Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2020) 44: $207-222$
© TÜBİTAK
doi:10.3906/mat-1805-130

On H-curvature of (α, β)-metrics

Akbar TAYEBI* ${ }^{*}$, Masoome RAZGORDANI ${ }^{(0)}$
Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran

Received: 28.05.2018 • Accepted/Published Online: 25.11.2019 • Final Version: 20.01 .2020

Abstract

The non-Riemannian quantity \mathbf{H} was introduced by Akbar-Zadeh to characterization of Finsler metrics of constant flag curvature. In this paper, we study two important subclasses of Finsler metrics in the class of so-called (α, β)-metrics, which are defined by $F=\alpha \varphi(s), s=\beta / \alpha$, where α is a Riemannian metric and β is a closed 1 -form on a manifold. We prove that every polynomial metric of degree $k \geq 3$ and exponential metric has almost vanishing \mathbf{H}-curvature if and only if $\mathbf{H}=0$. In this case, F reduces to a Berwald metric. Then we prove that every Einstein polynomial metric of degree $k \geq 3$ and exponential metric satisfies $\mathbf{H}=0$. In this case, F is a Berwald metric.

Key words: Polynomial metrics, exponential metric, almost vanishing H-curvature.

1. Introduction

Let (M, F) be a Finsler manifold. Then a global vector field \mathbf{G} is induced by the Finsler metric F on slit tangent bundle $T M_{0}$, which in a standard coordinate $\left(x^{i}, y^{i}\right)$ for $T M_{0}$ is given by $\mathbf{G}=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i}(x, y) \frac{\partial}{\partial y^{i}}$, where $G^{i}=G^{i}(x, y)$ are scalar functions on $T M_{0}[8]$.

In [1], Akbar-Zadeh considered a non-Riemannian quantity \mathbf{H} obtained from the mean Berwald curvature \mathbf{E} by the covariant horizontal differentiation along geodesics. He proved that for a Weyl metric, the flag curvature \mathbf{K} is a scalar function on the manifold $\mathbf{K}=\mathbf{K}(x)$ if and only if $\mathbf{H}=\mathbf{0}[7]$. The quantity $\mathbf{H}_{y}=H_{i j} d x^{i} \otimes d x^{j}$ is defined as the covariant derivative of mean Berwald curvature along geodesics. In local coordinates,

$$
H_{i j}=\frac{1}{2}\left[y^{m} \frac{\partial^{4} G^{k}}{\partial y^{i} \partial y^{j} \partial y^{k} \partial x^{m}}-2 G^{m} \frac{\partial^{4} G^{k}}{\partial y^{i} \partial y^{j} \partial y^{k} \partial y^{m}}-\frac{\partial G^{m}}{\partial y^{i}} \frac{\partial^{3} G^{k}}{\partial y^{j} \partial y^{k} \partial y^{m}}-\frac{\partial G^{m}}{\partial y^{j}} \frac{\partial^{4} G^{k}}{\partial y^{i} \partial y^{k} \partial y^{m}}\right]
$$

A Finsler metric F on an n-dimensional manifold M is called of almost vanishing H-curvature if

$$
\begin{equation*}
\mathbf{H}=\frac{n+1}{2} F^{-1} \theta \mathbf{h} \tag{1.1}
\end{equation*}
$$

where $\theta:=\theta_{i}(x) y^{i}$ is a 1 -form on M and $\mathbf{h}=h_{i j} d x^{i} \otimes d x^{j}$ is the angular tensor [7].
Najafi et al. [6] proved that every R-quadratic metric satisfies $\mathbf{H}=0$. Then, Najafi et al. [7] generalized the Akbar-Zadeh theorem and proved that a Finsler metric F has almost isotropic flag curvature $\mathbf{K}=3 \theta / F+\sigma$ if and only if it has almost vanishing H-curvature, where $\theta=\theta_{i}(x) y^{i}$ is a 1 -form and $\sigma=\sigma(x)$ is a scalar

[^0]function on manifold. Mo [4] found a new equation between H-curvature and Riemannian curvature on a Finsler manifold. Tayebi and Najafi [13] showed that every m-th root metric with almost vanishing H-curvature satisfies $\mathbf{H}=0$. Moreover, Xia [23] proved that a Randers metric has almost isotropic S-curvature if and only if it is of almost vanishing H-curvature. Recently, Zohrehvand and Rezaii [26] have obtained necessary and sufficient conditions for a square metric to be of almost vanishing H-curvature.

Randers metric and square metric belong to the class of (α, β)-metrics. Therefore, in order to find explicit examples of Finsler metrics of almost vanishing H-curvature, we consider (α, β)-metrics. An (α, β)-metric is a Finsler metric of the form $F:=\alpha \varphi(s), s=\beta / \alpha$, where $\varphi=\varphi(s)$ is a C^{∞} function on $\left(-b_{0}, b_{0}\right)$ with certain regularity, $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M (see $[9,14,16,18-$ 20, 22]). A polynomial (α, β)-metric of degree k is given by $\varphi:=(1+s)^{k}, s=\beta / \alpha$, where $k \in \mathbb{N}$. This class of metrics contains Randers metrics $(k=1)$ and square metrics $(k=2)$ as special cases. In this paper, we consider polynomial (α, β)-metrics with almost vanishing H-curvature and prove the following.

Theorem 1.1 Let $F=\alpha \varphi(s)$, $s=\beta / \alpha$, be a polynomial (α, β)-metric of degree $m(m \geq 3)$ on an n dimensional manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a closed 1-form on M. Then F has almost vanishing H-curvature if and only if $\mathbf{H}=0$. In this case, F is a Berwald metric.

Example 1.2 Theorem 1.1 does not hold for the polynomial (α, β)-metrics of degree 1, i.e. the Randers-type Finsler metrics. For example, the standard Funk metric on the Euclidean unit ball is defined by

$$
F(x, y):=\frac{\sqrt{|y|^{2}-\left(|x|^{2}|y|^{2}-<x, y>^{2}\right)}}{1-|x|^{2}}+\frac{<x, y>}{1-|x|^{2}}, \quad y \in T_{x} B^{n}(1) \simeq \mathbb{R}^{n}
$$

where $<,>$ and $|$.$| denote the Euclidean inner product and norm on \mathbb{R}^{n}$, respectively. F is a Randers metric and it is easy to see that β is a closed 1-form. By a simple calculation, it follows that $\mathbf{H}=0$ while F is not Berwald metric.

For an (α, β)-metric $F:=\alpha \varphi(s), s=\beta / \alpha$, let us define $b_{i \mid j}$ by

$$
b_{i \mid j} \theta^{j}:=d b_{i}-b_{j} \theta_{i}^{j}
$$

where $\theta^{i}:=d x^{i}$ and $\theta_{i}^{j}:=\Gamma_{i k}^{j} d x^{k}$ denote the Levi-Civita connection forms of α. Let

$$
\begin{gathered}
r_{i j}:=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}:=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
r_{j}:=b^{i} r_{i j}, \quad r:=b^{i} b^{j} r_{i j}, \quad s_{j}:=b^{i} s_{i j}, \quad r_{0}:=r_{j} y^{j}, \quad s_{0}:=s_{j} y^{j}, \\
r_{i 0}:=r_{i j} y^{j}, \quad r_{00}:=r_{i j} y^{i} y^{j}, \quad s_{i 0}:=s_{i j} y^{j}, \quad s_{j}^{i}:=a^{i m} s_{m j}, \quad r_{j}^{i}:=a^{i m} r_{m j}, \\
q_{i j}:=r_{i m} s^{m}, \quad t_{i j}:=s_{i m} s_{j}^{m}, \quad q_{i}:=b^{i} q_{i j}, \quad t_{i}:=b^{i} t_{i j} .
\end{gathered}
$$

Now, we can give another example.
Example 1.3 Theorem 1.1 does not hold for the polynomial (α, β)-metrics of degree 2 , generally. For example, let $F=(\alpha+\beta)^{2} / \alpha$ be the square metric defined by following

$$
\begin{equation*}
\alpha:=\frac{\sqrt{|y|^{2}\left(1-|x|^{2}\right)+<x, y>^{2}}}{\left(1-|x|^{2}\right)^{2}}, \quad \beta:=\frac{<x, y>}{\left(1-|x|^{2}\right)^{2}} . \tag{1.2}
\end{equation*}
$$

F is an (α, β)-metric on the unit ball $\mathbb{B}^{n}(1) \subset \mathbb{R}^{n}$. We have

$$
b_{i \mid j}=2 \tau\left\{\left(1+2 b^{2}\right) a_{i j}-3 b_{i} b_{j}\right\}
$$

where $\tau=\left(1-|x|^{2}\right) / 2$. Thus, β is closed with respect to α. F has constant flag curvature then it satisfies $\mathbf{H}=0$. Since β is not parallel with respect to α, then F is not a Berwald metric.

Example 1.4 For polynomial (α, β)-metric $F=(\alpha+\beta)^{3} / \alpha^{2}$, we have

$$
\Theta=\frac{3(4 s-1)}{2\left(8 s^{2}-6 B+s-1\right)}, \quad Q=\frac{3}{1-2 s}, \quad \Psi=\frac{3}{-8 s^{2}+6 B-s+1} .
$$

Suppose that F has almost vanishing H-curvature (1.1). Since β is a closed 1-form, then

$$
\begin{aligned}
2 H_{j k}= & {\left[\frac{h_{3}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{4}}{A^{4} \alpha^{3}} r_{00 \mid 0}+\frac{h_{5}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{6}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{13}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{14}}{A^{4} \alpha^{2}} r_{0}^{2}\right] b_{j} b_{k} } \\
& +\left[\frac{h_{17}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{18}}{A^{4} \alpha^{3}} r_{00 \mid 0}+\frac{h_{19}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{20}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{27}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{28}}{A^{4} \alpha^{2}} r_{0}^{2}\right] l_{j} l_{k} \\
& +\left[\frac{h_{31}}{A^{5} \alpha^{4}} r_{00}^{2}+\frac{h_{32}}{A^{3} \alpha^{3}} r_{00 \mid 0}+\frac{h_{33}}{A^{4} \alpha^{3}} r_{00} r_{0}+\frac{h_{34}}{A^{2} \alpha^{2}} r_{0 \mid 0}+\frac{h_{41}}{A^{3} \alpha^{2}} r r_{00}+\frac{h_{42}}{A^{3} \alpha^{2}} r_{0}^{2}\right] a_{j k} \\
& +\frac{h_{43}}{A^{2} \alpha} r_{j k \mid 0}+\left[\frac{h_{45}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{46}}{A^{3} \alpha} r_{0}\right] r_{j k}+\frac{h_{48}}{A^{4} \alpha^{2}} r_{0 j} r_{0 k}+\left[\frac{h_{51}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{52}}{A^{4} \alpha^{3}} r_{00 \mid 0}\right. \\
& \left.+\frac{h_{53}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{54}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{61}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{62}}{A^{4} \alpha^{2}} r_{0}^{2}\right]\left[l_{k} b_{j}+l_{j} b_{k}\right] \\
& +\left[\frac{h_{71}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{72}}{A^{3} \alpha} r_{0}\right]\left[l_{k} r_{j}+l_{j} r_{k}\right]+\left[\frac{h_{74}}{A^{5} \alpha^{3}} r_{00}+\frac{h_{75}}{A^{4} \alpha^{2}} r_{0}+\frac{h_{76}}{A^{3} \alpha} r\right]\left(l_{k} r_{0 j}+l_{j} r_{0 k}\right) \\
& +\left[\frac{h_{89}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{90}}{A^{3} \alpha} r_{0}\right]\left[b_{k} r_{j}+b_{j} r_{k}\right]+\left[\frac{h_{92}}{A^{5} \alpha^{3}} r_{00}+\frac{h_{93}}{A^{4} \alpha^{2}} r_{0}+\frac{h_{94}}{A^{3} \alpha} r\right]\left[b_{k} r_{0 j}+b_{j} r_{0 k}\right] \\
& +\frac{h_{104}}{A^{3} \alpha}\left[r_{k} r_{j 0}+r_{j} r_{k 0}\right]+\frac{h_{106}}{A^{3} \alpha^{2}}\left[l_{k} r_{0 j \mid 0}+l_{j} r_{0 k \mid 0}\right]+\frac{h_{107}}{A^{3} \alpha^{2}}\left[r_{0 j \mid 0} b_{k}+r_{0 k \mid 0} b_{j}\right] \\
& +\frac{h_{108}}{A^{2} \alpha}\left[r_{k \mid 0} b_{j}+r_{j \mid 0} b_{k}\right]+\frac{h_{109}}{A^{2} \alpha}\left[l_{k} r_{j \mid 0}+l_{j} r_{k \mid 0}\right]
\end{aligned}
$$

where $A:=1+6 B+6 B s-9 s^{2}-8 s^{3}, B:=\|\beta\|_{\alpha}=\sqrt{b^{i} b_{i}}$ and $h_{i}(i=1,2, \cdots, 109)$ are the polynomials of variations s and B. By using Lemma 3.1, it follows that β satisfies $r_{i j}=0$ and then it is parallel with respect to α. In this case, F reduces to a Berwald metric.

A Finsler metric $F=F(x, y)$ on an n-dimensional manifold M is called an Einstein metric if its Ricci curvature satisfies $\mathbf{R i c}=(n-1) \lambda F^{2}$, where $\lambda=\lambda(x)$ is a scalar function on M. In [2], it is proved that every Einstein polynomial (α, β)-metric is Ricci-flat. In this paper, we prove the following.

Theorem 1.5 Let $F=\alpha \varphi(s), s=\beta / \alpha$, be a polynomial (α, β)-metric of degree $m(m \geq 3)$ on an n dimensional manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a closed 1-form on M. Suppose that F is an Einstein metric. Then $\mathbf{H}=0$. In this case, F is a Berwald metric.

Example 1.6 The Funk metric is an Einstein metric with a closed 1-form. It satisfies $\mathbf{H}=0$ while it is not a Berwald metric. Then Theorem 1.5 does not hold for the polynomial (α, β)-metrics of degree 1 .

Example 1.7 The square metric in Example 1.3 is a Ricci-flat Finsler metric. Moreover, F is an Einstein metric. However, F is not a Berwald metric. Thus, Theorem 1.5 does not hold for the polynomial (α, β)-metrics of degree 2, generally.

Example 1.8 Let $\varphi(s)=(1+s)^{3}$ be an Einstein metric. By the Theorem 1.1 in [2], F is Ricci-flat. Suppose that β is a closed 1-form. Then $R_{m}^{m}={ }^{\alpha} R_{m}^{m}+T_{m}^{m}=0$, where ${ }^{\alpha} R_{m}^{m}$ denotes the Riemannian curvature of α and

$$
\begin{aligned}
T_{m}^{m}= & {\left[(n-1) \frac{c_{1}}{A^{3}}+\frac{c_{2}}{A^{4}}\right] \frac{r_{00}^{2}}{\alpha^{2}}+\frac{1}{\alpha}\left[r_{0}\left[(n-1) \frac{c_{5}}{A^{2}}+\frac{c_{6}}{A^{3}}\right] r_{00}+\left[(n-1) \frac{c_{7}}{A}+\frac{c_{8}}{A^{2}}\right] r_{00 \mid 0}\right] } \\
& +\frac{c_{11}}{A^{2}}\left(r r_{00}-r_{0}^{2}\right)+\frac{c_{14}}{A}\left(r_{00} r_{m}^{m}-r_{0 m} r_{0}^{m}+r_{00 \mid m} b^{m}-r_{0 m \mid 0} b^{m}\right)
\end{aligned}
$$

$A:=1+6 B+6 B s-9 s^{2}-8 s^{3}$ and $c_{i}(i=1, \cdots, 14)$ are polynomials of variations s and B (see [2] for the corrected version of [25]). It follows that $r_{i j}=0$. Since β is a closed 1-form, then it is parallel with respect to α. In this case, F reduces to a Berwald metric.

The exponential metric is another important (α, β)-metric which is given by $\varphi(s)=e^{s}, s=\beta / \alpha$, (see $[10,15,24])$. Here, we consider exponential (α, β)-metrics with almost vanishing \mathbf{H}-curvature and prove the following.

Theorem 1.9 Let $F=\alpha \varphi(s)$, $s=\beta / \alpha$, be an exponential metric on an n-dimensional manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemann ian metric and $\beta=b_{i}(x) y^{i}$ is a closed 1-form on M. Then F has almost vanishing \mathbf{H}-curvature if and only if $\mathbf{H}=0$. In this case, F is a Berwald metric.

Example 1.10 Let $F=\alpha e^{\beta / \alpha}$ be an exponential metric. At a point $x=\left(x^{1}, \cdots, x^{n}\right) \in \mathbb{R}^{n}$ and in the direction $y=\left(y^{1}, \cdots, y^{n}\right) \in T_{x} \mathbb{R}^{n}$, consider the following Riemannian metric α and 1-form β as follows

$$
\begin{equation*}
\alpha(x, y)=\sqrt{\left(y^{1}\right)^{2}+e^{2 x^{1}}\left[\left(y^{2}\right)^{2}+\cdots+\left(y^{n}\right)^{2}\right]}, \quad \beta(x, y):=y^{1} \tag{1.3}
\end{equation*}
$$

Then $s_{i j}=0$. In this case, F has constant S-curvature [5]. Thus, F satisfies $\mathbf{H}=0$ (see [3] and [5]).
Finally, we consider the Einstein exponential metric and prove the following.

Theorem 1.11 Let $F=\alpha \varphi(s), s=\beta / \alpha$, be an exponential metric on a manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a closed 1-form on M. Suppose that F is an Einstein metric. Then $\mathbf{H}=0$. In this case, F is a Berwald metric.

Example 1.12 Let $F=\alpha e^{\beta / \alpha}$ be an exponential metric, where α and β are defined by (??). Suppose that F is an Einstein metric. Thus, $R_{m}^{m}={ }^{\alpha} R_{m}^{m}+T_{m}^{m}$, where

$$
\begin{align*}
T_{m}^{m}:= & \left\{(n-1) \frac{c_{1}}{A^{3}}+\frac{c_{2}}{A^{4}}\right\} \alpha^{-2} r_{00}^{2}+\alpha^{-1}\left\{\left[(n-1) \frac{c_{5}}{A^{2}}+\frac{c_{6}}{A^{3}}\right] r_{00} r_{0}+\left[(n-1) \frac{c_{7}}{A}+\frac{c_{8}}{A^{2}}\right] r_{00 \mid 0}\right\} \\
& +\frac{c_{11}}{A^{2}}\left(r r_{00}-r_{0}^{2}\right)+\frac{c_{14}}{A}\left(r_{00} r_{m}^{m}-r_{0 m} r_{0}^{m}+r_{00 \mid m} b^{m}-r_{0 m \mid 0} b^{m}\right), \tag{1.4}
\end{align*}
$$

$A=1+B-s-s^{2}$ and $c_{i},(i=1, \cdots, 14)$, are polynomials of variations s and B (see [2]). Thus, we get $g_{2} r_{00}^{2} \equiv 0, \bmod (\mathrm{~A})$, where $I_{2} \equiv g_{2}, \bmod (\mathrm{~A})$, and g_{2} is a polynomial of s and B. By Lemma 3.1, it follows that β is a Killing 1 -form. Then β is parallel with respect to α. In this case, F reduces to a Berwald metric.

2. Preliminary

Let (M, F) be a Finsler manifold. A global vector field \mathbf{G} is induced by F is given by $\mathbf{G}=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i}(x, y) \frac{\partial}{\partial y^{i}}$, where $G^{i}=G^{i}(x, y)$ are given by

$$
G^{i}=\frac{1}{4} g^{i l}\left[\frac{\partial^{2} F^{2}}{\partial x^{k} \partial y^{l}} y^{k}-\frac{\partial F^{2}}{\partial x^{l}}\right]
$$

\mathbf{G} is called the spray of (M, F). The projection of an integral curve of the spray \mathbf{G} is called a geodesic in M [12, 22].

For $y \in T_{x} M_{0}$, define $\mathbf{B}_{y}: T_{x} M \otimes T_{x} M \otimes T_{x} M \rightarrow T_{x} M$ by $\mathbf{B}_{y}(u, v, w):=\left.B^{i}{ }_{j k l}(y) u^{j} v^{k} w^{l} \frac{\partial}{\partial x^{i}}\right|_{x}$, where

$$
B_{j k l}^{i}:=\frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}} .
$$

\mathbf{B} is called Berwald curvature . F is called a Berwald metric if $\mathbf{B}=0$.
For $y \in T_{x} M_{0}$, define $\mathbf{E}_{y}: T_{x} M \otimes T_{x} M \rightarrow \mathbb{R}$ by $\mathbf{E}_{y}(u, v):=E_{i j}(y) u^{i} v^{j}$, where

$$
E_{i j}:=\frac{1}{2} B_{i j m}^{m}
$$

\mathbf{E} is called mean Berwald curvature. F is called a weakly Berwald metric if $\mathbf{E}=0$. By definition, every Berwald metric is a weakly Berwald metric.

For $y \in T_{x} M_{0}$, define the linear transformations $\mathbf{R}_{y}: T_{x} M \rightarrow T_{x} M$ with homogeneity $\mathbf{R}_{\lambda y}=\lambda^{2} \mathbf{R}_{y}$, $\forall \lambda>0$, where $\mathbf{R}_{y}(u):=R^{i}{ }_{k}(y) u^{k} \frac{\partial}{\partial x^{i}}$ and

$$
\begin{equation*}
R_{k}^{i}(y)=2 \frac{\partial G^{i}}{\partial x^{k}}-\frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}} y^{j}+2 G^{j} \frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}}-\frac{\partial G^{i}}{\partial y^{j}} \frac{\partial G^{j}}{\partial y^{k}} . \tag{2.1}
\end{equation*}
$$

The family $\mathbf{R}:=\left\{\mathbf{R}_{y}\right\}_{y \in T M_{0}}$ is called the Riemann curvature (see [11, 17, 21]).
The Ricci curvature $\operatorname{Ric}(x, y)$ is the trace of the Riemann curvature defined by

$$
\boldsymbol{\operatorname { R i c }}(x, y):=R_{m}^{m}(x, y)
$$

A Finsler metric F on an n-dimensional manifold M is called an Einstein metric if the Ricci curvature satisfies

$$
\begin{equation*}
\mathbf{R i c}=(n-1) \sigma F^{2} \tag{2.2}
\end{equation*}
$$

where $\sigma=\sigma(x)$ is a scalar function on M.

3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. First, we remark that the spray coefficients G^{i} of an (α, β)-metric $F=\alpha \varphi(s), s=\beta / \alpha$, and the spray coefficients of the Riemannian metric α are related by
following

$$
G^{i}=G_{\alpha}^{i}+Q \alpha s_{0}^{i}+\left(r_{00}-2 Q \alpha s_{0}\right)\left(\Psi b^{i}+\Theta l^{i}\right)
$$

where $l^{i}:=\alpha^{-1} y_{i}$ and

$$
Q:=\frac{\varphi^{\prime}}{\varphi-s \varphi^{\prime}} \quad \Theta:=\frac{\varphi \varphi^{\prime}-s\left(\varphi \varphi^{\prime \prime}+\varphi^{\prime} \varphi^{\prime}\right)}{2 \varphi\left[\left(\varphi-s \varphi^{\prime}\right)+\left(B^{2}-s^{2}\right) \varphi^{\prime \prime}\right]}, \quad \Psi:=\frac{\varphi^{\prime \prime}}{2\left[\left(\varphi-s \varphi^{\prime}\right)+\left(B^{2}-s^{2}\right) \varphi^{\prime \prime}\right]}
$$

Moreover, $B:=\|\beta\|_{\alpha}=\sqrt{b^{i} b_{i}}$, where $b^{i}:=a^{i j} b_{j}$.
Lemma 3.1 Suppose r_{00} of an (α, β)-metric $F=\alpha \varphi(s), s=\beta / \alpha$, on a manifold M satisfies

$$
I r_{00}^{2} \equiv 0, \quad \bmod \left(a s^{2}+b s+c\right), \quad \text { and } \quad I \not \equiv 0, \quad \bmod \left(a s^{2}+b s+c\right)
$$

where I is a polynomial of B, and s, a, b, and c are polynomials of B and $b \neq 0$. Suppose that r_{1} and r_{2} are the roots of the equation $a s^{2}+b s+c=0$ such that $r_{1}^{2} \neq r_{2}^{2}$. Then $r_{i j}=0$.

Proof The following hold

$$
\begin{equation*}
I r_{00}^{2} \equiv 0, \quad \bmod \left(s-r_{1}\right) \quad \text { and } \quad I r_{00}^{2} \equiv 0, \quad \bmod \left(s-r_{2}\right) \tag{3.1}
\end{equation*}
$$

Let us put

$$
I \equiv f_{1} \quad \bmod \left(s-r_{1}\right) \quad \text { and } \quad I \equiv f_{2} \quad \bmod \left(s-r_{2}\right)
$$

where f_{1} and f_{2} are polynomials of B. Then we have

$$
f_{1} r_{00}^{2} \equiv 0, \quad \bmod \left(s-r_{1}\right) \quad \text { and } \quad f_{2} r_{00}^{2} \equiv 0, \quad \bmod \left(s-r_{2}\right)
$$

which imply that

$$
r_{00}^{2} \equiv 0, \quad \bmod \left(s-r_{1}\right) \quad \text { and } \quad r_{00}^{2} \equiv 0, \quad \bmod \left(s-r_{2}\right)
$$

It follows that

$$
r_{00} \equiv 0 \quad \bmod \left(s-r_{1}\right) \quad \text { and } \quad r_{00} \equiv 0 \quad \bmod \left(s-r_{2}\right)
$$

Suppose that $r_{00} \neq 0$. Then by the Lemma 4.1 in [25], we get

$$
\begin{equation*}
r_{00}=\sigma_{1} \alpha^{2}\left(s^{2}-r_{1}^{2}\right), \quad \text { and } \quad r_{00}=\sigma_{2} \alpha^{2}\left(s^{2}-r_{2}^{2}\right) \tag{3.2}
\end{equation*}
$$

where $\sigma_{1}=\sigma_{1}(x)$ and $\sigma_{2}=\sigma_{2}(x)$ are scalar functions on M. By (3.2), we have

$$
\left(\sigma_{1}-\sigma_{2}\right) \beta^{2}+\left(\sigma_{1} r_{1}^{2}-\sigma_{2} r_{2}^{2}\right) \alpha^{2}=0
$$

Then $\sigma_{1}=\sigma_{2}$ and $r_{1}^{2}=r_{2}^{2}$ which contradict with the assumption. Thus, $r_{00}=0$. Taking vertical derivations of it twice yields $r_{i j}=0$.

Lemma 3.2 Let $F=\alpha \varphi(s)$, $s=\beta / \alpha$, be a polynomial (α, β)-metric of degree m on an n-dimensional manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. Suppose that F has almost vanishing \mathbf{H}-curvature. Then the following holds

$$
\begin{equation*}
f_{1} r_{00} s_{0} \alpha+f_{2} r_{00}^{2}+f_{3} s_{0}^{2} \alpha^{2} \equiv 0, \quad \bmod \left(\left(1-m^{2}\right) s^{2}+(2-m) s+m(m-1) B+1\right) \tag{3.3}
\end{equation*}
$$

where $f_{j},(j=1,2,3)$ are polynomials of variations s and B and they are homogeneous of degree one with respect to s

Proof For the polynomial metric $\varphi(s)=(1+s)^{m}$, we have

$$
\begin{aligned}
Q & =\frac{m}{1+s-s m}, \quad \Theta=\frac{m(1+2 s-2 s m)}{2\left(-m^{2} s^{2}+s^{2}-s m+2 s+1-B m+m^{2} B\right)} \\
\Psi & =\frac{m(m-1)}{2\left(-m^{2} s^{2}+s^{2}-s m+2 s+1-B m+m^{2} B\right)}
\end{aligned}
$$

By assumption, $F=\alpha \varphi(s)$ has almost vanishing \mathbf{H}-curvature, i.e. there exists a 1 -form θ on M such that

$$
\begin{equation*}
H_{j k}=\frac{n+1}{2} \theta F_{y^{j} y^{k}} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{align*}
F_{y^{j} y^{k}}=\frac{(1+s)^{m-2}}{\alpha}\left[\left[1-(m-2) s-(m-1) s^{2}\right] a_{j k}\right. & +\left(m^{2}-m\right) b_{j} b_{k}-\left(m^{2}-m\right)\left(b_{j} l_{k}+b_{k} l_{j}\right) s \\
& \left.+\left[\left(m^{2}-1\right) s^{2}+(m-2) s-1\right] l_{j} l_{k}\right] \tag{3.5}
\end{align*}
$$

$l_{i}:=\alpha_{y^{i}}$ and

$$
\begin{aligned}
2 H_{j k}= & {\left[\frac{h_{1}}{A^{6} D^{3} \alpha^{3}} r_{00} s_{0}+\frac{h_{2}}{A^{4} D^{3} \alpha^{2}} s_{0 \mid 0}+\frac{h_{3}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{4}}{A^{4} \alpha^{3}} r_{00 \mid 0}+\frac{h_{5}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{6}}{A^{3} \alpha^{2}} r_{0 \mid 0}\right.} \\
& +\frac{h_{7}}{A^{4} D^{4} \alpha} t_{0}+\frac{h_{8}}{A^{6} D^{4} \alpha^{2}} s_{0}^{2}+\frac{h_{9}}{A^{4} D^{2} \alpha^{2}} q_{00}+\frac{h_{10}}{A^{3} D^{2} \alpha} q_{0}+\frac{h_{11}}{A^{5} D^{3} \alpha^{2}} r_{0} s_{0}+\frac{h_{12}}{A^{4} D^{2} \alpha} r s_{0} \\
& \left.+\frac{h_{13}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{14}}{A^{4} \alpha^{2}} r_{0}^{2}\right] b_{j} b_{k}+\left[\frac{h_{15}}{A^{6} D^{3} \alpha^{3}} r_{00} s_{0}+\frac{h_{16}}{A^{4} D^{3} \alpha^{2}} s_{0 \mid 0}+\frac{h_{17}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{18}}{A^{4} \alpha^{3}} r_{00 \mid 0}\right. \\
& +\frac{h_{19}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{20}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{21}}{A^{4} D^{4} \alpha} t_{0}+\frac{h_{22}}{A^{6} D^{4} \alpha^{2}} s_{0}^{2}+\frac{h_{23}}{A^{4} D^{2} \alpha^{2}} q_{00}+\frac{h_{24}}{A^{3} D^{2} \alpha} q_{0}
\end{aligned}
$$

$$
\begin{align*}
& \left.+\frac{h_{25}}{A^{5} D^{3} \alpha^{2}} r_{0} s_{0}+\frac{h_{26}}{A^{4} D^{2} \alpha} r s_{0}+\frac{h_{27}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{28}}{A^{4} \alpha^{2}} r_{0}^{2}\right] l_{j} l_{k} \\
& +\left[\frac{h_{29}}{A^{5} D^{2} \alpha^{3}} r_{00} s_{0}+\frac{h_{30}}{A^{3} D^{2} \alpha^{2}} s_{0 \mid 0}+\frac{h_{31}}{A^{5} \alpha^{4}} r_{00}^{2}+\frac{h_{32}}{A^{3} \alpha^{3}} r_{00 \mid 0}+\frac{h_{33}}{A^{4} \alpha^{3}} r_{00} r_{0}+\frac{h_{34}}{A^{2} \alpha^{2}} r_{0 \mid 0}\right. \\
& +\frac{h_{35}}{A^{4} D^{2} \alpha^{2}} r_{0} s_{0}+\frac{h_{36}}{A^{5} D^{3} \alpha^{2}} s_{0}^{2}+\frac{h_{37}}{A^{3} D^{3} \alpha} t_{0}+\frac{h_{38}}{A^{3} D \alpha^{2}} q_{00}+\frac{h_{39}}{A^{2} D \alpha^{2}} q_{0}+\frac{h_{40}}{A^{3} D \alpha} r s_{0} \\
& \left.+\frac{h_{41}}{A^{3} \alpha^{2}} r r_{00}+\frac{h_{42}}{A^{3} \alpha^{2}} r_{0}^{2}\right] a_{j k}+\frac{h_{43}}{A^{2} \alpha} r_{j k \mid 0}+\left[\frac{h_{44}}{A^{4} D \alpha} s_{0}+\frac{h_{45}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{46}}{A^{3} \alpha} r_{0}\right] r_{j k} \\
& +\frac{h_{47}}{A^{4} D^{2}} s_{k} s_{j}+\frac{h_{48}}{A^{4} \alpha^{2}} r_{0 j} r_{0 k}+\left[\frac{h_{49}}{A^{6} D^{3} \alpha^{3}} r_{00} s_{0}+\frac{h_{50}}{A^{4} D^{3} \alpha^{2}} s_{0 \mid 0}+\frac{h_{51}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{52}}{A^{4} \alpha^{3}} r_{00 \mid 0}\right. \\
& +\frac{h_{53}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{54}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{55}}{A^{4} D^{4} \alpha} t_{0}+\frac{h_{56}}{A^{6} D^{4} \alpha^{2}} s_{0}^{2}+\frac{h_{57}}{A^{4} D^{2} \alpha^{2}} q_{00}+\frac{h_{58}}{A^{3} D^{2} \alpha} q_{0} \\
& \left.+\frac{h_{59}}{A^{5} D^{3} \alpha^{2}} r_{0} s_{0}+\frac{h_{60}}{A^{4} D^{2} \alpha} r s_{0}+\frac{h_{61}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{62}}{A^{4} \alpha^{2}} r_{0}^{2}\right]\left(l_{k} b_{j}+l_{j} b_{k}\right)+\left[\frac{h_{63}}{A^{5} D^{3} \alpha} s_{0}\right. \\
& \left.+\frac{h_{64}}{A^{5} D^{2} \alpha^{2}} r_{00}+\frac{h_{65}}{A^{4} D^{2} \alpha} r_{0}+\frac{h_{66}}{A^{3} D} r\right]\left(l_{k} s_{j}+l_{j} s_{k}\right)+\left[\frac{h_{67}}{A^{4} D^{4} \alpha^{2}} s_{0}+\frac{h_{68}}{A^{4} D^{2} \alpha^{3}} r_{00}\right. \\
& \left.+\frac{h_{69}}{A^{3} D^{2} \alpha^{2}} r_{0}\right]\left(l_{k} s_{j 0}+l_{j} s_{k 0}\right)+\left[\frac{h_{70}}{A^{4} D^{2} \alpha} s_{0}+\frac{h_{71}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{72}}{A^{3} \alpha} r_{0}\right]\left(l_{k} r_{j}+l_{j} r_{k}\right) \\
& +\left[\frac{h_{73}}{A^{5} D^{2} \alpha^{2}} s_{0}+\frac{h_{74}}{A^{5} \alpha^{3}} r_{00}+\frac{h_{75}}{A^{4} \alpha^{2}} r_{0}+\frac{h_{76}}{A^{3} \alpha} r\right]\left(l_{k} r_{0 j}+l_{j} r_{0 k}\right)+\frac{h_{77}}{A^{2} D}\left(l_{k} q_{j}+l_{j} q_{k}\right) \\
& +\frac{h_{78}}{A^{3} D \alpha}\left(l_{k} q_{0 j}+l_{j} q_{0 k}\right)+\frac{h_{79}}{A^{3} D^{2} \alpha}\left(l_{k} q_{j 0}+l_{j} q_{k 0}\right)+\frac{h_{80}}{A^{3} D^{3}}\left(l_{k} t_{j}+l_{j} t_{k}\right) \\
& +\left[\frac{h_{81}}{A^{5} D^{2} \alpha^{2}} r_{00}+\frac{h_{82}}{A^{5} D^{3} \alpha} s_{0}+\frac{h_{83}}{A^{4} D^{2} \alpha} r_{0}+\frac{h_{84}}{A^{3} D} r\right]\left(b_{k} s_{j}+b_{j} s_{k}\right)+\left[\frac{h_{85}}{A^{4} D^{4} \alpha^{2}} s_{0}\right. \\
& \left.+\frac{h_{86}}{A^{4} D^{2} \alpha^{3}} r_{00}+\frac{h_{87}}{A^{3} D^{2} \alpha^{2}} r_{0}\right]\left(b_{k} s_{j 0}+b_{j} s_{k 0}\right)+\frac{h_{95}}{A^{3} D^{2} \alpha}\left(b_{k} q_{j 0}+b_{j} q_{k 0}\right) \\
& +\left[\frac{h_{88}}{A^{4} D^{2} \alpha} s_{0}+\frac{h_{89}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{90}}{A^{3} \alpha} r_{0}\right]\left(b_{k} r_{j}+b_{j} r_{k}\right)+\left[\frac{h_{91}}{A^{5} D^{2} \alpha^{2}} s_{0}+\frac{h_{92}}{A^{5} \alpha^{3}} r_{00}\right. \\
& \left.+\frac{h_{93}}{A^{4} \alpha^{2}} r_{0}+\frac{h_{94}}{A^{3} \alpha} r\right]\left(b_{k} r_{0 j}+b_{j} r_{0 k}\right)+\frac{h_{96}}{A^{3} D \alpha}\left(b_{k} q_{0 j}+b_{j} q_{0 k}\right)+\frac{h_{97}}{A^{3} D^{3}}\left(b_{k} t_{j}+b_{j} t_{k}\right) \\
& +\frac{h_{98}}{A^{2} D}\left(b_{k} q_{j}+b_{j} q_{k}\right)+\frac{h_{99}}{A^{3} D^{3} \alpha}\left(s_{k} s_{j 0}+s_{j} s_{k 0}\right)+\frac{h_{100}}{A^{3} D}\left(s_{k} r_{j}+s_{j} r_{k}\right) \\
& +\frac{h_{101}}{A^{4} D \alpha}\left(s_{k} r_{j 0}+s_{j} r_{k 0}\right)+\frac{h_{102}}{A^{3} D \alpha^{2}}\left(s_{k 0} r_{j 0}+s_{j 0} r_{k 0}\right)+\frac{h_{103}}{A^{2} D \alpha}\left(s_{k 0} r_{j}+s_{j 0} r_{k}\right) \\
& +\frac{h_{104}}{A^{3} \alpha}\left(r_{k} r_{j 0}+r_{j} r_{k 0}\right)+\frac{h_{105}}{A^{2} D}\left(q_{k j}+q_{j k}\right)+\frac{h_{106}}{A^{3} \alpha^{2}}\left(l_{k} r_{0 j \mid 0}+l_{j} r_{0 k \mid 0}\right) \\
& +\frac{h_{107}}{A^{3} \alpha^{2}}\left(r_{0 j \mid 0} b_{k}+r_{0 k \mid 0} b_{j}\right)+\frac{h_{108}}{A^{2} \alpha}\left(r_{k \mid 0} b_{j}+r_{j \mid 0} b_{k}\right)+\frac{h_{109}}{A^{2} \alpha}\left(l_{k} r_{j \mid 0}+l_{j} r_{k \mid 0}\right) \\
& +\frac{h_{110}}{A^{3} D^{2} \alpha}\left(l_{j} s_{k \mid 0}+l_{k} s_{j \mid 0}\right)+\frac{h_{111}}{A^{3} D^{2} \alpha}\left(s_{j \mid 0} b_{k}+s_{k \mid 0} b_{j}\right), \tag{3.6}
\end{align*}
$$

where

$$
A:=1+m(m-1) B-(m-2) s-\left(m^{2}-1\right) s^{2}, \quad D:=(m-1) s-1
$$

TAYEBI and RAZGORDANI/Turk J Math

and $h_{i}(i=1,2, \cdots, 111)$ are the polynomials of variations s and B. Substituting (3.6) in (3.4) and multiplying the result with $A^{6} D^{4} \alpha^{4}$ implies that

$$
\begin{equation*}
H_{j k} A^{6} D^{4} \alpha^{4}-\frac{n+1}{2} \theta F_{y^{j} y^{k}} A^{6} D^{4} \alpha^{4}=0 \tag{3.7}
\end{equation*}
$$

The following holds

$$
\theta F_{y^{j} y^{k}} A^{6} D^{4} \alpha^{4} \equiv 0, \quad \bmod (\mathrm{~A})
$$

Then (3.7) is equivalent to the following

$$
\begin{array}{r}
{\left[h_{49} r_{00} s_{0} \alpha+h_{51} D^{4} r_{00}^{2}+h_{56} s_{0}^{2} \alpha^{2}\right]\left(l_{j} b_{k}+l_{k} b_{j}\right)+\left[h_{1} r_{00} s_{0} \alpha+h_{3} D^{4} r_{00}^{2}+h_{8} s_{0}^{2} \alpha^{2}\right] b_{j} b_{k}} \\
+\left[h_{15} r_{00} s_{0} \alpha+h_{17} D^{4} r_{00}^{2}+h_{22} s_{0}^{2} \alpha^{2}\right] l_{j} l_{k} \equiv 0, \quad \bmod (\mathrm{~A}) \tag{3.8}
\end{array}
$$

Multiplying (3.8) with $b^{j} b^{k}$ yields

$$
\begin{equation*}
I_{1} r_{00} s_{0} \alpha+I_{2} r_{00}^{2}+I_{3} s_{0}^{2} \alpha^{2} \equiv 0, \quad \bmod (\mathrm{~A}) \tag{3.9}
\end{equation*}
$$

where $I_{i}(i=1,2,3)$, are polynomials of s and B. Let us put

$$
I_{1} \equiv f_{1} \quad \text { and } \quad I_{2} \equiv f_{2} \quad \text { and } \quad I_{3} \equiv f_{3}, \quad \bmod (\mathrm{~A})
$$

Then by (3.9), we get (3.3).
Now, we can prove Theorem 1.1.
Proof of Theorem 1.1: Let β be a closed 1-form. Then (3.6) reduces to the following:

$$
\begin{align*}
2 H_{j k}= & {\left[\frac{h_{3}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{4}}{A^{4} \alpha^{3}} r_{00 \mid 0}+\frac{h_{5}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{6}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{13}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{14}}{A^{4} \alpha^{2}} r_{0}^{2}\right] b_{j} b_{k} } \\
& +\left[\frac{h_{17}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{18}}{A^{4} \alpha^{3}} r_{00 \mid 0}+\frac{h_{19}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{20}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{27}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{28}}{A^{4} \alpha^{2}} r_{0}^{2}\right] l_{j} l_{k} \\
& +\left[\frac{h_{31}}{A^{5} \alpha^{4}} r_{00}^{2}+\frac{h_{32}}{A^{3} \alpha^{3}} r_{00 \mid 0}+\frac{h_{33}}{A^{4} \alpha^{3}} r_{00} r_{0}+\frac{h_{34}}{A^{2} \alpha^{2}} r_{0 \mid 0}+\frac{h_{41}}{A^{3} \alpha^{2}} r r_{00}+\frac{h_{42}}{A^{3} \alpha^{2}} r_{0}^{2}\right] a_{j k} \\
& +\frac{h_{43}}{A^{2} \alpha} r_{j k \mid 0}+\left[\frac{h_{45}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{46}}{A^{3} \alpha} r_{0}\right] r_{j k}+\frac{h_{48}}{A^{4} \alpha^{2}} r_{0 j} r_{0 k}+\left[\frac{h_{51}}{A^{6} \alpha^{4}} r_{00}^{2}+\frac{h_{52}}{A^{4} \alpha^{3}} r_{00 \mid 0}\right. \\
& \left.+\frac{h_{53}}{A^{5} \alpha^{3}} r_{00} r_{0}+\frac{h_{54}}{A^{3} \alpha^{2}} r_{0 \mid 0}+\frac{h_{61}}{A^{4} \alpha^{2}} r r_{00}+\frac{h_{62}}{A^{4} \alpha^{2}} r_{0}^{2}\right]\left[l_{k} b_{j}+l_{j} b_{k}\right] \\
& +\left[\frac{h_{71}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{72}}{A^{3} \alpha} r_{0}\right]\left[l_{k} r_{j}+l_{j} r_{k}\right]+\left[\frac{h_{74}}{A^{5} \alpha^{3}} r_{00}+\frac{h_{75}}{A^{4} \alpha^{2}} r_{0}+\frac{h_{76}}{A^{3} \alpha} r\right]\left(l_{k} r_{0 j}+l_{j} r_{0 k}\right) \\
& +\left[\frac{h_{89}}{A^{4} \alpha^{2}} r_{00}+\frac{h_{90}}{A^{3} \alpha} r_{0}\right]\left[b_{k} r_{j}+b_{j} r_{k}\right]+\left[\frac{h_{92}}{A^{5} \alpha^{3}} r_{00}+\frac{h_{93}}{A^{4} \alpha^{2}} r_{0}+\frac{h_{94}}{A^{3} \alpha} r\right]\left[b_{k} r_{0 j}+b_{j} r_{0 k}\right] \\
& +\frac{h_{104}}{A^{3} \alpha}\left[r_{k} r_{j 0}+r_{j} r_{k 0}\right]+\frac{h_{106}}{A^{3} \alpha^{2}}\left[l_{k} r_{0 j \mid 0}+l_{j} r_{0 k \mid 0}\right]+\frac{h_{107}}{A^{3} \alpha^{2}}\left[r_{0 j \mid 0} b_{k}+r_{0 k \mid 0} b_{j}\right] \\
& +\frac{h_{108}}{A^{2} \alpha}\left[r_{k \mid 0} b_{j}+r_{j \mid 0} b_{k}\right]+\frac{h_{109}}{A^{2} \alpha}\left[l_{k} r_{j \mid 0}+l_{j} r_{k \mid 0}\right] \tag{3.10}
\end{align*}
$$

By substituting (3.10) in (3.4) and multiplying the result with $A^{6} \alpha^{4}$, we get

$$
\begin{equation*}
H_{j k} A^{6} \alpha^{4}-\frac{n+1}{2} \theta F_{y^{j} y^{k}} A^{6} \alpha^{4}=0 \tag{3.11}
\end{equation*}
$$

Since

$$
\frac{n+1}{2} \theta F_{y^{j} y^{k}} A^{6} \alpha^{4} \equiv 0, \quad \bmod (\mathrm{~A})
$$

then (3.11) is equal to the following

$$
\begin{equation*}
\left[h_{51}\left(l_{j} b_{k}+l_{k} b_{j}\right)+h_{3} b_{j} b_{k}+h_{17} l_{j} l_{k}\right] r_{00}^{2} \equiv 0, \quad \bmod (\mathrm{~A}) \tag{3.12}
\end{equation*}
$$

Multiplying (3.12) with $b^{j} b^{k}$ yields

$$
I_{2} r_{00}^{2} \equiv 0, \quad \bmod (\mathrm{~A})
$$

where I_{2} is a polynomial of s and B. Then we get

$$
f_{2} r_{00}^{2} \equiv 0 \quad \bmod (\mathrm{~A})
$$

where $I_{2} \equiv f_{2} \bmod (\mathrm{~A})$, and f_{2} is a polynomial of s and B and of degree 1 in s. By Lemma 3.1, it follows that β is parallel with respect to α. Plugging this in (3.10) yields $\mathbf{H}=0$. The converse is trivial. On the other hand, every regular (α, β)-metric is a Berwald metric if and only if β is parallel with respect to α. This completes the proof.

4. Proof of Theorem 1.5

In this section, we are going to prove Theorem 1.5. First, we prove the following.

Lemma 4.1 Let $F=\alpha \varphi(s)$, $s=\beta / \alpha$, be a polynomial (α, β)-metric of degree m on an n-dimensional manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. Suppose that F is an Einstein metric. Then the following holds

$$
\begin{equation*}
g_{1} r_{00} s_{0} \alpha+g_{2} r_{00}^{2}+g_{3} s_{0}^{2} \alpha^{2} \equiv 0, \quad \bmod \left(\left(1-m^{2}\right) s^{2}+(2-m) s+m(m-1) B+1\right) \tag{4.1}
\end{equation*}
$$

where $g_{j}(j=1,2,3)$, are polynomials of variations B and s.
Proof Let $\varphi(s)=(1+s)^{m} \quad(m \geq 3)$ be an Einstein metric. By the Theorem 1.1 in [2], F is Ricci-flat. Then

$$
\begin{equation*}
R_{m}^{m}={ }^{\alpha} R_{m}^{m}+T_{m}^{m}=0, \tag{4.2}
\end{equation*}
$$

where ${ }^{\alpha} R_{m}^{m}$ denotes the Riemannian curvature of α and

$$
\begin{aligned}
T_{m}^{m}= & {\left[(n-1) \frac{c_{1}}{A^{3}}+\frac{c_{2}}{A^{4}}\right] \frac{r_{00}^{2}}{\alpha^{2}}+\frac{1}{\alpha}\left[\left[(n-1) \frac{c_{3}}{A^{3} D}+\frac{c_{4}}{A^{4} D}\right] r_{00} s_{0}+r_{0}\left[(n-1) \frac{c_{5}}{A^{2}}+\frac{c_{6}}{A^{3}}\right] r_{00}\right.} \\
& \left.+\left[(n-1) \frac{c_{7}}{A}+\frac{c_{8}}{A^{2}}\right] r_{00 \mid 0}\right]+\left[\left[(n-1) \frac{c_{9}}{A^{3} D^{3}}+\frac{c_{10}}{A^{4} D^{3}}\right] s_{0}^{2}+\frac{c_{11}}{A^{2}}\left(r r_{00}-r_{0}^{2}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +\left[(n-1) \frac{c_{12}}{A^{2} D}+\frac{c_{13}}{A^{3} D}\right] r_{0} s_{0}+\frac{c_{14}}{A}\left(r_{00} r_{m}^{m}-r_{0 m} r_{0}^{m}+r_{00 \mid m} b^{m}-r_{0 m \mid 0} b^{m}\right) \\
& \left.+\left[(n-1) \frac{c_{15}}{A D}+\frac{c_{16}}{A^{2} D}\right] r_{0 m} s_{0}^{m}+\left[(n-1) \frac{c_{17}}{A D}+\frac{c_{18}}{A^{2} D}\right] s_{0 \mid 0}+\frac{c_{19}}{D^{3}} s_{0 m} s_{0}^{m}\right] \\
& +\left[\frac{c_{20}}{A^{2} D} r s_{0}+\left[(n-1) \frac{c_{21}}{A D^{2}}+\frac{c_{22}}{A^{2} D^{2}}\right] s_{m} s_{0}^{m}+\frac{c_{23}}{A D}\left(3 s_{m} r_{0}^{m}-2 s_{0} r_{m}^{m}+2 r_{m} s_{0}^{m}\right.\right. \\
& \left.\left.-2 s_{0 \mid m} b^{m}+s_{m \mid 0} b^{m}\right)+\frac{c_{24}}{D} s_{0 \mid m}^{m}\right] \alpha+\left[\frac{c_{25}}{A D^{2}} s_{m} s^{m}+\frac{c_{26}}{D^{2}} s_{m}^{i} s_{i}^{m}\right] \alpha^{2} \tag{4.3}
\end{align*}
$$

$A=1+m(m-1) B-(m-2) s-\left(m^{2}-1\right) s^{2}, D:=(m-1) s-1$ and $c_{i}(i=1, \cdots, 26)$, are polynomials of variations s and B (see [2] for the corrected version of [25]). Putting (4.3) in (4.2) and multiplying the result with $A^{4} D^{3} \alpha^{2}$ implies that

$$
{ }^{\alpha} R_{m}^{m} A^{4} D^{3} \alpha^{2}+T_{m}^{m} A^{4} D^{3} \alpha^{2}=0
$$

${ }^{\alpha} R_{m}^{m}$ is a polynomial with respect to s and B. Since ${ }^{\alpha} R_{m}^{m} A^{4} D^{3} \alpha^{2} \equiv 0, \bmod (\mathrm{~A})$, then we get $T_{m}^{m} A^{4} D^{3} \alpha^{2} \equiv$ $0, \bmod (\mathrm{~A})$. By (4.3), we obtain

$$
r_{00} s_{0} \alpha c_{4} D^{2}+r_{00}^{2} c_{2} D^{3}+s_{0}^{2} \alpha^{2} c_{10} \equiv 0, \quad \bmod (\mathrm{~A})
$$

Put

$$
c_{4} D^{2} \equiv g_{1} \quad \text { and } \quad c_{2} D^{3} \equiv g_{2} \quad \text { and } \quad c_{10} \equiv g_{3} \quad \bmod (\mathrm{~A})
$$

Then we get (4.1).
Proof of the Theorem 1.5: Let β be a closed 1-form on M. By Lemma 4.1, we get

$$
g_{2} r_{00}^{2} \equiv 0, \bmod (\mathrm{~A})
$$

where $I_{2} \equiv g_{2}, \bmod (\mathrm{~A})$, and g_{2} is polynomials of s and B and of degree 1 in s. By Lemma 3.1, it follows that β is Killing. Then β is parallel with respect to α. In this case, F reduces to a Berwald metric.

5. Proof of Theorem 1.9

In this section, we are going to prove Theorem 1.9. First, we prove the following.
Lemma 5.1 Let $F=\alpha \varphi(s), s=\beta / \alpha$, be an exponential metric on an n-dimensional manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1-form on M. Suppose that F has almost vanishing \mathbf{H}-curvature. Then the following holds

$$
\begin{equation*}
h_{1} r_{00} s_{0} \alpha+h_{2} r_{00}^{2}+h_{3} s_{0}^{2} \alpha^{2} \equiv 0, \quad \bmod \left(-s^{2}-s+B+1\right) \tag{5.1}
\end{equation*}
$$

where $h_{j}(j=1,2,3)$ are polynomials of variations s and B and of degree one in s.
Proof For the exponential metric $\varphi(s)=e^{s}$, we have

$$
Q=\frac{1}{1-s}, \quad \Theta=\frac{2 s-1}{2\left(s^{2}+s-B-1\right)}, \quad \Psi=\frac{1}{2\left(1+B-s-s^{2}\right)}
$$

By assumption, $F=\alpha \varphi(s), s=\beta / \alpha$, has almost vanishing \mathbf{H}-curvature, i.e. there exists a 1 -form θ on M such that

$$
\begin{equation*}
H_{j k}=\frac{n+1}{2} \theta F_{y^{j} y^{k}} \tag{5.2}
\end{equation*}
$$

where

$$
F_{y^{j} y^{k}}=\frac{e^{s}}{\alpha}\left[(1-s) a_{j k}+b_{j} b_{k}-s\left(b_{j} l_{k}+b_{k} l_{j}\right)+\left(s^{2}+s-1\right) l_{j} l_{k}\right]
$$

and

$$
\begin{aligned}
& 2 H_{j k}=\left[\frac{h_{1}}{\alpha^{3} A^{6}(s-1)^{3}} r_{00} s_{0}+\frac{h_{2}}{\alpha^{2} A^{4}(s-1)^{3}} s_{0 \mid 0}+\frac{h_{3}}{\alpha^{4} A^{6}} r_{00}^{2}+\frac{h_{4}}{\alpha^{3} A^{4}} r_{00 \mid 0}+\frac{h_{5}}{\alpha^{3} A^{5}} r_{00} r_{0}\right. \\
& +\frac{h_{6}}{\alpha^{2} A^{3}} r_{0 \mid 0}+\frac{h_{7}}{\alpha A^{4}(s-1)^{4}} t_{0}+\frac{h_{8}}{\alpha^{2} A^{6}(s-1)^{4}} s_{0}^{2}+\frac{h_{9}}{\alpha^{2} A^{4}(s-1)^{2}} q_{00}+\frac{h_{10}}{\alpha A^{3}(s-1)^{2}} q_{0} \\
& \left.+\frac{h_{11}}{\alpha^{2} A^{5}(s-1)^{3}} r_{0} s_{0}+\frac{h_{12}}{\alpha A^{4}(s-1)^{2}} r s_{0}+\frac{h_{13}}{\alpha^{2} A^{4}} r r_{00}+\frac{h_{14}}{\alpha^{2} A^{4}} r_{0}^{2}\right] b_{j} b_{k} \\
& +\left[\frac{h_{15}}{\alpha^{3} A^{6}(s-1)^{3}} r_{00} s_{0}+\frac{h_{16}}{\alpha^{2} A^{4}(s-1)^{3}} s_{0 \mid 0}+\frac{h_{17}}{\alpha^{4} A^{6}} r_{00}^{2}+\frac{h_{18}}{\alpha^{3} A^{4}} r_{00 \mid 0}+\frac{h_{19}}{\alpha^{3} A^{5}} r_{00} r_{0}\right. \\
& +\frac{h_{20}}{\alpha^{2} A^{3}} r_{0 \mid 0}+\frac{h_{21}}{\alpha A^{4}(s-1)^{4}} t_{0}+\frac{h_{22}}{\alpha^{2} A^{6}(s-1)^{4}} s_{0}^{2}+\frac{h_{23}}{\alpha^{2} A^{4}(s-1)^{2}} q_{00}+\frac{h_{24}}{\alpha A^{3}(s-1)^{2}} q_{0} \\
& \left.+\frac{h_{25}}{\alpha^{2} A^{5}(s-1)^{3}} r_{0} s_{0}+\frac{h_{26}}{\alpha A^{4}(s-1)^{2}} r s_{0}+\frac{h_{27}}{\alpha^{2} A^{4}} r r_{00}+\frac{h_{28}}{\alpha^{2} A^{4}} r_{0}^{2}\right] l_{j} l_{k} \\
& +a_{j k}\left[\frac{h_{29}}{\alpha^{3} A^{5}(s-1)^{2}} r_{00} s_{0}+\frac{h_{30}}{\alpha^{2} A^{3}(s-1)^{2}} s_{0 \mid 0}+\frac{h_{31}}{\alpha^{4} A^{5}} r_{00}^{2}+\frac{h_{32}}{\alpha^{3} A^{3}} r_{00 \mid 0}+\frac{h_{33}}{\alpha^{3} A^{4}} r_{00} r_{0}\right. \\
& +\frac{h_{34}}{\alpha^{2} A^{2}} r_{0 \mid 0}+\frac{h_{35}}{\alpha^{2} A^{4}(s-1)^{2}} r_{0} s_{0}+\frac{h_{36}}{\alpha^{2} A^{5}(s-1)^{3}} s_{0}^{2}+\frac{h_{37}}{\alpha A^{3}(s-1)^{3}} t_{0}+\frac{h_{38}}{\alpha^{2} A^{3}(s-1)} q_{00} \\
& \left.+\frac{h_{39}}{\alpha^{2} A^{2}(s-1)} q_{0}+\frac{h_{40}}{\alpha A^{3}(s-1)} r s_{0}+\frac{h_{41}}{\alpha^{2} A^{3}} r r_{00}+\frac{h_{42}}{\alpha^{2} A^{3}} r_{0}^{2}\right]+\frac{h_{43}}{\alpha A^{2}} r_{j k \mid 0}+r_{j k}\left[\frac{h_{44} s_{0}}{\alpha A^{4}(s-1)}\right. \\
& \left.+\frac{h_{45}}{\alpha^{2} A^{4}} r_{00}+\frac{h_{46}}{\alpha A^{3}} r_{0}\right]+\frac{h_{47}}{A^{4}(s-1)^{2}} s_{k} s_{j}+\frac{h_{48}}{\alpha^{2} A^{4}} r_{0 j} r_{0 k}+\left[\frac{h_{49}}{\alpha^{3} A^{6}(s-1)^{3}} r_{00} s_{0}\right. \\
& +\frac{h_{50}}{\alpha^{2} A^{4}(s-1)^{3}} s_{0 \mid 0}+\frac{h_{51}}{\alpha^{4} A^{6}} r_{00}^{2}+\frac{h_{52}}{\alpha^{3} A^{4}} r_{00 \mid 0}+\frac{h_{53}}{\alpha^{3} A^{5}} r_{00} r_{0}+\frac{h_{54}}{\alpha^{2} A^{3}} r_{0 \mid 0}+\frac{h_{55}}{\alpha A^{4}(s-1)^{4}} t_{0} \\
& +\frac{h_{56}}{\alpha^{2} A^{6}(s-1)^{4}} s_{0}^{2}+\frac{h_{57}}{\alpha^{2} A^{4}(s-1)^{2}} q_{00}+\frac{h_{58}}{\alpha A^{3}(s-1)^{2}} q_{0}+\frac{h_{59} r_{0}}{\alpha^{2} A^{5}(s-1)^{3}} s_{0}+\frac{h_{60} r}{\alpha A^{4}(s-1)^{2}} s_{0} \\
& \left.+\frac{h_{61}}{\alpha^{2} A^{4}} r r_{00}+\frac{h_{62}}{\alpha^{2} A^{4}} r_{0}^{2}\right]\left(l_{k} b_{j}+l_{j} b_{k}\right)+\left[\frac{h_{63}}{\alpha A^{5}(s-1)^{3}} s_{0}+\frac{h_{64}}{\alpha^{2} A^{5}(s-1)^{2}} r_{00}+\frac{h_{65}}{\alpha A^{4}(s-1)^{2}} r_{0}\right. \\
& \left.+\frac{h_{66}}{A^{3}(s-1)} r\right]\left(l_{k} s_{j}+l_{j} s_{k}\right)+\left(l_{k} s_{j 0}+l_{j} s_{k 0}\right)\left[\frac{h_{67}}{\alpha^{2} A^{4}(s-1)^{4}} s_{0}+\frac{h_{68}}{\alpha^{3} A^{4}(s-1)^{2}} r_{00}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{h_{69}}{\alpha^{2} A^{3}(s-1)^{2}} r_{0}\right]+\left(l_{k} r_{j}+l_{j} r_{k}\right)\left[\frac{h_{70}}{\alpha A^{4}(s-1)^{2}} s_{0}+\frac{h_{71}}{\alpha^{2} A^{4}} r_{00}+\frac{h_{72}}{\alpha A^{3}} r_{0}\right] \\
& +\left(l_{k} r_{0 j}+l_{j} r_{0 k}\right)\left[\frac{h_{73}}{\alpha^{2} A^{5}(s-1)^{2}} s_{0}+\frac{h_{74}}{\alpha^{3} A^{5}} r_{00}+\frac{h_{75}}{\alpha^{2} A^{4}} r_{0}+\frac{h_{76}}{\alpha A^{3}} r\right]+\frac{h_{77}}{A^{2}(s-1)}\left(l_{k} q_{j}+l_{j} q_{k}\right) \\
& +\frac{h_{78}}{\alpha A^{3}(s-1)}\left(l_{k} q_{0 j}+l_{j} q_{0 k}\right)+\frac{h_{79}}{\alpha A^{3}(s-1)^{2}}\left(l_{k} q_{j 0}+l_{j} q_{k 0}\right)+\frac{h_{80}}{A^{3}(s-1)^{3}}\left(l_{k} t_{j}+l_{j} t_{k}\right) \\
& +\left(b_{k} s_{j}+b_{j} s_{k}\right)\left[\frac{h_{81}}{\alpha^{2} A^{5}(s-1)^{2}} r_{00}+\frac{h_{82}}{\alpha A^{5}(s-1)^{3}} s_{0}+\frac{h_{83}}{\alpha A^{4}(s-1)^{2}} r_{0}+\frac{h_{84}}{A^{3}(s-1)} r\right] \\
& +\left(b_{k} s_{j 0}+b_{j} s_{k 0}\right)\left[\frac{h_{85}}{\alpha^{2} A^{4}(s-1)^{4}} s_{0}+\frac{h_{86}}{\alpha^{3} A^{4}(s-1)^{2}} r_{00}+\frac{h_{87}}{\alpha^{2} A^{3}(s-1)^{2}} r_{0}\right] \\
& +\left(b_{k} r_{j}+b_{j} r_{k}\right)\left[\frac{h_{88}}{\alpha A^{4}(s-1)^{2}} s_{0}+\frac{h_{89}}{\alpha^{2} A^{4}} r_{00}+\frac{h_{90}}{\alpha A^{3}} r_{0}\right]+\left(b_{k} r_{0 j}+b_{j} r_{0 k}\right)\left[\frac{h_{91}}{\alpha^{2} A^{5}(s-1)^{2}} s_{0}\right. \\
& \left.+\frac{h_{92}}{\alpha^{3} A^{5}} r_{00}+\frac{h_{93}}{\alpha^{2} A^{4}} r_{0}+\frac{h_{94}}{\alpha A^{3}} r\right]+\frac{h_{95}}{\alpha A^{3}(s-1)^{2}}\left(b_{k} q_{j 0}+b_{j} q_{k 0}\right)+\frac{h_{96}}{\alpha A^{3}(s-1)}\left(b_{k} q_{0 j}+b_{j} q_{0 k}\right) \\
& +\frac{h_{97}}{A^{3}(s-1)^{3}}\left(b_{k} t_{j}+b_{j} t_{k}\right)+\frac{h_{98}}{A^{2}(s-1)}\left(b_{k} q_{j}+b_{j} q_{k}\right)+\frac{h_{99}}{\alpha A^{3}(s-1)^{3}}\left(s_{k} s_{j 0}+s_{j} s_{k 0}\right) \\
& +\frac{h_{100}}{A^{3}(s-1)}\left(s_{k} r_{j}+s_{j} r_{k}\right)+\frac{h_{101}^{\alpha A^{4}(s-1)}}{\alpha_{k}}\left(s_{k} r_{j 0}+s_{j} r_{k 0}\right)+\frac{h_{102}}{\alpha^{2} A^{3}(s-1)}\left(s_{k 0} r_{j 0}+s_{j 0} r_{k 0}\right) \\
& +\frac{h_{103}}{\alpha A^{2}(s-1)}\left(s_{k 0} r_{j}+s_{j 0} r_{k}\right)+\frac{h_{104}}{\alpha A^{3}}\left(r_{k} r_{j 0}+r_{j} r_{k 0}\right)+\frac{h_{105}}{A^{2}(s-1)}\left(q_{k j}+q_{j k}\right) \\
& +\frac{h_{106}}{\alpha^{2} A^{3}}\left(l_{k} r_{0 j \mid 0}+l_{j} r_{0 k \mid 0}\right)+\frac{h_{107}}{\alpha^{2} A^{3}}\left(r_{0 j \mid 0} b_{k}+r_{0 k \mid 0} b_{j}\right)+\frac{h_{108}}{\alpha A^{2}}\left(r_{k \mid 0} b_{j}+r_{j \mid 0} b_{k}\right) \\
& +\frac{h_{109}}{\alpha A^{2}}\left(l_{k} r_{j \mid 0}+l_{j} r_{k \mid 0}\right)+\frac{h_{110}}{\alpha A^{3}(s-1)^{2}}\left(l_{j} s_{k \mid 0}+l_{k} s_{j \mid 0}\right)+\frac{h_{111}}{A^{3}(s-1)^{2}}\left(s_{j \mid 0} b_{k}+s_{k \mid 0} b_{j}\right),
\end{aligned}
$$

$A=1+B-s-s^{2}$ and $h_{i}(i=1,2, \cdots, 111)$ are the polynomials of s and B. Putting (5.3) in (3.4) and multiplying the result with $A^{6}(s-1)^{4} \alpha^{4}$ implies that

$$
\begin{equation*}
H_{j k} A^{6} \alpha^{4}(s-1)^{4}-\frac{n+1}{2} \theta F_{y^{j} y^{k}} A^{6} \alpha^{4}(s-1)^{4}=0 . \tag{5.3}
\end{equation*}
$$

Since $\theta F_{y^{j} y^{k}} A^{6} \alpha^{4}(s-1)^{4} \equiv 0, \quad \bmod (\mathrm{~A})$, then (5.3) is equal to

$$
\begin{align*}
& {\left[h_{49}(s-1) \alpha s_{0} r_{00}+h_{51}(s-1)^{4} r_{00}^{2}+h_{56} \alpha^{2} s_{0}^{2}\right]\left(l_{j} b_{k}+l_{k} b_{j}\right)+\left[h_{1}(s-1) \alpha s_{0} r_{00}+h_{8} \alpha^{2} s_{0}^{2}\right.} \\
+ & \left.h_{3}(s-1)^{4} r_{00}^{2}\right] b_{j} b_{k}+\left[h_{15}(s-1) \alpha s_{0} r_{00}+h_{17}(s-1)^{4} r_{00}^{2}+h_{22} \alpha^{2} s_{0}^{2}\right] l_{j} l_{k} \equiv 0, \bmod (\mathrm{~A}) . \tag{5.4}
\end{align*}
$$

Multiplying (5.4) with $b^{j} b^{k}$ yields $I_{1} r_{00} s_{0} \alpha+I_{2} r_{00}^{2}+I_{3} s_{0}^{2} \alpha^{2} \equiv 0, \bmod (\mathrm{~A})$, where $I_{i},(i=1,2,3)$ are polynomials of variations s and B. Put $I_{1} \equiv h_{1}, I_{2} \equiv h_{2}$ and $I_{3} \equiv h_{3} \bmod (\mathrm{~A})$. Then, we get (5.1).

Proof of Theorem 1.9: Let β be a closed 1 -form on M. By Lemma 5.1, we get $h_{2} r_{00}^{2} \equiv 0, \bmod (\mathrm{~A})$, where $I_{2} \equiv h_{2}, \bmod (A)$, and h_{2} is a polynomial of s and B and of degree 1 in s. By Lemma 3.1, β is Killing. Putting it in (5.3) yields $\mathbf{H}=0$. The converse is trivial. In this case, it follows that β is parallel with respect to α. Then, F reduces to a Berwald metric.

6. Proof of Theorem 1.11

In this section, we are going to prove Theorem 1.11. For this aim, we need the following.
Lemma 6.1 Let $F=\alpha \varphi(s), s=\beta / \alpha$, be an exponential metric on an n-dimensional manifold M, where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. Suppose that F is an Einstein metric. Then the following holds

$$
\begin{equation*}
k_{1} r_{00} s_{0} \alpha+k_{2} r_{00}^{2}+k_{3} s_{0}^{2} \alpha^{2} \equiv 0, \quad \bmod \left(-s^{2}-s+B+1\right), \tag{6.1}
\end{equation*}
$$

where $k_{j},(j=1,2,3)$, are polynomials of variations B and s.
Proof For the exponential metric $\varphi(s)=e^{s}$, we have

$$
\begin{equation*}
R_{m}^{m}={ }^{\alpha} R_{m}^{m}+T_{m}^{m}=\mathbf{R i c}(x) F^{2}, \tag{6.2}
\end{equation*}
$$

where

$$
\begin{align*}
T_{m}^{m}:= & {\left[(n-1) \frac{c_{1}}{A^{3}}+\frac{c_{2}}{A^{4}} \frac{r_{00}^{2}}{\alpha^{2}}+\frac{1}{\alpha}\left[\left[(n-1) \frac{c_{3}}{A^{3} D}+\frac{c_{4}}{A^{4} D}\right] r_{00} s_{0}+\left[(n-1) \frac{c_{5}}{A^{2}}+\frac{c_{6}}{A^{3}}\right] r_{00} r_{0}\right.\right.} \\
& \left.+\left[(n-1) \frac{c_{7}}{A}+\frac{c_{8}}{A^{2}}\right] r_{00 \mid 0}\right]+\left[\left[(n-1) \frac{c_{9}}{A^{3} D^{3}}+\frac{c_{10}}{A^{4} D^{3}}\right] s_{0}^{2}+\frac{c_{11}}{A^{2}}\left(r r_{00}-r_{0}^{2}\right)\right. \\
& +\left[(n-1) \frac{c_{12}}{A^{2} D}+\frac{c_{13}}{A^{3} D}\right] r_{0} s_{0}+\frac{c_{14}}{A}\left(r_{00} r_{m}^{m}-r_{0 m} r_{0}^{m}+r_{00 \mid m} b^{m}-r_{0 m \mid 0} b^{m}\right) \\
& \left.+\left[(n-1) \frac{c_{15}}{A D}+\frac{c_{16}}{A^{2} D}\right] r_{0 m} s_{0}^{m}+\left[(n-1) \frac{c_{17}}{A D}+\frac{c_{18}}{A^{2} D}\right] s_{0 \mid 0}+\frac{c_{19}}{D^{3}} s_{0 m} s_{0}^{m}\right] \\
& +\left[\frac{c_{20}}{A^{2} D} r s_{0}+\left[(n-1) \frac{c_{21}}{A D^{2}}+\frac{c_{22}}{A^{2} D^{2}}\right] s_{m} s_{0}^{m}+\frac{c_{23}}{A D}\left(3 s_{m} r_{0}^{m}-2 s_{0} r_{m}^{m}+2 r_{m} s_{0}^{m}\right.\right. \\
& \left.\left.-2 s_{0 \mid m} b^{m}+s_{m \mid 0} b^{m}\right)+\frac{c_{24}}{D} s_{0 \mid m}^{m}\right] \alpha+\left[\frac{c_{25}}{A D^{2}} s_{m} s^{m}+\frac{c_{26}}{D^{2}} s_{m}^{i} s_{i}^{m}\right] \alpha^{2}, \tag{6.3}
\end{align*}
$$

$A=1+B-s-s^{2}, D=s-1$ and $c_{i},(i=1, \cdots, 26)$, are polynomials of variations s and B (see [2]). Putting T_{m}^{m} into (6.2) and multiplying the result with $A^{4} D^{3} \alpha^{2}$ implies that

$$
{ }^{\alpha} R_{m}^{m} A^{4} D^{3} \alpha^{2}+T_{m}^{m} A^{4} D^{3} \alpha^{2}-\mathbf{R i c}(x) F^{2} A^{4} D^{3} \alpha^{2}=0 .
$$

${ }^{\alpha} R_{m}^{m}-\mathbf{R i c}(x) F^{2}$ is a polynomial of s and B. Thus,

$$
{ }^{\alpha} R_{m}^{m} A^{4} D^{3} \alpha^{2}-\mathbf{R i c}(x) F^{2} A^{4} D^{3} \alpha^{2} \equiv 0, \quad \bmod (\mathrm{~A})
$$

Then $T_{m}^{m} A^{4} D^{3} \alpha^{2} \equiv 0, \quad \bmod (\mathrm{~A})$. By (6.3), we get $r_{00} s_{0} \alpha c_{4} D^{2}+r_{00}^{2} c_{2} D^{3}+s_{0}^{2} \alpha^{2} c_{10} \equiv 0, \bmod (\mathrm{~A})$. Put

$$
c_{4} D^{2} \equiv h_{1} \quad \text { and } \quad c_{2} D^{3} \equiv h_{2} \quad \text { and } \quad c_{10} \equiv h_{3}, \quad \bmod (\mathrm{~A}) .
$$

Then, we get (6.1).
Proof of Theorem 1.11: By Lemma 6.1, we have (6.1). Let $\beta=b_{i}(x) y^{i}$ be a closed 1-form. Then $k_{2} r_{00}^{2} \equiv 0, \bmod (\mathrm{~A})$, where $I_{2} \equiv k_{2} \bmod (\mathrm{~A})$, and k_{2} is a polynomial of variations s and B. By Lemma 3.1, β is a Killing 1 -form. It follows that β is parallel with respect to α. In this case, F reduces to a Berwald metric.

References

[1] Akbar-Zadeh H. Sur les espaces de Finsler à courbures sectionnelles constantes. Académie Royale de Belgique. Bulletin de la Classe des Sciences. 6e Série 1988; 80: 271-322 (in French).
[2] Cheng X, Shen Z, Tian Y. A class of Einstein (α, β)-metrics. Israel Journal of Mathematics 2012; 192: 221-249.
[3] Li B, Shen Z. On a class of weak Landsberg metrics. Science in China. Series A. Mathematics 2007; 50: 573-589.
[4] Mo X. On the non-Riemannian quantity H of Finsler metrics. Differential Geometry and its Applications 2009; 27: 7-14.
[5] Mo X, Wang X. On Finsler metrics of constant S-curvature. Bulletin of the Korean Mathematical Society 2013; 50: 639-648.
[6] Najafi B, Bidabad B, Tayebi A. On R-quadratic Finsler metrics. Iranian Journal of Science and Technology. Transaction A. Science 2007; 31: 439-443.
[7] Najafi B, Shen Z, Tayebi A. Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties. Geometriae Dedicata 2008; 131: 87-97.
[8] Najafi B, Tayebi A. Weakly stretch Finsler metrics. Publicationes Mathematicae Debrecen 2017; 91: 441-454.
[9] Najafi B, Tayebi A. Some curvature properties of (α, β)-metrics. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie. Nouvelle Série 2017; 108: 277-291.
[10] Shen Z. On projectively flat (α, β)-metrics. Canadian Mathematical Bulletin 2009; 52: 132-144.
[11] Tayebi A. On generalized 4-th root metrics of isotropic scalar curvature. Mathematica Slovaca 2018; 68: 907-928.
[12] Tayebi A, Alipour A. On distance functions induces by Finsler metrics. Publicationes Mathematicae Debrecen 2017; 90: 333-357.
[13] Tayebi A, Najafi B. On m-th root metrics with special curvature properties. Comptes Rendus Mathématique. Académie des Sciences. Paris 2011; 349: 691-693.
[14] Tayebi A, Nankali A. On generalized Einstein Randers metrics. International Journal of Geometric Methods in Modern Physics 2015; 12: 1550105 (14 pages).
[15] Tayebi A, Nankali A, Najafi B. On the class of Einstein exponential-type Finsler metrics. Journal of Mathematical Physics, Analysis, Geometry 2018; 14: 100-114.
[16] Tayebi A, Peyghan E, Sadeghi H. On locally dually flat (α, β)-metrics with isotropic S-curvature. Indian Journal of Pure and Applied Mathematics 2012; 43: 521-534.
[17] Tayebi A, Razgordani M. Four families of projectively flat Finsler metrics with $\mathbf{K}=1$ and their non-Riemannian curvature properties. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas. RACSAM 2018; 112: 1463-1485.
[18] Tayebi A, Razgordani M. On conformally flat fourth root (α, β)-metrics. Differential Geometry and its Applications 2019; 62: 253-266.
[19] Tayebi A, Sadeghi H. Generalized P-reducible (α, β)-metrics with vanishing S-curvature. Annales Polonici Mathematici 2015; 114: 67-79.
[20] Tayebi A, Sadeghi H. On generalized Douglas-Weyl (α, β)-metrics. Acta Mathematica Sinica (English Series) 2015; 31: 1611-1620.
[21] Tayebi A, Shabazi Nia M. A new class of projectively flat Finsler metrics with constant flag curvature $\mathbf{K}=1$. Differential Geometry and its Applications 2015; 41: 123-133.
[22] Tayebi A, Tabatabeifar T. Unicorn metrics with almost vanishing H- and $\boldsymbol{\Xi}$-curvatures. Turkish Journal of Mathematics 2017; 41: 998-1008.
[23] Xia Q. Some results on the non-Riemannian quantity \mathbf{H} of a Finsler metric. International Journal of Mathematics 2011; 22: 925-936.
[24] Yu Y. Projectively flat exponential Finsler metrics, Journal of Zhejiang University Science A 2006; 7: 1068-1076.
[25] Zhou L. A local classification of a class of (α, β)-metric with constant flag curvature. Differential Geometry and its Applications 2010; 28: 179-193
[26] Zohrehvand M, Rezaii MM. On the non-Riemannian quantity H of an (α, β)-metric. Differential Geometry and its Applications 2012; 30: 392-404.

[^0]: *Correspondence: akbar.tayebi@gmail.com
 2010 AMS Mathematics Subject Classification: 53B40, 53C60

