, if there exists no pair P and Q of nonempty subsets of X such that $S = P \cup Q$ with $[P]_{d_{\delta}} \cap Q = \emptyset$ and $P \cap [Q]_{d_{\delta}} = \emptyset$, a d_{δ} -separation relative to X. Moreover, S is D_{δ} -closed relative to X if every covering of S by regular F_{σ} -sets in X has a finite subcover, and S is D_{δ} -closure operator, see [4] and [8]. The purpose of this article is to localize the properties of these concepts and observe to what extent the standard results about locally connected and locally compact spaces remain valid. We introduce the concepts of locally d_{δ} -connected and locally D_{δ} -compact spaces, and determine their characterizations. Then, we consider the conditions under which these concepts are heritable to subspaces and the class of functions which preserve them. Also, we establish the invariance of these concepts under the formation of product. The article is concluded with a discussion of two useful applications of the concepts, including a form of Poincaré-Volterra Theorem.

We now recall some definitions and notations.

A regular G_{δ} -set $G \subset X$ is an intersection of a sequence of closed sets whose interior contains G. The complement of a regular G_{δ} -set is called a regular F_{σ} -set.

For spaces X and Y, a function $f: X \to Y$ is said to be pseudo- D_{δ} -supercontinuous if for each $x \in X$ and for each regular F_{σ} -set V containing f(x) in Y, there exists a regular F_{σ} -set U containing x such that $f(U) \subset V$ [7].

A space X is said to be D_{δ} -Hausdorff if for each pair of distinct points x and y of X, there exist disjoint regular F_{σ} -sets U and V containing x and y, respectively [4].

^{*} Correspondence: dstopology@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: Primary 54D05, 54D45; Secondery 54C10.

MATHUR and SINGH/Turk J Math

Let $B_{d_{\delta}}$ denote the collection of all regular F_{σ} -sets in X, which forms a base for a topology $\mathfrak{F}_{d_{\delta}}$ on X such that $\mathfrak{F}_{d_{\delta}} \subset \mathfrak{F}$. The space $(X, \mathfrak{F}_{d_{\delta}})$ is called a D_{δ} -completely regularization of the space (X, \mathfrak{F}) , and is denoted by X^* (see [4]). However, if $B_{d_{\delta}}$ forms a basis for \mathfrak{F} itself, then the space (X, \mathfrak{F}) is said to be a D_{δ} -completely regular space (see [5]).

For a family of spaces $\{X_{\alpha}\}_{\Lambda}$, the product space $\prod_{\Lambda} X_{\alpha}$ is said to be Hd_{δ} -completely regular space if for each $(x_{\alpha})_{\Lambda} \in \prod_{\Lambda} X_{\alpha}$ and for each regular F_{σ} -set F containing $(x_{\alpha})_{\Lambda}$, there exists regular F_{σ} -set $(\bigcap_{\Gamma} \pi_i^{-1}(U_i)) \subset F$ containing $(x_{\alpha})_{\Lambda}$, where $\Gamma \subset \Lambda$ is finite and each U_i is a regular F_{σ} -set containing x_i in X_i for each $i \in \Gamma$ (see[8]).

2. Locally d_{δ} -connected spaces

We begin this section with the definition of locally d_{δ} -connected spaces, and explore its basic properties.

Definition 2.1 A space X is said to be locally d_{δ} -connected at a point $x \in X$ if for each d_{δ} -open set U containing x, there exist a regular F_{σ} -set V containing x and a subset C which is d_{δ} -connected relative to X such that $x \in V \subset C \subset U$.

It is clear from the definition that the family of all regular F_{σ} -sets of a locally d_{δ} -connected space X, which are d_{δ} -connected relative to X, forms a basis for its D_{δ} -completely regularization X^* .

The following example enables us to distinguish the concept of locally d_{δ} -connected space with that of locally connected space, connected space, and subspace d_{δ} -connected relative to a space.

Example 2.2 Consider $[0,1] \subset \mathbb{R}$ and $A = \mathbb{Q} \cap (0,1)$. Let X and Y be the spaces $([0,1], \mathfrak{F}_1)$ and $([0,1], \mathfrak{F}_2)$ respectively, where \mathfrak{F}_1 denotes the usual topology and \mathfrak{F}_2 denotes the topology generated by $\mathfrak{F}_1 \cup \{A\}$ as a subbase. It follows that the disconnected subspace $S = (0, 1/2) \cup (1/2, 1)$ of Y is a locally d_{δ} -connected space which is not even locally connected. Although it is not d_{δ} -connected relative to Y.

Now, we see a characterization of a locally d_{δ} -connected space X in terms of d_{δ} -component of a d_{δ} -open subset relative to X. Here, a d_{δ} -component of subset S relative to X is subset $P \subset S$, which is d_{δ} -connected relative to X, and no d_{δ} -connected relative to X subset of S properly contains P, see [8].

Theorem 2.3 A topological space X is locally d_{δ} -connected if and only if for each d_{δ} -open set U, d_{δ} components of U relative to X are d_{δ} -open.

Proof Let J be a d_{δ} -component of U relative to X. For any $x \in J$, there exist a regular F_{σ} -set V and a subset C which is d_{δ} -connected relative to X such that $x \in V \subset C \subset U$, by our hypothesis. Thus, $x \in V \subset C \subset J$ implies that J is d_{δ} -open.

Conversely, let $U \subset X$ be a d_{δ} -open set and $x \in U$. By hypothesis, d_{δ} -component of U relative to X containing x, is d_{δ} -open. Thus, X is locally d_{δ} -connected at x. Hence, X is locally d_{δ} -connected. \Box

Corollary 2.4 In a locally d_{δ} -connected space X, if $x \neq y$ are points lying in different d_{δ} -components relative to X, then there exists a d_{δ} -separation (P,Q) relative to X with $x \in P$ and $y \in Q$.

Proof It is clear from Theorem 2.3 that a d_{δ} -component relative to X is d_{δ} -open in X, which is d_{δ} -closed in X as well, by [8, Theorem 3.5(2)]. Hence, the pair (J_x, J_y) is a d_{δ} -separation relative to X, where J_x and J_y are d_{δ} -components relative to X containing x and y, respectively.

MATHUR and SINGH/Turk J Math

Consequently, for a locally d_{δ} -connected space X, quasicomponents coincide with d_{δ} -components relative to X.

Theorem 2.5 Let X be a connected, locally d_{δ} -connected space and U be a d_{δ} -open set in X. If J is a d_{δ} -component of U relative to X with $X - [J]_{d_{\delta}}$ is nonempty, then $[J]_{d_{\delta}} - J$ is nonempty such that the pair $(J, X - [J]_{d_{\delta}})$ forms a d_{δ} -separation relative to X.

Proof Assume that $[J]_{d_{\delta}} - J$ is empty. Then J is a d_{δ} -closed set in X. Theorem 2.3 implies that J is d_{δ} -open as well, which is contrary to the hypothesis. Thus, $[J]_{d_{\delta}} - J \neq \emptyset$. Using [8, Theorem 3.5(1)], $(J, X - [J]_{d_{\delta}})$ forms a d_{δ} -separation relative to X because $J \cup (X - [J]_{d_{\delta}}) = X - ([J]_{d_{\delta}} - J)$ is a d_{δ} -open set. \Box

We now introduce the notion of d_{δ} -boundary of a subset of a space to discuss some useful results from [6].

Definition 2.6 For a subset S of space X, the d_{δ} -boundary of S is the set $\partial_{d_{\delta}}S = [S]_{d_{\delta}} \cap [X - S]_{d_{\delta}}$. A point $x \in \partial_{d_{\delta}}S$ is called a d_{δ} -boundary point of S.

Proposition 2.7 If S is a subset of a locally d_{δ} -connected space X, then each d_{δ} -component J of S relative to X satisfies $\partial_{d_{\delta}} J \subset \partial_{d_{\delta}} S$.

Proof Suppose that there is an $x \in \partial_{d_{\delta}} J$ which is not in $\partial_{d_{\delta}} S$. Then there exists a regular F_{σ} -set U_x containing x in X such that either $U_x \subset S$ or $U_x \subset (X - S)$. Since X is locally d_{δ} -connected, there exist another regular F_{σ} -set V_x and a subset C_x which is d_{δ} -connected relative to X, such that $x \in V_x \subset C_x \subset U_x$. As $V_x \cap J \neq \emptyset$, we have $C_x \cap J \neq \emptyset$. Firstly, we assume that $U_x \subset S$. Since J is a d_{δ} -component of S relative to X, $x \in V_x \subset C_x \subset J$, which gives a contradiction to the fact that $x \in \partial_{d_{\delta}} J$. On the other hand, if $U_x \subset (X - S)$, then $V_x \cap J = \emptyset$, again contrary to our assumption. \Box

It follows from Proposition 2.7 that for a d_{δ} -open set U in a locally d_{δ} -connected space X, $\partial_{d_{\delta}} J \cap U = \emptyset$ where J is a d_{δ} -component of U relative to X. Moreover, if d_{δ} -open set U is d_{δ} -connected relative to X, then $\partial_{d_{\delta}} U$ may fail to be d_{δ} -connected relative to X or locally d_{δ} -connected. For instance, consider the d_{δ} open subset $U = \mathbb{R}^2 - (\{(0,0)\} \cup \{(1/n,0) \mid n = 1, 2, ...\})$ of the locally d_{δ} -connected space \mathbb{R}^2 . Then U is d_{δ} -connected relative to \mathbb{R}^2 , but $\partial_{d_{\delta}} U$ is neither d_{δ} -connected relative to \mathbb{R}^2 nor locally d_{δ} -connected at point (0,0).

Now, we shall see that the property of locally d_{δ} -connectedness of a space is inherited by its regular F_{σ} -subset.

Theorem 2.8 Every regular F_{σ} -set A in a locally d_{δ} -connected space X is locally d_{δ} -connected.

Proof Let $x \in A$ and U be a regular F_{σ} -set containing x in A. Since [8, Lemma 3.6] ensures that U is a regular F_{σ} -set in X, we have a regular F_{σ} -set V and a subset C which is d_{δ} -connected relative to X such that $x \in V \subset C \subset U$, by the hypothesis. Hence, V is the required regular F_{σ} -subset of A contained in subset C, which is d_{δ} -connected relative to A from [8, Proposition 3.7].

In general, even pseudo- D_{δ} -supercontinuous functions need not preserve locally d_{δ} -connectedness; we introduce the following functions which do so.

Definition 2.9 For spaces X and Y, a surjective map $f : X \to Y$ is said to be Hd_{δ} -quotient provided a subset $S \subset Y$ is d_{δ} -open in Y if and only if $f^{-1}(S)$ is d_{δ} -open in X.

It is clear that every Hd_{δ} -quotient map is pseudo- D_{δ} -supercontinuous.

Example 2.10 In Example 2.2, the identity map $f: X \to Y$ is an Hd_{δ} -quotient map.

Theorem 2.11 Let $f: X \to Y$ be an Hd_{δ} -quotient map. If X is locally d_{δ} -connected, then so is Y.

Proof For $y \in Y$, let $W \subset Y$ be a d_{δ} -open set containing y. Since f is an Hd_{δ} -quotient map, $f^{-1}(W) = \bigcup_{\Delta} U_{\alpha}$ where each U_{α} is a regular F_{σ} -set in X. For each $x \in f^{-1}(y)$, there is an $\alpha_x \in \Delta$ such that $x \in U_{\alpha_x}$. Then there exist a regular F_{σ} -set V_{α_x} and a subset C_{α_x} which is d_{δ} -connected relative to X such that $x \in V_{\alpha_x} \subset C_{\alpha_x} \subset U_{\alpha_x}$. Now, [8, Theorem 3.18] ensures that $f(C_{\alpha_x})$ is d_{δ} -connected relative to Ysuch that $y \in f(C_{\alpha_x}) \subset W$. Let $V = \bigcup \{V_{\alpha_x} \mid x \in f^{-1}(y)\}$ and $C = \bigcup \{C_{\alpha_x} \mid x \in f^{-1}(y)\}$. As f is an Hd_{δ} quotient map, subset f(V) is a d_{δ} -open set containing y in Y, and subset f(C) is d_{δ} -connected relative to Ybeing a union of subsets d_{δ} -connected relative to Y having common point y. Hence, $y \in f(V) \subset f(C) \subset W$. \Box

Definition 2.12 [3] A function $f: X \to Y$ is said to be D_{δ} -supercontinuous at a point $x \in X$ if for each open set U containing f(x), there is a regular F_{σ} -set V containing x such that $f(V) \subset U$. The function f is said to be D_{δ} -supercontinuous if it is D_{δ} -supercontinuous at each $x \in X$.

Let $f: X \to Y$ be a D_{δ} -supercontinuous function and S be a subset of X. Let (P,Q) be a separation in Y, that is, P and Q are nonempty subsets of Y, where $\operatorname{cl}(P) \cap Q = \emptyset = P \cap \operatorname{cl}(Q)$ with $f(S) = P \cup Q$. Here, $\operatorname{cl}(P)$ denoted the closure of subset P in space Y. Let $A = S \cap f^{-1}(P)$ and $B = S \cap f^{-1}(Q)$. Then $S = A \cup B$, where A and B are nonempty. As f is D_{δ} -supercontinuous, it follows from [3, Theorem 3.5] that $[f^{-1}(Q)]_{d_{\delta}} \subset f^{-1}(\operatorname{cl}(Q))$, which further implies that $A \cap [B]_{d_{\delta}} = \emptyset$. Similarly, we have $[A]_{d_{\delta}} \cap B = \emptyset$. Therefore, (A, B) forms a d_{δ} -separation relative to X with $S = A \cup B$. Hence, the image of a subset which is d_{δ} -connected relative to X under D_{δ} -supercontinuous function $f: X \to Y$, is a connected subset of Y.

Definition 2.13 [3] Let $f: X \to Y$ be a function from space X onto a set Y. The topology on Y for which a subset $S \subset Y$ is open if and only if $f^{-1}(S)$ is d_{δ} -open in X, is called the D_{δ} -quotient topology, and the map f is called the D_{δ} -quotient map.

It easily follows from Definition 2.12 that a D_{δ} -quotient map is D_{δ} -supercontinuous.

Remark 2.14 It is observed that the space X of all rational numbers with discrete topology is locally d_{δ} -connected, whereas the space Y, of all rational numbers with the usual topology is not locally d_{δ} -connected although the identity function $f: X \to Y$ is a D_{δ} -quotient map.

Theorem 2.15 Let $f : X \to Y$ be a D_{δ} -quotient map. If X is locally d_{δ} -connected, then Y is locally connected.

Proof Let $y \in Y$, and let $W \subset Y$ be an open set containing y. Then $f^{-1}(W)$ is a d_{δ} -open set in X because f is a D_{δ} -quotient map. By following the similar arguments as in the proof of Theorem 2.11, for

MATHUR and SINGH/Turk J Math

each $x \in f^{-1}(y)$, we have a regular F_{σ} -set V_x and a subset C_x which is d_{δ} -connected relative to X such that $x \in V_x \subset C_x \subset f^{-1}(W)$. As f is D_{δ} -supercontinuous, $f(C_x)$ is a connected subset of Y such that $y \in f(V_x) \subset f(C_x) \subset W$. Let $V = \bigcup \{V_x \mid x \in f^{-1}(y)\}$ and $C = \bigcup \{C_x \mid x \in f^{-1}(y)\}$. Since f is a D_{δ} -quotient map, f(V) is an open neighbourhood of y, and the set f(C) is connected being a union of connected sets having common point y. Hence, $y \in f(V) \subset f(C) \subset W$.

Next, we note that the concept of locally d_{δ} -connected space X simplifies into locally connected space when X is D_{δ} -completely regular.

Theorem 2.16 The D_{δ} -completely regularization X^* of a space X is locally connected if and only if X is locally d_{δ} -connected.

Proof Assume that the space X^* is locally connected, and let $f: X^* \to X$ be the identity map, where a subset $S \subset X$ is d_{δ} -open if and only if $f^{-1}(S)$ is open in X^* . Let $x \in X$, and let $U \subset X$ be a d_{δ} -open subset containing x. Then U is an open set in X^* . Thus, there exist an open subset V and a connected subset C in space X^* such that $x \in V \subset C \subset U$, by hypothesis. Now, V and U are d_{δ} -open in X, and [8, Theorem 3.25] implies that C is d_{δ} -connected relative to X such that $x \in V \subset C \subset U$. Hence, X is locally d_{δ} -connected space. Since $f^{-1}: X \to X^*$ is a D_{δ} -quotient map, the converse holds from Theorem 2.15.

We close this section with the extension of locally d_{δ} -connectedness to arbitrary products which is subsequent to the introduction of the following useful term.

Definition 2.17 A function $f: X \to Y$ is said to be Hd_{δ} -open if for each regular F_{σ} -set U of X, f(U) is a regular F_{σ} -set in Y.

Example 2.18 Consider the space Y of Example 2.2 and the space Z = [0,1] with topology \mathfrak{S}_K generated by the basis with members in the form of U and U - K, where U is an Euclidean neighborhood and $K = \{1/n \mid n = 1, 2, \ldots\}$. Then the identity map $f: Y \to Z$ is an Hd_{δ} -open map.

It is immediate from the preceding example that an Hd_{δ} -open map need not be open. However, both the concepts coincide on D_{δ} -completely regular spaces.

Theorem 2.19 Let $\{X_{\alpha}\}_{\Lambda}$ be a family of spaces such that $\prod_{\Lambda} X_{\alpha}$ is Hd_{δ} -completely regular. Then $\prod_{\Lambda} X_{\alpha}$ is locally d_{δ} -connected if and only if each X_{α} is locally d_{δ} -connected, and all but finitely many X_{α} are also connected.

Proof Suppose $\prod_{\Lambda} X_{\alpha}$ is locally d_{δ} -connected. Let $x \in X_{\beta}$, and let $U_{\beta} \subset X_{\beta}$ be a regular F_{σ} -set containing x, for $\beta \in \Lambda$. Then $\pi_{\beta}^{-1}(U_{\beta})$ is a regular F_{σ} -set in $\prod_{\Lambda} X_{\alpha}$ containing $w = (w_{\alpha})_{\Lambda}$ with $w_{\beta} = x$, where π_{β} is the projection of $\prod_{\Lambda} X_{\alpha}$ onto X_{β} . By our assumption, there exist a regular F_{σ} -set $V \subset \prod_{\Lambda} X_{\alpha}$ and a subset C which is d_{δ} -connected relative to $\prod_{\Lambda} X_{\alpha}$ such that $w \in V \subset C \subset \pi_{\beta}^{-1}(U_{\beta})$. Since π_{β} is a surjective Hd_{δ} -open pseudo- D_{δ} -supercontinuous function, we have $x \in \pi_{\beta}(V) \subset \pi_{\beta}(C) \subset U_{\beta}$, where the set $\pi_{\beta}(V)$ is a d_{δ} -open set in X_{β} , and $\pi_{\beta}(C)$ is d_{δ} -connected relative to X_{β} from [8, Theorem 3.18]. Additionally, for a regular F_{σ} -set F containing an element $z = (z_{\alpha})_{\alpha \in \Lambda}$ in $\prod_{\Lambda} X_{\alpha}$, there exist another regular F_{σ} -set $\bigcap_{\Gamma} \pi_{i}^{-1}(U_{i}) \subset F$ containing

z and a subset C which is d_{δ} -connected relative to $\prod_{\Lambda} X_{\alpha}$ such that $z \in \bigcap_{\Gamma} \pi_i^{-1}(U_i) \subset C \subset F$, where $\Gamma \subset \Lambda$ is finite and each U_i is a regular F_{σ} -set containing z_i in X_i , for each $i \in \Gamma$. Then, for $\beta \in \Lambda - \Gamma$, we have $\pi_{\beta}(C) = X_{\beta}$ is connected.

Conversely, let $z = (z_{\alpha})_{\Lambda} \in \prod_{\Lambda} X_{\alpha}$, and let $F \subset \prod_{\Lambda} X_{\alpha}$ be a regular F_{σ} -set containing z. Then there is another regular F_{σ} -set $\bigcap_{\Gamma} \pi_i^{-1}(U_i) \subset F$ containing z, where $\Gamma \subset \Lambda$ is finite and each U_i is a regular F_{σ} -set containing z_i in X_i , for each $i \in \Gamma$. By our hypothesis, there are at most finitely many indices $\alpha \in \Lambda - \Gamma$ such that X_{α} is not connected. Assume that the set of these indices is $\Omega = \{\alpha_1, \alpha_2, \ldots, \alpha_m\}$. For each $\beta \in \Gamma \cup \Omega$, X_{β} is locally d_{δ} -connected. Thus, for regular F_{σ} -set $U_{\beta} \subset X_{\beta}$ containing z_{β} , there exist a regular F_{σ} -set V_{β} and a subset C_{β} which is d_{δ} -connected relative to X_{β} such that $z_{\beta} \in V_{\beta} \subset C_{\beta} \subset U_{\beta}$. Therefore, $M = \bigcap_{\Gamma \cup \Omega} \pi_{\beta}^{-1}(V_{\beta})$ is a regular F_{σ} -set in $\prod_{\Lambda} X_{\alpha}$ and $N = \bigcap_{\Gamma \cup \Omega} \pi_{\beta}^{-1}(C_{\beta})$ is d_{δ} -connected relative to $\prod_{\Lambda} X_{\alpha}$ from [8, Theorem 3.20], such that $z \in M \subset N \subset F$. Hence, $\prod_{\Lambda} X_{\alpha}$ is locally d_{δ} -connected.

3. Locally D_{δ} -compact spaces

In this section, we develop the localized version of the concept of D_{δ} -compact space and characterize it.

Definition 3.1 A space X is said to be locally D_{δ} -compact at $x \in X$ if there exist a regular F_{σ} -set U containing x and a subset C which is D_{δ} -closed relative to X such that $x \in U \subset C$. The space X is locally D_{δ} -compact if it is locally D_{δ} -compact at each of its points.

It is clear that a D_{δ} -compact space is locally D_{δ} -compact. Besides, it can be seen in the following example that a locally D_{δ} -compact space may not be D_{δ} -compact.

Example 3.2 The subspace X = [0, 1) of the space Z in Example 2.18 is a locally D_{δ} -compact space, which is neither D_{δ} -compact nor a subset D_{δ} -closed relative to Z. Even the space X is not locally compact at 0 because it does not possess any compact neighborhood of 0.

Next, we have some useful characterizations of locally D_{δ} -compact spaces.

Theorem 3.3 Let X be a D_{δ} -Hausdorff space, then the following statements are equivalent:

- (i) X is locally D_{δ} -compact.
- (ii) For each $x \in X$, there exists a regular F_{σ} -set U containing x such that $[U]_{d_{\delta}}$ is D_{δ} -closed relative to X.
- (iii) For each $x \in X$ and each regular F_{σ} -set V containing x, there exists another regular F_{σ} -set M such that $x \in M \subset [M]_{d_{\delta}} \subset V$ and $[M]_{d_{\delta}}$ is D_{δ} -closed relative to X.
- (iv) For each subset S which is D_{δ} -closed relative to X and a regular F_{σ} -set V containing S, there exists another regular F_{σ} -set M such that $S \subset M \subset [M]_{d_{\delta}} \subset V$ and $[M]_{d_{\delta}}$ is D_{δ} -closed relative to X.

Proof

 $(i) \Rightarrow (ii)$: For $x \in X$, there exist a regular F_{σ} -set U containing x and a subset C which is D_{δ} -closed relative to X such that $x \in U \subset [U]_{d_{\delta}} \subset C$ because C is d_{δ} -closed in the D_{δ} -Hausdorff space X, [8, Theorem 4.9(3)]. Clearly, it follows from [8, Theorem 4.7] that $[U]_{d_{\delta}}$ is D_{δ} -closed relative to X.

 $(ii) \Rightarrow (iii)$: For $x \in X$, there exists a regular F_{σ} -set U containing x such that $[U]_{d_{\delta}}$ is D_{δ} -closed relative to X. Then $U \cap V$ is a regular F_{σ} -set containing x and contained in $[U]_{d_{\delta}}$. From [8, Theorem 4.22], we have a regular F_{σ} -set M such that $x \in M \subset [M]_{d_{\delta}} \subset U \cap V \subset V$. Since $[M]_{d_{\delta}}$ is a d_{δ} -closed subset of X contained in $[U]_{d_{\delta}}$ which is D_{δ} -closed relative to X, we conclude $[M]_{d_{\delta}}$ is D_{δ} -closed relative to X.

 $(iii) \Rightarrow (iv)$: For each $s \in S$, there exists a regular F_{σ} -set M_s such that $s \in M_s \subset [M_s]_{d_{\delta}} \subset V$ where $[M_s]_{d_{\delta}}$ is D_{δ} -closed relative to X. Since S is D_{δ} -closed relative to X, there is a finite collection $\{M_{s_i} \mid i = 1, 2, ..., n\}$ such that $S \subset \bigcup_{i=1}^{n} M_{s_i} = M$. As $[M]_{d_{\delta}} = \bigcup_{i=1}^{n} [M_{s_i}]_{d_{\delta}}$ is a finite union of d_{δ} -closed sets, the subset $[M]_{d_{\delta}}$ is D_{δ} -closed relative to X. Clearly, $S \subset M \subset [M]_{d_{\delta}} \subset V$.

 $(iv) \Rightarrow (i)$: Since a point is certainly D_{δ} -closed relative to X and is contained in the regular F_{σ} -set X, for each $x \in X$, there is a regular F_{σ} -set M such that $\{x\} \subset M \subset [M]_{d_{\delta}}$, where $[M]_{d_{\delta}}$ is D_{δ} -closed relative to X.

Remark 3.4 Note that if X is a locally D_{δ} -compact D_{δ} -Hausdorff space, then the family of all regular F_{σ} -sets whose d_{δ} -closure is D_{δ} -closed relative to X, forms a basis for its D_{δ} -completely regularization X^* .

We turn now to introduce the functions that preserve locally D_{δ} -compact spaces.

Theorem 3.5 The image of a locally D_{δ} -compact space under a surjective Hd_{δ} -open pseudo- D_{δ} -supercontinuous function is locally D_{δ} -compact.

Proof Let $f: X \to Y$ be a surjective Hd_{δ} -open pseudo- D_{δ} -supercontinuous function where X is a locally D_{δ} -compact space. For $y \in Y$, there exist an $x \in X$, a regular F_{σ} -set $U \subset X$ containing x, and a subset C which is D_{δ} -closed relative to X such that $x \in U \subset C$ with f(x) = y. Now, [8, Theorem 4.9(5)] ensures that f(C) is the required subset which is D_{δ} -closed relative to Y. Since f is Hd_{δ} -open, $f(U) \subset Y$ is a d_{δ} -open set containing y such that $y \in f(U) \subset f(C)$.

The following theorem can be proved easily, so the proof is omitted.

Theorem 3.6 A space X is locally D_{δ} -compact if and only if X^* is locally compact.

It is clear from the Definition 2.9 that every surjective Hd_{δ} -open pseudo- D_{δ} -supercontinuous function is an Hd_{δ} -quotient map, whereas the following example establishes that the notion of locally D_{δ} -compact space is not preserved by an Hd_{δ} -quotient map.

Example 3.7 Consider \mathbb{R} with the usual topology, and let an equivalence relation be defined on \mathbb{R} as $x \sim y$ if and only if either x = y or $\{x, y\} \subset \mathbb{Z}$. Let Y be the quotient space \mathbb{R}/\sim . Now, the quotient map $f: \mathbb{R} \to Y$ defined by $x \mapsto \alpha_x$ is an Hd_{δ} -quotient map which is not Hd_{δ} -open, where α_x is the equivalence class of x. However, the D_{δ} -Hausdorff space Y is not locally D_{δ} -compact.

We shall prove that the d_{δ} -closure of any regular F_{σ} -set containing α_n is not D_{δ} -closed relative to Y, where $n \in \mathbb{Z}$ and $\alpha_n \in Y$. It is sufficient to consider a regular F_{σ} -set containing α_n of the form f(U) where

$$U = \bigcup_{n \in \mathbb{Z}} \left(n - r_n, n + r_n \right),$$

175

with $r_n < \frac{1}{4}$. It follows that $[f(U)]_{d_{\delta}} = f([U]_{d_{\delta}})$ with

$$[U]_{d_{\delta}} = \bigcup_{n \in \mathbb{Z}} \left([n - r_n, n + r_n] \right).$$

For each $m \in \mathbb{Z}$, consider a regular F_{σ} -set in \mathbb{R} of the following form

$$V_m = \left(\bigcup_{n < m} \left(n - r_n - \frac{1}{4}, n + r_n + \frac{1}{4}\right)\right) \bigcup \left(\bigcup_{m < n} \left(n - r_n, n + r_n\right)\right).$$

It is clear that the collection $\{f(V_m) \mid m \in \mathbb{Z}\}$ is a covering of $[f(U)]_{d_{\delta}}$ by regular F_{σ} -sets in Y; however, it has no finite subcovering.

In general, subspace of a locally D_{δ} -compact space need not be locally D_{δ} -compact, although d_{δ} -open subsets inherit the property.

Theorem 3.8 Every d_{δ} -open subset of a locally D_{δ} -compact D_{δ} -Hausdorff space is locally D_{δ} -compact.

Proof Let U be a d_{δ} -open set in the locally D_{δ} -compact D_{δ} -Hausdorff space X, and let $x \in U$. Then Theorem 3.3(iii) ensures that there exist regular F_{σ} -sets V and M in X such that $x \in M \subset [M]_{d_{\delta}} \subset V \subset U$ where $[M]_{d_{\delta}}$ is D_{δ} -closed relative to X. Now, [8, Lemma 3.6] implies that the subset $[M]_{d_{\delta}}$ is D_{δ} -closed relative to U because the collection $\{(H_{\lambda} \cap V)\}_{\Lambda}$ is a covering of $[M]_{d_{\delta}}$ by regular F_{σ} -sets of V, whenever $\{H_{\lambda}\}_{\Lambda}$ is a covering of $[M]_{d_{\delta}}$ by regular F_{σ} -sets in U.

Next, we discuss the invariance of locally D_{δ} -compact spaces under the formation of products. For simplicity, we first treat the case of finite product.

Theorem 3.9 Let $\{X_1, X_2, \ldots, X_n\}$ be a finite family of spaces such that $\prod_{i=1}^n X_i$ is Hd_{δ} -completely regular. Then the product space $\prod_{i=1}^n X_i$ is locally D_{δ} -compact if and only if each coordinate space X_i is locally D_{δ} -compact for $i = 1, 2, \ldots, n$.

Proof Let X_1, X_2, \ldots, X_n be locally D_{δ} -compact spaces and $(x_1, x_2, \ldots, x_n) \in \prod_{i=1}^n X_i$. Then there exist a regular F_{σ} -set $U_i \subset X_i$ containing x_i and a subset C_i which is D_{δ} -closed relative to X_i for each $i = 1, 2, \ldots, n$. Thus, $\prod_{i=1}^n U_i$ is a regular F_{σ} -set of $\prod_{i=1}^n X_i$ containing (x_1, \ldots, x_n) and contained in the subset $\prod_{i=1}^n C_i$ which is D_{δ} -closed relative to $\prod_{i=1}^n X_i$, by [8, Theorem 4.10].

Conversely, if $\prod_{i=1}^{n} X_i$ is locally D_{δ} -compact, then $\pi_j(\prod_{i=1}^{n} X_i) = X_j$ is locally D_{δ} -compact for each $1 \leq j \leq n$, because the projection map $\pi_j : \prod_{i=1}^{n} X_i \to X_j$ is surjective Hd_{δ} -open pseudo- D_{δ} -supercontinuous.

However, the property of locally D_{δ} -compactness is not transmitted to arbitrary products. In this regard, we have the following.

Theorem 3.10 Let $\{X_{\alpha}\}_{\Lambda}$ be an infinite family of spaces such that $\prod_{\Lambda} X_{\alpha}$ is Hd_{δ} -completely regular. Then the product space $\prod_{\Lambda} X_{\alpha}$ is locally D_{δ} -compact if and only if each X_{α} is locally D_{δ} -compact, and all but finitely many X_{α} are D_{δ} -compact. **Proof** Let X_{α} be a locally D_{δ} -compact space for each $\alpha \in \Lambda$, and $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the indices such that space X_{α_i} is not D_{δ} -compact for each $i = 1, 2, \ldots, n$. For $(x_{\alpha})_{\Lambda} \in \prod_{\Lambda} X_{\alpha}$, the hypothesis ensures the existence of regular F_{σ} -set V_{α_i} containing x_{α_i} in X_{α_i} and subset C_{α_i} which is D_{δ} -closed relative to X_{α_i} such that $x_{\alpha_i} \in V_{\alpha_i} \subset C_{\alpha_i}$ for $i = 1, 2, \ldots, n$. Then $V_{\alpha_1} \times \ldots \times V_{\alpha_n} \times \prod\{X_{\alpha} \mid \alpha \in \Lambda - \{\alpha_1, \ldots, \alpha_n\}\}$ is a regular F_{σ} -set in $\prod_{\Lambda} X_{\alpha}$ containing $(x_{\alpha})_{\Lambda}$ and contained in $C_{\alpha_1} \times \ldots \times C_{\alpha_n} \times \prod\{X_{\alpha} \mid \alpha \in \Lambda - \{\alpha_1, \ldots, \alpha_n\}\}$, which is D_{δ} -closed relative to $\prod_{\Lambda} X_{\alpha}$ using [8, Theorem 4.10].

Conversely, if $\prod_{\Lambda} X_{\alpha}$ is locally D_{δ} -compact, we assert that $\pi_{\beta}(\prod_{\Lambda} X_{\alpha}) = X_{\beta}$ is locally D_{δ} -compact for each $\beta \in \Lambda$. Now, we have a regular F_{σ} -set U containing $(x_{\alpha})_{\Lambda}$ in $\prod_{\Lambda} X_{\alpha}$ and a subset C which is D_{δ} -closed relative to $\prod_{\Lambda} X_{\alpha}$ such that $(x_{\alpha})_{\Lambda} \in U \subset C$. Since $\prod_{\Lambda} X_{\alpha}$ is Hd_{δ} -completely regular space, there exists another regular F_{σ} -set $W = \bigcap_{\Gamma} \pi_i^{-1}(V_i)$ containing $(x_{\alpha})_{\Lambda}$ and contained in U, where $\Gamma \subset \Lambda$ is finite and each V_i is a regular F_{σ} -set containing x_i in X_i . Also, [8, Theorem 4.9(5)] ensures that $\pi_{\alpha}(C) = X_{\alpha}$ is D_{δ} -compact for $\alpha \notin \Gamma$.

We end this section with the following which discusses a kind of separation through regular F_{σ} -sets.

Theorem 3.11 Let X be a locally D_{δ} -compact D_{δ} -Hausdorff space. If C_1 and C_2 are disjoint subsets which are D_{δ} -closed relative to X, then there exist disjoint regular F_{σ} -sets U and V containing C_1 and C_2 , respectively, such that $[U]_{d_{\delta}}$ and $[V]_{d_{\delta}}$ are D_{δ} -closed relative to X.

Proof Being a subset D_{δ} -closed relative to X, C_2 is d_{δ} -closed subset of D_{δ} -Hausdorff space X from [8, Theorem 4.9(3)]. Thus, $X - C_2$ is a d_{δ} -open set containing C_1 . By part (*iv*) of Theorem 3.3, there exists a regular F_{σ} -set U such that $C_1 \subset U \subset [U]_{d_{\delta}} \subset X - C_2$ where $[U]_{d_{\delta}}$ is D_{δ} -closed relative to X. Similarly, for d_{δ} -open set $X - [U]_{d_{\delta}}$ containing C_2 , there exists another regular F_{σ} -set V such that $C_2 \subset V \subset [V]_{d_{\delta}} \subset X - [U]_{d_{\delta}}$ where $[V]_{d_{\delta}}$ is D_{δ} -closed relative to X.

4. Consequences of the notions

Now we shall demonstrate two interesting applications of the above studied concepts.

Lemma 4.1 [2, p.108] If X is a connected space, then for every covering \mathcal{U} of X by open sets and for every pair of elements x and y in X, there exist $U_1, U_2, \ldots, U_n \in \mathcal{U}$ such that $U_i \cap U_{i+1} \neq \emptyset$ for all $i = 1, 2, \ldots, n-1$, called a string from x to y in \mathcal{U} where $x \in U_1$ and $y \in U_n$.

Note that Lemma 4.1 holds for the covering of X such that d_{δ} -interiors of its members cover X. Here, d_{δ} -interior of $A \subset X$ is the union of all regular F_{σ} -sets of X contained in A.

Theorem 4.2 Let X be a connected, locally d_{δ} -connected, locally D_{δ} -compact D_{δ} -Hausdorff space, and let $x, y \in X$. Then there is a subset C which is d_{δ} -connected relative to X and D_{δ} -closed relative to X containing both x and y.

Proof For each $x \in X$, there exist a regular F_{σ} -set U containing x and a subset K which is D_{δ} -closed relative to X such that $x \in U \subset K$. Since X is locally d_{δ} -connected, there exist another regular F_{σ} -set V and a subset C which is d_{δ} -connected relative to X such that $x \in V \subset C \subset U \subset K$. Then $[C]_{d_{\delta}}$ is d_{δ} -connected relative to X such that $x \in [C]_{d_{\delta}} \subset K$, using [8, Theorem 3.5(2) and Theorem

4.7]. Now, being a connected space, for each pair of elements x and y in X, Lemma 4.1 ensures the existence of finitely many subsets C_1, C_2, \ldots, C_n which are d_{δ} -connected relative to X and D_{δ} -closed relative to X, which forms a string from x to y. Hence, $\bigcup_{i=1}^{n} C_i$ is the required subset which is d_{δ} -connected relative to X and D_{δ} -closed relative to X, containing x and y.

We conclude our discussion with the following form of the Poincaré–Volterra Theorem.

Theorem 4.3 Let X be a connected and locally d_{δ} -connected space which satisfies that for each $x \in X$ and each d_{δ} -open set A containing x in X, there exists a regular F_{σ} -set B such that $x \in B \subset [B]_{d_{\delta}} \subset A$. Let Y be another space having a countable collection of regular F_{σ} -sets, which forms a basis for the D_{δ} -completely regularization Y^{*} of Y, and let $f : X \to Y$ be a pseudo- D_{δ} -supercontinuous function such that, for each $y \in Y$, there is a regular F_{σ} -set H in X with $H \cap f^{-1}(y)$ is a singleton. Now, let U be a collection of subsets of X whose d_{δ} -interiors cover X with the following additional properties:

- 1. The restriction function $f|_P$ of f to each $P \in \mathcal{U}$, maps each d_{δ} -closed set in P to a d_{δ} -closed set in Y.
- 2. Every $P \in \mathcal{U}$ has a countable subset Q with $[Q]_{d_{\delta}} = P$.

Then, the space X is the union of a countable collection of d_{δ} -open sets, each of which is a subset of a member of \mathcal{U} .

Proof Let $\tilde{f}: X^* \to Y^*$ be the function associated with f such that $\tilde{f}(x) = f(x)$ for each $x \in X^*$, where X^* is D_{δ} -completely regularization of X. Thus, [8, Corollary 3.9, Theorem 3.24] and Theorem 2.16 implies that spaces X^* and Y^* satisfy all the conditions of [1, Theorem I, p.114], which provides the required countable collection of d_{δ} -open sets.

Acknowledgements

First author is financially supported by Council of Scientific and Industrial Research, India (Ref. No. 09/045(1664)/2019-EMR-I).

References

- [1] Bourbaki N. Elements of Mathematics, General topology Part 1. Paris, France: Hermann, 1966.
- [2] Hocking JG, Young GS. Topology. London, UK: Addison-Wesley Publishing Co., Inc., 1961.
- [3] Kohli JK, Singh D. D_{δ} -supercontinuous functions. Indian Journal of Pure and Applied Mathematics 2003; 34 (7): 1089-1100.
- [4] Kohli JK, Singh D. Between compactness and quasicompactness. Acta Mathematica Hungarica 2005; 106 (4): 317-329.
- [5] Kohli JK, Singh D. Between regularity and complete regularity and a factorization of complete regularity. Studii şi Cercetări Ştiinţifice. Seria: Matematică. Universitatea din Bacău 2007; 17: 125-134.
- [6] Singh TB. Elements of topology. Boca Raton, FL, USA: CRC Press, 2013.
- [7] Singh D. Pseudo strongly θ-continuous functions. Scientific Studies and Research. Series Mathematics and Informatics 2013; 23 (2): 127-140.
- [8] Singh D, Mathur H. Generalizations of connected and compact sets by d_{δ} -closure operator. Bulletin of the Belgian Mathematical Society. Simon Stevin 2019; 26 (2): 255-273.