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Abstract: In this work the approximation problems of the functions by matrix transforms in weighted Orlicz spaces
with Muckenhoupt weights are studied. We obtain the degree of approximation of functions belonging to Lipschitz class

Lip(α,M,ω) through matrix transforms T
(A)
n (x, f) , and Nörlund means Nn (x, f) of their trigonometric Fourier series.
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1. Introduction
Let T denote the interval [−π, π] , C the complex plane, and Lp(T) , 1 ≤ p ≤ ∞ , the Lebesgue space of
measurable complex-valued functions on T . A convex and continuous function M : [0,∞) → [0,∞) which
satisfies the conditions

M (0) = 0, M (x) > 0 for x > 0

lim
x→0

(M (x) /x) = 0; lim
x→∞

(M (x) /x) = ∞,

is called a Young function. We will say that M satisfies the ∆2−condition if M(2u) ≤ cM(u) for any
u ≥ u0 ≥ 0 with some constant c , independent of u.

For a given Young function M , let L̃M (T) denote the set of all Lebesgue measurable functions f : T →
C for which ∫

T

M (|f(x)|) dx < ∞.

The N− function complementary to M is defined by

N (y) := max
x≥0

(xy −M (x)) , for y ≥ 0.

Let N be the complementary Young function of M . It is well known [32, p. 69], [45, pp. 52-68] that
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the linear span of L̃M (T) equipped with the Orlicz norm

∥f∥LM (T) := sup


∫
T

|f(x)g(x)| dx : g ∈ L̃N (T),
∫
T

N (|g(x)|) dx ≤ 1

 ,

or with the Luxemburg norm

∥f∥∗LM (T) := inf

k > 0 :

∫
T

M

(
|f(x)|
k

)
dx ≤ 1


becomes a Banach space. This space is denoted by LM (T) and is called an Orliczspace [32, p. 26]. The Orlicz
spaces are known as the generalizations of the Lebesgue spaces Lp(T), 1 < p < ∞. If M(x) = M(x, p) := xp,

1 < p < ∞, then Orlicz spaces LM (T) coincides with the usual Lebesgue spaces Lp(T), 1 < p < ∞. Note
that the Orlicz spaces play an important role in many areas such as applied mathematics, mechanics, regularity
theory, fluid dynamics, and statistical physics (e.g., [5,14,39,46]). Therefore, investigation of approximation of
functions by means of Fourier trigonometric series in Orlicz spaces is also important in these areas of research.

The Luxemburg norm is equivalent to the Orlicz norm. The inequalities

∥f∥∗LM (T) ≤ ∥f∥LM (T) ≤ 2 ∥f∥∗LM (T) , f ∈ LM (T)

hold [32, p. 80].
If we choose M(u) = up/p, 1 < p < ∞ then the complementary function is N(u) = uq/q with

1/p+ 1/q = 1 and we have the relation

p−1/p ∥u∥Lp(T) = ∥u∥∗LM (T) ≤ ∥u∥LM (T) ≤ q1/q ∥u∥Lp(T) ,

where ∥u∥Lp(T) =

(∫
T
|u(x)|p dx

)1/p

stands for the usual norm of the Lp(T) space.

If N is complementary to M in Young’s sense and f ∈ LM (T) , g ∈ LN (T) then the so-called strong
Hölder inequalities [32, p. 80] ∫

T

|f(x)g(x)| dx ≤ ∥f∥LM (T) ∥g∥
∗
LN (T) ,

∫
T

|f(x)g(x)| dx ≤ ∥f∥∗LM (T) ∥g∥LN (T)

are satisfied.
The Orlicz space LM (T) is reflexive if and only if the N− function M and its complementary function

N both satisfy the ∆2−condition [45, p. 113].
Let M−1 : [0,∞) → [0,∞) be the inverse function of the N− function M. The lower and upper indices

[6, p. 350]

αM := lim
t→+∞

− log h(t)

log t
, βM := lim

t→o+
− log h(t)

log t
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of the function

h : (0,∞) → (0,∞], h(t) := lim
y→∞

sup
M−1(y)

M−1(ty)
, t > 0,

first considered by Matuszewska and Orlicz [37], are called the Boyd indices of the Orlicz spaces LM (T ) .
It is known that the indices αM and βM satisfy 0 ≤ αM ≤ βM ≤ 1, αN + βM = 1 , αM + βN = 1 and

the space LM (T) is reflexive if and only if 0 < αM ≤ βM < 1. The detailed information about the Boyd indices
can be found in [7–10,38].

A measurable function ω : T → [0,∞] is called a weight function if the set ω−1 ({0,∞}) has Lebesgue
measure zero. With any given weight ω we associate the ω -weighted Orlicz space LM (T, ω) consisting of all
measurable functions f on T such that

∥f∥LM (T,ω) := ∥fω∥LM (T) .

Let 1 < p < ∞, 1/p+ 1/p′ = 1 and let ω be a weight function on T . ω is said to satisfy Muckenhoupt’s
Ap -condition on T if

sup
J

 1

|J |

∫
J

ωp (t) dt

1/p 1

|J |

∫
J

ω−p′ (t) dt

1/p′

< ∞ ,

where J is any subinterval of T , and |J | denotes its length [40].
Let us indicate by Ap (T) the set of all weight functions satisfying Muckenhoupt’s Ap -condition on T .

Let further t1, t2, ..., tn be distinet points on T and let λ1, ..., λn be real numbers. If 1 < p < ∞, 1
p+

1
q =

1 and − 1
p < λj <

1
q , j = 1, ...n then the weight function

ω (τ) :=

n∏
j=1

|τ − tj |λj , (τ ∈ T)

belongs to Ap (T) .

According to [35], [36, Lemma 3.3], and [36, Section 2.3], if LM (T) is reflexive and the weighted function
ω satisfies the condition ω ∈ A1/αM

(T) ∩A1/βM
(T) , then the space LM (T, ω) is also reflexive.

Let LM (T, ω) be a weighted Orlicz space, let 0 < αM ≤ βM < 1 and let ω ∈ A 1
αM

(T)∩A 1
βM

(T) . For

f ∈ LM (T, ω) we set

(νhf) (x) :=
1

2h

h∫
−h

f (x+ t) dt, 0 < h < π, x ∈ T.

By reference [24, Lemma 1], the shift operator νh is a bounded linear operator on LM (T, ω) :

∥νh (f)∥LM (T, ω) ≤ c ∥f∥LM (T, ω) .

The function
ΩM,ω (δ, f) := sup

0<h≤δ
∥f − (νhf)∥LM (T,ω) , δ > 0
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is called the modulus of continuity of f ∈ LM (T, ω) .
It can easily be shown that ΩM, ω (·, f) is a continuous, nonnegative and nondecreasing function satis-

fying the conditions

lim
δ→0

ΩM,ω (δ, f) = 0, ΩM,ω (δ, f + g) ≤ ΩM,ω (δ, f) + ΩM,ω (δ, g)

for f, g ∈ LM (T, ω) .
Let 0 < α ≤ 1. The set of functions f ∈ LM (T, ω) such that

ΩM,ω(f, δ) = O(δα), δ > 0

is called the Lipschitzclass Lip(α,M,ω). Let

a0
2

+

∞∑
k=1

(ak (f) cos kx+ bk (f) sin kx) (1.1)

be the Fourier series of the function f ∈ L1(T) , where ak(f) and bk(f) are the Fourier coefficients of the
function f . The n -th partial sums, Cesaro means of the series (1.1) are defined, respectively, as

Sn (x, f) =
a0
2

+

n∑
k=1

(ak (f) cos kx+ bk (f) sin kx) ,

=
a0
2

+

n∑
k=1

Bk(x, f) =

n∑
k=0

Bk(x, f) , B0(x, f) :=
a0
2

and Bk(x, f) := (ak (f) cos kx+ bk (f) sin kx) ,

σn(x, f) =
1

n+ 1

n∑
m=0

Sm(x, f).

Let {pn} be a real sequence of positive numbers and let Pn. =
n∑

k=0

pk . As in [26] we define Nörlund

means of the Fourier series of f with respect to the sequence {pn} the following form:

Nn (x, f) :=
1

Pn

n∑
k=0

pn−kSk (x, f)

It is known that if pn = 1 (n = 0, 1, 2, ...) , then Nn (x, f) Nörlund means coincide with the Cesaro
mean σn(x, f) .

We suppose that A = (an,k) is the infinite lower triangular matrix with nonnegative entries. Let

s(A)
n =

n∑
k=0

an,k , n = 0, 1, ...

We define the matrix transform of Fourier series of f , by

T (A)
n (x, f) =

n∑
k=0

an,kSk(x, f).
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It is clear that if an,k = pn−k

Pn , then the matrix transform T
(A)
n (·, f) coincides with Nörlund means Nn (·, f) .

Let {pn}∞0 be a sequence of positive real numbers. If there exists a constant c , depending on the sequence
{pn}∞0 , such that, for all n ≥ m the inequality

pn ≤ cpm (pn ≥ cpm)

satisfies, then sequence {pn}∞0 is called almost monotone decreasing (increasing).
Let W 1

M (T, ω) be the linear space of functions for which f is absolutely continuous on T and f ′ ∈
LM (T, ω) .

We use c, c1, c2, ... (which may, in general, differ in different relations) depending only on numbers that
are not important for the questions of interest. We also will use the relation f = O (g) which means that
f ≤ cg for a constant c independent of f and g.

The approximation properties of the partial sums of the Fourier series were studied, and some direct and
inverse theorems for approximation by polynomials in weighted Orlicz spaces were proved in [24]. Using the
k − th modulus of smoothness, the generalized Lipschitz class of functions in weighted Orlicz spaces was also
defined in [24]. In particular, a constructive characterization of the generalized Lipschitz classes in these spaces
was obtained in [24]. Approximation properties of the matrix transforms of functions in the weighted variable
exponent Lebesgue spaces were investigated in [26]. In this work using modulus of continuity in weighted Orlicz
spaces we define Lipschitz class Lip(α,M,ω). In this study, we investigate the degree of approximation of

functions belonging to Lipschitz class Lip(α,M,ω) through matrix transforms T
(A)
n (x, f) and Nörlund means

Nn (·, f) of their trigonometric Fourier series. In this work, we give the weighted Orlicz space versions of the
results obtained in [26] in the case of weighted Lebesgue spaces with variable exponent. Similar problems about
approximation properties of the different sums, constructed according to the Fourier series of given functions
in the different spaces have been investigated by several authors (see, for example, [1–4,11–13,15–31,33,34,41–
44,47]).

Our main results are as follows:

Theorem 1.1 Let f ∈ Lip(α,M,ω), 0 < α < 1, ω ∈ A1/αM
(T)∩A1/βM

, let A = (an,k) be a lower triangular

matrix with
∣∣∣s(A)

n − 1
∣∣∣ = O (n−α) and one of the following conditions holds:

(i) A has almost monotone decreasing rows and (n+ 1) an,0 = O(1),

(ii) A has almost monotone increasing rows and (n+ 1) an,r = O(1),where r is the integer part of
n
2 . Then the estimate ∥∥∥f − T (A)

n (·, f)
∥∥∥
LM (T,ω)

= O(n−α)

holds.

From Theorem 1.1 we have the following Corollary:

Corollary 1.2 Let f ∈ Lip(α,M,ω), 0 < α < 1 , ω ∈ A1/αM
(T) ∩ A1/βM

, let {pn} be a real sequence of
positive numbers and one of the following conditions holds:

(i) {pn} is almost monotone increasing and (n+ 1) pn = O(Pn)
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(ii) {pn} is almost monotone decreasing. Then the relation

∥f −Nn(·, f) ∥LM (T,ω) = O(n−α)

holds.

Theorem 1.3 Let f ∈ Lip(1,M, ω), ω ∈ A1/αM
(T) ∩ A1/βM

, let A = (an,k) be a lower triangular matrix

with
∣∣∣s(A)

n − 1
∣∣∣ = O

(
n−1

)
and one of the following conditions holds:

(i)
n−1∑
k=1

|an,k−1 − an,k| = O(n−1),

(ii)
n−1∑
k=1

(n− k) |an,k−1 − an,k| = O(1).

Then the estimate ∥∥∥f − T (A)
n (·, f)

∥∥∥
LM (T,ω)

= O(n−1) (1.2)

holds.

From Theorem 1.3 we get the following Corollary:

Corollary 1.4 Let f ∈ Lip(1,M, ω), ω ∈ A1/αM
(T)∩A1/βM

, let {pn} be a real sequence of positive numbers
and the inequality

n−1∑
k=1

|pk − pk+1| = O(
Pn

n
),

holds. Then the following relation holds:

∥f −Nn(·, f) ∥LM (T,ω) = O(n−1).

2. Auxiliary results
In the proof of the main results we need the following Lemmas.

Lemma 2.1 Let f ∈ Lip(α,M,ω), 0 < α ≤ 1 and ω ∈ A1/αM
(T) ∩A1/βM

. Then the relation

∥f − Sn(·, f)∥LM (T,ω) = O(n−α), n = 1, 2, 3..

holds.

Proof Let f ∈ Lip(α,M,ω), 0 < α ≤ 1 and ω ∈ A1/αM
(T )∩A1/βM

and let Tn be the polyonomial of best
approximation to f. By [ 24, Theorem 2] the following relation holds:

∥f − Tn∥LM (T,ω) = O

(
ΩM,ω(f,

1

n
)

)
= O

(
n−α

)
. (2.1)

On the other hand, if f ∈ LM (T, ω), ω ∈ A1/αM
(T) ∩ A1/βM

, then according to [24, p.155, relation (15)]
there exists the positive constant c1 such that ineguality

∥Sn (·, f)∥LM (T,ω) ≤ c1 ∥f∥LM (T,ω) (2.2)
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holds. Then from (2.1) and (2.2) we conclude the required result:

∥f − Sn(·, f)∥LM (T,ω) ≤ ∥f − Tn∥LM (T,ω) + ∥Tn − Sn (·, f)∥LM (T,ω)

≤ ∥f − Tn∥LM (T,ω) + ∥Sn (·, Tn − f)∥LM (T,ω)

= O
(
∥f − Tn∥LM (T,ω)

)
= O

(
n−α

)
the required result. 2

Lemma 2.2 Let f ∈ Lip(1,M, ω), ω ∈ A1/αM
(T) ∩A1/βM

. Then the estimate

∥Sn (f)− σn(f)∥LM (T,ω) = O(n−1), n = 1, 2, 3...

holds.

Proof We suppose that f ∈ Lip(1,M, ω), ω ∈ A1/αM
(T) ∩ A1/βM

. We consider a Steklov mean operator
given by

fδ (x) :=
2

δ

δ∫
δ
2

 1

h

h∫
0

f (x+ t) dt

 dh, δ > 0.

Using the method in the proof of [26, relation (29)] we can show that in the weighted Orlicz spaces LM (T, ω)
the inequality

∥f ′
δ∥ ≤ c2δ

−1ΩM,ω(f, δ) ≤ c3

holds. Then applying Fatou’s Lemma we have

∥f ′∥LM (T, ω) ≤
∥∥∥∥ lim
δ→0+

f ′
δ

∥∥∥∥
LM (T, ω)

≤ lim inf
δ→0

∥f ′
δ∥LM (T, ω) ≤ c4.

That is f ′ ∈ LM (T, ω) . Then according to definition of W 1
M (T, ω) we obtain f ∈ W 1

M (T, ω) . If the function

f has the Fourier series
∞∑
k=0

Bk (x, f) , then conjugate function f̃ ′ has the Fourier series
∞∑
k=1

kBk (x, f) . If

f ∈ LM (T, ω), ω ∈ A1/αM
(T)∩A1/βM

, then according to [24, relation (15) ] there exists the positive constant
c5 such that the following ineguality holds:

∥∥∥f̃∥∥∥
LM (T,ω)

≤ c5 ∥f∥LM (T,ω) . (2.3)

.

Taking into account that

sn (x, f)− σn(x, f) =

n∑
k=1

k

n+ 1
Bk (x, f) (2.4)
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by (2.2) and (2.3) we have

∥sn (·, f)− σn(·, f)∥LM (T,ω) =

∥∥∥∥∥
n∑

k=1

k

n+ 1
Bk (·, f)

∥∥∥∥∥
LM (T,ω)

=
1

n+ 1

∥∥∥sn (·, f̃ ′
)∥∥∥

LM (T,ω)

≤ c6
n

∥f ′∥LM (T,ω) = O
(
n−1

)
.

2

Lemma 2.3 [16] Let A = (an,k) be an infinite lower triangular matrix with
∣∣∣s(A)

n − 1
∣∣∣ = O (n−α) , 0 <

α < 1 and one of the following conditions holds: (i) A has almost monotone decreasing rows and
(n+ 1) an,0= O(1 ), (ii) A has almost monotone increasing rows and (n+ 1) an,r = O(1),where r is the
integer part of n

2 . Then the estimate
n∑

k=1

k−αan,k = O
(
n−α

)
holds.

Lemma 2.4 [21] The following relation holds:

∣∣∣∣∣
k∑

m=0

an,m − (k + 1) an,k

∣∣∣∣∣ ≤
k∑

m=1

m |an,m−1 − an,m| . k = 1, 2, ..., n.

3. Proofs of the main results
1.1. Let f ∈ Lip(α,M,ω), 0 < α < 1, ω ∈ A1/αM

(T ) ∩ A1/βM
, let A = (an,k) be a lower triangular matrix

with
∣∣∣s(A)

n − 1
∣∣∣ = O (n−α) and one of the conditions (i) and (ii) of the theorem be satisfied. By definitions of

T
(A)
n (f) (x) and s

(A)
n we have

T (A)
n (x, f)− f(x) =

n∑
k=0

an,kSk(x, f)− f(x)

=

m∑
k=0

an,kSk(x, f)− f(x) + S(A)
n (x, f)− S(A)

n (x, f)

=

n∑
k=0

an,k [Sk(x, f)− f(x] + S(A)
n (x, f)− f(x).

Taking into account that
∣∣∣s(A)

n − 1
∣∣∣ = O (n−α) , by Lemma 2.1 and 2.3 the last equality yields
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∥∥∥f − T (A)
n (·, f)

∥∥∥
LM (T,ω)

= an,o ∥S0(·, f)− f∥LM (T,ω)

+

n∑
k=1

an,k ∥Sk(·, f)− f∥LM (T,ω) +
∣∣∣S(A)

n − 1
∣∣∣ ∥f∥LM (T,ω)

= O

(
1

n+ 1

)
+O (1)

n∑
k=1

an,kk
−α +O

(
n−α

)
= O

(
n−α

)
,

which completes the proof of Theorem 1.1.
1.3. Let f ∈ Lip(1,M, ω), ω ∈ A1/αM

(T ) ∩ A1/βM
and let A = (an,k) be a lower triangular matrix

with
∣∣∣s(A)

n − 1
∣∣∣ = O

(
n−1

)
.Using Lemma 2.1 for α = 1 we obtain

∥∥∥f − T (A)
n (·, f)

∥∥∥
LM (T,ω)

≤
∥∥∥Sn (·, f)− T (A)

n (·, f)
∥∥∥
LM (T,ω)

+ ∥f − Sn (·, f)∥LM (T,ω)

=
∥∥∥Sn (·, f)− T (A)

n (·, f)
∥∥∥
LM (T,ω)

+O
(
n−1

)
. (3.1)

We put An,k :=
n∑

m=k

an,m. Then the following equality holds:

T (A)
n (x, f) =

n∑
k=0

an,kSk (x, f) =

n∑
k=0

an,k

(
k∑

m=0

Bm (x, f)

)

=

n∑
k=0

(
n∑

m=k

an,m

)
Bk (x, f) =

n∑
k=0

An,kBk (x, f) . (3.2)

Using s
(A)
n =

∑n
k=0 an,k we have

Sn (x, f) =

n∑
m=0

Bm (x, f) = An,0

n∑
k=0

Bk (x, f) + (1−An,0)

n∑
k=0

Bk (x, f)

=

n∑
k=0

An,0Bk (x, f) +
(
1− s(A)

n

)
Sk (x, f) . (3.3)

Now combining (3.2) and (3.3) we find

T (A)
n (x, f)− Sn (x, f) =

n∑
k=1

(An,k −An,0)Bk (x, f) +
(
s(A)
n − 1

)
Sn (x, f) .
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From the last equality we get

∥∥∥Sn(·, f)− T (A)
n (·, f)

∥∥∥
LM (T,ω)

≤

∥∥∥∥∥
n∑

k=1

(An,k −An,0)Bk (·, f)

∥∥∥∥∥
LM (T,ω)

+c7

∣∣∣s(A)
n − 1

∣∣∣ ∥f∥LM (T,ω)

=

∥∥∥∥∥
n∑

k=1

(An,k −An,0)Bk (·, f)

∥∥∥∥∥
LM (T,ω)

+O
(
n−1

)
(3.4)

We denote

a∗n,k =
An,k −An,0

k
, k = 1, 2, ..., n.

Using Abel’s transformation (see, for example: [26]) we get

n∑
k=1

(An,k −An,0)Bk (x, f) =

n∑
k=1

Bk (x, f) a
∗
n,kk = a∗n,n

n∑
m=1

mBm (x, f)

+

n−1∑
k=1

(
a∗n,k − a∗n,k+1

)( k∑
m=1

mBm (x, f)

)
. (3.5)

From the last equality we obtain

∥∥∥∥∥
n∑

k=1

(An,k −An,0)Bk (·, f)

∥∥∥∥∥
LM (T,ω)

≤
∣∣a∗n,n∣∣

∥∥∥∥∥
n∑

m=1

mBm (·, f)

∥∥∥∥∥
LM (T,ω)

+

n−1∑
k=1

∣∣a∗n,k − a∗n,k+1

∣∣
×

∥∥∥∥∥
k∑

m=1

mBm (·, f)

∥∥∥∥∥
LM (T,ω)

 . (3.6)

Now we estimate ∥∥∥∥∥
n∑

m=1

mBm (·, f)

∥∥∥∥∥
LM (T,ω)

.

According to (2.4) and Lemma 2.2 the estimation

∥∥∥∥∥
n∑

m=1

mBm (·, f)

∥∥∥∥∥
LM (T,ω)

= (n+ 1) ∥Sn (·, f)− σn (·, f)∥LM (T,ω)

= (n+ 1)O
(
n−1

)
= O (1) (3.7)
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holds.

On the other hand,
∣∣∣s(A)

n − 1
∣∣∣ = O

(
n−1

)
, which implies that

∣∣a∗n,n∣∣ =
|An,n −An,0|

n
=

∣∣∣an,n − s
(A)
n

∣∣∣
n

=
1

n

(
s(A)
n − an,n

)
≤ 1

n
s(A)
n =

1

n
O (1) = O

(
1

n

)
. (3.8)

Using the relations (3.4), (3.6)–(3.8) we get

∥∥∥sn (·, f)− T (A)
n (·, f)

∥∥∥
LM (T,ω)

= O (1)O

(
1

n

)
+O (1)

n−1∑
k=1

∣∣a∗n,k − a∗n,k+1

∣∣
= O

(
1

n

)
+

n−1∑
k=1

∣∣a∗n,k − a∗n,k+1

∣∣ . (3.9)

Now we estimate

n−1∑
k=1

∣∣a∗n,k − a∗n,k+1

∣∣ .
We can show that the following equality holds:

a∗n,k − a∗n,k+1 =
1

k (k + 1)

{
(k + 1) an,k −

k∑
m=0

an,m

}
.

We suppose that condition (i) of Theorem 1.3 is satisfied. Then by Lemma 2.4 the estimate

n−1∑
k=1

∣∣a∗n,k − a∗n,k+1

∣∣ =

n−1∑
k=1

1

k (k + 1)

∣∣∣∣∣
k∑

m=0

an,m − (k + 1) an,k

∣∣∣∣∣
≤

n−1∑
k=1

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m|

=

n−1∑
m=1

m |an,m−1 − an,m|
n−1∑
k=m

1

k (k + 1)

≤
n−1∑
m=1

m |an,m−1 − an,m|
∞∑

k=m

1

k (k + 1)

=

n−1∑
m=1

|an,m−1 − an,m| = O

(
1

n

)
(3.10)

holds. Now combininig (3.1), (3.9), and (3.10) we obtain the relation (1.2) of Theorem 1.3.
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Now under the condition (ii) we prove relation (1.2). Let r :=
[
n
2

]
. By Lemma 2.4 the following inequality

holds:

n−1∑
k=1

∣∣a∗n,k − a∗n,k+1

∣∣ ≤
n−1∑
k=1

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m|

≤
r∑

k=1

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m|

+

n−1∑
k=r

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| , (3.11)

We estimate

r∑
k=1

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| .

Since the condition (ii) satisfies, by Abel’s transformation we get

r∑
k=1

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| ≤
r∑

k=1

|an,k−1 − an,k|

=

r∑
k=1

1

(n− k)
(n− k) |an,k−1 − an,k|

≤ 1

(n− r)
O (1) = O

(
1

n

)
. (3.12)

Now we estimate the second term on the right side of (3.11). The inequality

n−1∑
k=r

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m|

≤
n−1∑
k=r

1

k (k + 1)

{
r∑

m=1

m |an,m−1 − an,m|+
k∑

m=r

m |an,m−1 − an,m|

}

=

n−1∑
k=r

1

k (k + 1)

r∑
m=1

m |an,m−1 − an,m|+
n−1∑
k=r

1

k (k + 1)

k∑
m=r

m |an,m−1 − an,m|

: = Jn1 + Jn2 (3.13)

holds.

Taking into account
r∑

k=1

|an,k−1 − an,k| = O
(
1
n

)
and by (3.11) we have
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Jn1
≤

n−1∑
k=r

1

k (k + 1)

r∑
m=1

|an,m−1 − an,m| = O
(
n−1

) n−1∑
k=r

1

k + 1

= O
(
n−1

)
(n− r)

1

r + 1
= O

(
n−1

)
. (3.14)

Now we estimate the expression Jn2
[26] :

Jn2
≤

n−1∑
k=r

1

k (k + 1)

k∑
m=r

|an,m−1 − an,m| ≤ 1

r + 1

n−1∑
k=r

(
k∑

m=r

|an,m−1 − an,m|

)

≤ 2

n

n−1∑
k=r

(
k∑

m=r

|an,m−1 − an,m|

)
≤ 2

n

n−1∑
k=r

(n− k) |an,k−1 − an,k|

≤ 2

n

n−1∑
k=1

(n− k) |an,k−1 − an,k| =
2

n
O (1) = O

(
n−1

)
. (3.15)

Using the relations (3.13)–(3.15), we have

n−1∑
k=r

1

k (k + 1)

k∑
m=1

m |an,m−1 − an,m| ≤ O
(
n−1

)
.

The last relation, (3.11) and (3.12) imply that

n−1∑
k=1

∣∣a∗n,k − a∗n,k+1

∣∣ = O
(
n−1

)
. (3.16)

Therefore, taking into account the relations (3.1), (3.9), and (3.16) we get∥∥∥f − T (A)
n (·, f)

∥∥∥
LM (T,ω)

= O
(
n−1

)
.

The proof of Theorem 1.3 is completed.
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