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Abstract: This study aims to efficiently solve model differential equations involving specific nonlinearities of quartic
type by proposing a reduced computational matrix approach based on the generalized Mott polynomial. This method
presents a reduced matrix expansion of the generalized Mott polynomial with the parameter-α , matrix equations,
and Chebyshev–Lobatto collocation points. The simplicity of the method provides fast computation while eliminating
an algebraic system of nonlinear equations, which arises from the matrix equation. The method also scrutinizes the
consistency of the solutions due to the parameter-α . The oscillatory behavior of the obtained solutions on long time
intervals is simulated via a coupled methodology involving the proposed method and Laplace–Padé technique. The
convergence estimation is established via residual function. Numerical and graphical results are indicated to discuss the
validity and efficiency of the method.
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1. Introduction
In recent years, nonlinear differential equations (NDEs) have become one of the fundamental mathematical tools,
with the development of natural physical phenomena occurring in mathematics, heat conduction and transfer,
physiology, physics, engineering, mechanics, acoustics, and astronomy [2, 3, 6, 7, 9, 13, 18, 19, 22, 23, 25, 30, 32].
As a specific example, the deflection of a cantilever beam exposed to a concentrated load can be governed with
a nonlinear differential equation involving functional nonlinearity [14, 23]. The reason why NDEs are widely
modeled all over the world is that they present a simple and efficient mathematical structure to deal with
complex phenomena whose physical behaviors vary with respect to time, location, and ambiguous environmental
conditions. Hence, NDEs give a consistent response of these phenomena subjected to initial, boundary, and
initial-boundary conditions. It is known that it is difficult to solve NDEs analytically. The analytical solutions of
NDEs can hardly be found since the nonlinearity degree of a model is modified. Thus, the analytical procedures
remain insufficient for nonlinear differential equations involving specific nonlinearities, such as strongly, fully,
functional, and singular forms. More efforts than ever before have been directed towards numerically treating
these types of problems. So far, with this aim, Kürkçü et al. [18] employed the Dickson matrix-collocation
method to solve some model problems arising in science. Bülbül and Sezer [4, 5] established the Taylor
polynomial method to find the approximate solutions of nonlinear differential equations of Abel and Duffing
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types. Rajaraman and Hariharan [26] proposed the shifted second-kind Chebyshev wavelet method to solve
singular boundary value problems. The Green function-based Adomian decomposition method and variational
iteration method have been used for singular nonlinear boundary value problems [15, 28]. Odibat and Bataineh
[24] employed the homotopy analysis method to deal with strongly nonlinear problems. He [14] applied several
asymptotic methods to strongly nonlinear equations.

Differently from the mentioned studies, this study deals with model differential equations involving specific
nonlinearities of quartic type under a unique formulation by employing a reduced computational matrix approach
based on the generalized Mott polynomial with the parameter-α . The reduced matrix structure provides a fast
computation for eliminating a highly stiff algebraic system of nonlinear equations, which arises from a matrix
equation. The oscillatory behaviors of the solutions are handled with the aid of a coupled methodology based on
the proposed method and Laplace–Padé technique [20, 31]. The framework of this paper is as follows: Section
1.1 states a governing equation under a unique formulation and its solution form to be found. Section 2 describes
some basic properties of the Mott polynomial. Section 3 presents the reduced matrix relations and method of
solution. Section 4 expresses the residual convergence estimation. Section 5 establishes the oscillatory behavior
of the solutions via the coupled methodology. Section 6 contains six illustrative model problems, which are
treated by the proposed method. Section 7 discusses the validity and efficiency of the proposed method by
evaluating the results found in Section 6.

1.1. Statement of governing equation

In this study, some model differential equations involving specific nonlinearities of quartic type are governed by

3∑
k=0

Pk(t)y
(k) (t) +Qpq

ijkl(t)
[(

y(i)
)(

y(j)
)(

y(k)
)p (

y(l)
)q]

(t) = f (t) , a ≤ t ≤ b, (1.1)

subject to the initial and boundary conditions

y(a) = γ1, y′(a) = γ2 and y(b) = γ3, (1.2)

where p and q determine the nonlinear force of Eq. (1.1) and can be chosen in {0, 1} in accordance
with the nonlinearity degree of a considered problem; i, j, k, l represent integer order derivatives and take their
values as 0 ≤ i, j, k, l ≤ 3 independently; and Pk(t) , Qpq(t) , and an external force f(t) are defined on [a, b] .

Since Eq. (1.1) contains both a linear form and a quartic nonlinearity form with derivatives, it can be
readily adopted to strongly, fully, functional, and singular nonlinear model differential equations by determining
the proper values of p , q , Pk(t) , and Qpq

ijkl(t) . For example, the fully nonlinear and strongly nonlinear
differential equations can be obtained via Pk(t) = 0 and p = q = 1 , respectively.

The aim of this study is to numerically solve model nonlinear differential equations derived from Eq.
(1.1) by proposing a reduced computational matrix approach based on the generalized Mott polynomial. In
doing so, we seek an approximate solution of Eq. (1.1) in the following form [17]:

y (t) ∼= yN (t;α) =

N∑
n=0

ynSn (t, α), (1.3)

where the yn s are unknown Mott coefficients to be determined by the method and Sn (t, α) represents
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the generalized Mott polynomials (see [10, 16, 21, 27]). It is promisingly stated here that the parameter α can
be used to control the optimal approximation of the solution (1.3) with respect to the exact solution.

On the other hand, the Chebyshev–Lobatto collocation points, which are integrated into the matrix
relations, are defined to as follows (see [12]):

ti =
a+ b

2
+

a− b

2
cos

(
πi

N

)
, i = 0, 1, . . . , N. (1.4)

2. Some basic properties of the Mott polynomial

The Mott polynomial Sn (t) , which forms a basis of the matrix-collocation method in this study, was introduced
by Mott [21] while investigating the roaming behaviors of electrons for a problem in the theory of electrons.
Then Erdèlyi et al. [10] proposed its explicit formula as follows:

Sn (t) =

(
− t

2

)n

(n− 1)!

⌊n/2⌋∑
l=0

t−2l

l! (n− l)! (n− 2l − 1)!
= (n!)

−1

(
− t

2

)n

3F0

(
−n,

1

2
− n

2
, 1− n

2
;−4t−2

)
,

where 3F0 is a generalized hypergeometric function.
In 1984, Roman [27] established its associated Sheffer sequence and generating function as follows:

f (t) =
−2t

1− t2
and

∞∑
k=0

Sk (t)

k!
sk = exp

(
t
√
1− s2 − t

s

)
,

where the first five polynomials are

{S0 (t) , S1 (t) , S2 (t) , S3 (t) , S4 (t)} =

{
1, − t

2
,
t2

4
, −3t

4
− t3

8
,
t2

2
+

t4

16

}
.

On the other hand, a triangle coefficient matrix of the Mott polynomial is available in A137378 of OEIS
[29]. Recently, Kruchinin [16] gave a generalized form of the Mott polynomial with a parameter-α as follows:

Sn (t, α) =

n∑
p=1

p∑
q=0

(−1)
p−q+(n+p)/2

n!
(
1 + (−1)

n+p
)

2p!

(
p

q

)(
αq

(n+ p)/2

)
tp, n > 0,

where the Mott polynomial is obtained for α = 0.5 . One can refer to [10, 16, 21, 27] for more properties
about the Mott polynomial.

3. Description of matrix relations and method of solution

A reduced computational matrix relation based on the Mott polynomial and method of solution are constructed
in this section. Due to this matrix relation, the matrix relations of nonlinear terms in Eq. (1.1) are also properly
established. The matrix relation of the Mott polynomial solution (1.3) is of the form [17]

y (t;α) = S (t, α)Y , (3.1)
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and its differentiated matrix relation

y(k) (t;α) = S(k) (t, α)Y , (3.2)

where
S (t, α) =

[
S0 (t, α) S1 (t, α) · · · SN (t, α)

]
,

S(k) (t, α) =
[
S
(k)
0 (t, α) S

(k)
1 (t, α) · · · S

(k)
N (t, α)

]
and Y =

[
y0 y1 · · · yN

]T
.

By substituting the matrix relation (3.2) and the collocation points (1.4) into Eq. (1.1), the matrix
relation of the linear part of Eq. (1.1) turns out to be

[L[y(ti)]] =

3∑
k=0

PkS(k) (α)Y , (3.3)

where

L[y(t)] =

3∑
k=0

Pk(t)y
(k) (t), Pk =


Pk (t0) 0 · · · 0

0 Pk (t1) · · · 0
...

... . . . ...
0 0 0 Pk (tN )


(N+1)×(N+1)

,

and

S(k)(α) =


S(k) (t0, α)

S(k) (t1, α)
...

S(k) (tN , α)

 =


S
(k)
0 (t0, α) S

(k)
1 (t0, α) · · · S

(k)
N (t0, α)

S
(k)
0 (t1, α) S

(k)
1 (t1, α) · · · S

(k)
N (t1, α)

...
... . . . ...

S
(k)
0 (tN , α) S

(k)
1 (tN , α) · · · S

(k)
N (tN , α)


(N+1)×(N+1)

.

Let us now introduce the matrix relation of the nonlinear part of Eq. (1.1). Using the fundamental
matrix relation (3.2) and the collocation points (1.4), the matrix relation of the nonlinear part, which consists
of a quartic nonlinear term, can be constructed as

[N [y(ti)]] = Qpq
ijklS

(i) (α)S(j)
1∗ (α)

(
S(k)

2∗ (α)
)p (

S(l)
3∗ (α)

)q
Y (p+q+1)∗ , (3.4)

where N [y(t)] =
[
Qpq

ijkly
(i)y(j)

(
y(k)

)p (
y(l)
)q]

(t) , p, q = {0, 1} , and i, j, k, l = {0, 1, 2, 3} ,

Qpq
ijkl =


Qpq

ijkl (t0) 0 · · · 0

0 Qpq
ijkl (t1) · · · 0

...
... . . . ...

0 0 0 Qpq
ijkl (tN )


(N+1)×(N+1)

,
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S(j)
1∗ (α) =


S(j) (t0, α) 0 · · · 0

0 S(j) (t1, α) · · · 0
...

... . . . ...
0 0 0 S(j) (tN , α)


(N+1)×(N+1)2

,

(
S(k)

2∗ (α)
)p

= diag
[
S(k)

1∗ (α)
]
(N+1)p+1×(N+1)p+2

,
(

S(l)
3∗ (α)

)q
= diag

[
S(l)

2∗ (α)
]
(N+1)p+2×(N+1)p+q+2

,

Y1∗ =
[
y0Y y1Y · · · yNY

]T
1×(N+1)2

, Y2∗ =
[
y0Y1∗ y1Y1∗ · · · yNY1∗

]T
1×(N+1)3

,

and

Y (p+q+1)∗ =
[
y0Y (p+q)∗ y1Y (p+q)∗ · · · yNY (p+q)∗

]T
1×(N+1)p+q+2 .

In view of the matrix relations (3.3) and (3.4), the fundamental matrix equation of Eq. (1.1) is now
expressed by

3∑
k=0

PkS(k) (α)Y + Qpq
ijkl S(i) (α)S(j)

1∗ (α)
(

S(k)
2∗ (α)

)p (
S(l)

3∗ (α)
)q

Y (p+q+1)∗ = F, (3.5)

such that p and q are equal to 0 or 1 and

F =
[
f (t0) f (t1) · · · f (tN )

]T
1×(N+1)

.

Alternatively, Eq. (3.5) can be written briefly as

WY + Z(p+q+1)∗Y (p+q+1)∗ = F or
[
W ; Z(p+q+1)∗ : F

]
,

where

W =

3∑
k=0

PkS(k) (α) and Z(p+q+1)∗ = Qpq
ijkl S(i) (α)S(j)

1∗ (α)
(

S(k)
2∗ (α)

)p (
S(l)

3∗ (α)
)q

represent the linear and nonlinear matrix equations, respectively.
On the other hand, using the matrix relations (3.1) and (3.2), the matrix forms of the initial and boundary

conditions (1.2) are written respectively as

U1 =
[
S0 (a, α) S1 (a, α) · · · SN (a, α)

]
,

U2 =
[
S
(1)
0 (a, α) S

(1)
1 (a, α) · · · S

(1)
N (a, α)

]
,

U3 =
[
S0 (b, α) S1 (b, α) · · · SN (b, α)

]
.

 (3.6)
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In accordance with the number of the conditions of Eq. (1.1) subjected to Eq. (1.2), replacing the row
matrices (3.6) by any row matrices of W , the augmented matrix is then stated as

[
W̃ ; Z̃(p+q+1)∗ : F̃

]
=


W∗ ; Z∗

(p+q+1)∗ : F∗

U1 ; 01×(N+1)p+q+2 : γ1
U2 ; 01×(N+1)p+q+2 : γ2
U3 ; 01×(N+1)p+q+2 : γ3

 , (3.7)

where W∗ , Z∗
(p+q+1)∗ and F∗ are in (N − 2) × (N + 1) , (N − 2) × (N + 1)

p+q+2 and (N − 2) × 1

dimensions, respectively. Also, 01×(N+1)p+q+2 is a zero matrix in 1× (N + 1)
p+q+2 dimension.

We here draw attention to the fact that the matrix forms (3.6) are replaced by the last zero matrices

of Z̃(p+q+1)∗ , in order to treat the fully nonlinear differential equations derived from Eq. (1.1). It is also
evident that W is a null matrix when Pk(t) = 0 . We are then ready to solve the augmented matrix (3.7) by
eliminating an algebraic system of nonlinear equations. After substituting the Mott coefficients obtained from
the augmented matrix (3.7) into Eq. (1.3), Eq. (1.3) yields the Mott polynomial solution with the parameter-α .

4. Residual convergence estimation

In order to establish the convergence estimation of the method, the residual function in terms of the computation
limit N is given first. Letting the residual function RN (t) be a function defined in L1[a, b] , then it is obtained
by substituting the Mott polynomial solution yN (t;α) into Eq. (1.1), so

RN (t) = L [yN (t;α)] +N [yN (t;α)]− f(t),

where L[•] and N [•] represent linear and nonlinear parts of Eq. (1.1), respectively.
Then the residual convergence estimation (RCEN ) can be prescribed as

RCEN = ||RN (t)−RN−1(t)|| =
b∫

a

|RN (t)−RN−1(t)| dt < ϵ,

where ϵ is a sufficiently small value and estimates a convergence accuracy between the computation limits
N and N − 1 as N is increased.

RCEN thereby provides a clear observation about the convergence estimation related to N . It is worth
mentioning that this estimation can be used when an exact solution of the model problem is unknown.

5. Oscillatory behavior of solutions via Mott–Laplace–Padé methodology

In this section, the oscillatory behavior of the solutions is constructed by means of a coupled methodology based
on the proposed method and Laplace–Padé technique [20, 31]. Previously, Momani and Ertürk [20] investigated
the oscillations of the solutions of the nonlinear oscillator equations by proposing the differential transform
method based on the Laplace–Padé technique. Then Sweilam and Khader [31] made use of the homotopy
perturbation method along with the Laplace–Padé technique to obtain the exact solutions of the nonlinear
partial differential equations. Now, using the Mott polynomial solution (1.3), the coupled methodology is
stated as follows:
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H (s) = L {yN (t;α)} =

∞∫
0

yN (t;α) e−stdt,

where L {•} is the Laplace transform.
Inserting s → 1/t into H(s) , it then follows that

P
[
H

(
1

t

)]
= G

(
1

t

)
,

where P [•] is the Padé approximant [1].
Now, inserting t → 1/s into G

(
1
t

)
and then taking its inverse Laplace transform, the Mott–Laplace–

Padé solution yP,N (t;α) , which highly determines the oscillatory behavior of the Mott polynomial solution on
long time intervals, is finally reached. Note here that the Padé approximant is a well-known mathematical
operation and its details can be found in [1]. Also, it can be easily processed with symbolic software, such as
Mathematica, MATLAB, and Maple.

6. Illustrative models
In this section, the various model differential equations involving specific nonlinearities of quartic type are
handled with the aid of the proposed method. To do this, a unique computer program module of the method
is developed in Mathematica 11, which is run by a PC equipped with 8 GB RAM and 3.30 GHz CPU. It is
thus aimed that very clear results be obtained for illustrative model problems. It is also worth specifying that
we apply the NDSolve module built in Mathematica to some problems whose analytical solutions are unknown
so that the validity of the present method can be observed. After obtaining the outcomes of the programs, the
solutions are simulated and indicated in figures and tables. Note that the absolute error computation is denoted
as |eN (t; α)| , where α is the parameter of the Mott polynomial solution (1.3).

Model 6.1. [3, 22] Consider the second-order differential equation of functional nonlinear type deter-
mining the deflection of a cantilever beam exposed to a concentrated load:

y′′ (t) + λt cos (y(t)) = 0, 0 ≤ t ≤ 1, (6.1)

subject to the boundary conditions y′ (0) = 0 and y (1) = 0 . Here, λ represents a ratio between the
concentrated vertical load at the free end and the flexural rigidity [3, 22], and the analytical solution of this
problem is also unknown. In order to handle this problem using the present method, Eq. (6.1) can be written
alternatively as a differential equation of quartic nonlinear type:

y′′ (t) + λt− λty2(t)

2
+

λty4(t)

24
= 0.

Now, by employing the present method, we can solve the above equation constrained by boundary
conditions for various λ , α , and N . As previously stated by Na [22], we immediately reach y′(1) = −3.194

thanks to N = 5 and α = 6.04 for λ = 8 . Table 1 indicate the consistency between the Mott polynomial
solutions with α and the solution obtained by Mathematica (MS). The deflections of a cantilever exposed to
different forces λ are also clearly observed via the Mott polynomial solution y5(t; 2) in Figure 1. That is, as λ
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increases, the visibility of the deflection becomes more clear. It can be inferred from Table 2 that the residual
convergence estimation yields consistent values for α = 2 and λ = {0.05, 0.5, 1, 2} .

Table 1. Comparison of the absolute errors and CPU time (s) for Model 6.1 with λ = 1 .

ti |e3(ti; 0.5)| |e3(ti; 2)| |e4(ti; 0.5)| |e4(ti; 2)|
0.0 3.6341e–03 2.9045e–04 4.1988e–03 7.7609e–05
0.1 3.6311e–03 2.9086e–04 4.1985e–03 7.7615e–05
0.2 3.6107e–03 2.9377e–04 4.1932e–03 7.8289e–05
0.3 3.5546e–03 3.0124e–04 4.1700e–03 8.1329e–05
0.4 3.4436e–03 3.1398e–04 4.1060e–03 8.8717e–05
0.5 3.2555e–03 3.2983e–04 3.9674e–03 1.0121e–04
0.6 2.9635e–03 3.4206e–04 3.7073e–03 1.1660e–04
0.7 2.5345e–03 3.3768e–04 3.2641e–03 1.2807e–04
0.8 1.9284e–03 2.9670e–04 2.5608e–03 1.2339e–04
0.9 1.0993e–03 1.9321e–04 1.5064e–03 8.6093e–05
Time 0.047 0.062 0.375 0.281

Figure 1. Deflections of a cantilever beam exposed to different λ for Model 6.1.

Table 2. Residual convergence estimation with respect to λ and N for Model 6.1.

λ |N 4 5 6
0.05 1.82e–07 6.69e–08 4.61e–08
0.50 1.81e–04 6.72e–05 4.73e–05
1.00 1.43e–03 5.45e–04 4.10e–05
2.00 1.10e–02 4.68e–03 4.82e–03

Model 6.2. [14, 23] Consider the second-order nonlinear differential equation of the motion of a mass
that follows a parabolic path:
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y′′ (t) + y(t) + 4λ2
(
y2(t)y′′(t) + y(t) (y′′(t))

2
)
= 0, 0 ≤ t ≤ 1,

subject to the initial conditions y (0) = 1.8 and y′ (0) = 0 . Here, λ determines a nonlinear force and
the exact solution of this problem is unknown. The problem is solved by implementing the present method for
different α and λ . In order to observe the validity of the present method, the problem is also treated with the
aid of the NDSolve module, which is of the form

NDSolve[{y′′[t] + y[t] + 4λ2 ∗
(
y′′[t] ∗ (y[t])2 + y[t] ∗ (y′′[t])2

)
== 0,

y[0] == 1.8, y′[0] == 0}, y[t], {t, 0, 1}] [[1, 1, 2]] .

The consistency between the Mott polynomial and Mathematica solutions is observed in Figure 2. Table
3 shows that highly precise approximations and considerable CPU time are obtained in terms of N and α .
These approximations take six decimal place error on average. In addition, as N is increased from 4 to 7, the
residual convergence estimation RCEN is determined for λ = 1/2 :

RCEN = {3.8e− 02, 9.7e− 03, 1.2e− 02, 4.5e− 03} ,

and for λ =
√
2/2 ,

RCEN = {2.4e− 02, 8.3e− 03, 9.2e− 03, 2.7e− 03} .

Model 6.3. [8] Consider the third-order differential equation of the radical nonlinear type

y′′′ (t) +
√

1− y2(t) = 0, 0 ≤ t ≤ π

2
, (6.2)

Figure 2. Displacement of the Mott polynomial and Mathematica (MS) solutions for Model 6.2 with λ =
√
3/2 .
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Table 3. Comparison of the absolute errors and CPU time (s) for Model 6.2 with λ =
√
3/2 .

ti |e5(ti; 2)| |e6(ti; 2)| |e6(ti; 0.5)|
0.1 2.1662e–06 2.2433e–08 2.2808e–08
0.2 1.4807e–05 8.8424e–08 2.5536e–06
0.3 4.2277e–05 1.2117e–07 1.1806e–05
0.4 8.2496e–05 6.2039e–08 3.5975e–05
0.5 1.2694e–04 7.0930e–07 8.6264e–05
0.6 1.6072e–04 2.1743e–06 1.7708e–04
0.7 1.6250e–04 4.8544e–06 3.2610e–04
0.8 1.0451e–04 9.1691e–06 5.5437e–04
0.9 4.7487e–05 1.5517e–05 8.8637e–04
1.0 3.3431e–04 2.4225e–05 1.3501e–03
Time 0.234 0.641 0.813

subject to the initial and boundary conditions y (0) = 0 , y′ (0) = 1 , and y
(
π
2

)
= 1 . Here, the exact

solution of this problem is y(t) = sin(t) . In order to bring Eq. (6.2) into compliance with the proposed method,
we can write Eq. (6.2) as a fully nonlinear form:

(y′′′ (t))
2 − y2(t) = 1.

The equation above can now be solved under the linear initial and boundary conditions. The displacement
of the approximate solution is illustrated in Figure 3. It can be seen from Figure 3 that a good approximation
to the exact solution is obtained. We obtain three decimal place error for N = 6 , while Duan and Rach [8]
recently obtained two decimal place maximum error for a sixth-order polynomial approach corresponding to
their computation limit n = 2 . As N is increased from 4 to 10, the residual convergence estimation RCEN is
prescribed respectively as

RCEN = {3.8e− 01, 3.5e− 01, 9.7e− 01, 2.5e− 01, 9.8e− 02, 8.8e− 02, 2.5e− 02} .

Model 6.4. [11, 30] Consider the Rayleigh–Duffing equation (or oscillator) appearing in acoustics:

y′′ (t) + 2p1y
′(t) + p0y(t) + λ1y

3(t) + λ2 (y
′(t))

3
= 0, 0 ≤ t ≤ L,

subject to the initial conditions y (0) = 0 and y′ (0) = 0.5 . Here, the exact solution of this problem is
unknown, p1 is a damping force, p0 is the stiffness, and {λ1, λ2} are real nonlinear forces [11]. This problem
is solved using the present method along with the Laplace–Padé technique for L = {1, 20} . In Figure 4,
according to the damping force, we investigate the oscillatory behavior of the Mott polynomial solution and the
Mathematica solution, which is returned by

NDSolve[{y′′[t] + 2p1 ∗ y′[t] + p0 ∗ y[t] + λ1 ∗ (y[t])3 + λ2 ∗ (y′[t])
3
== 0,

y[0] == 0, y′[0] == 0.5}, y[t], {t, 0, 20}][[1, 1, 2]].
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Figure 3. Displacement of the Mott polynomial and exact solutions for Model 6.3.

Figure 4. Damping oscillations of the solutions on [0, 20] for Model 6.4 with p0 = 0.5 and λ1 = λ2 = 0.05 .

Futhermore, Figure 5 shows the phase planes of these solutions in Figure 4 for L = 20 . It can be
noticed that the Mott polynomial solution coincides well with the Mathematica solution and also their damping
oscillation is clearly varied in accordance with the damping force p1 . On the other hand, as N increases, the
residual convergence estimation is illustrated by means of a logarithmic scale in Figure 6.

Model 6.5. [19, 23] Consider the nonlinear oscillator equation

y′′ (t) + y(t)− λy(t) y′(t) y′′(t) = 0, 0 ≤ t ≤ L,

subject to the initial conditions y (0) = 1 and y′ (0) = 0 . Here, the exact solution of this problem is
unknown and λ stands for a nonlinear force. After applying the present method along with the Laplace-Padé
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Figure 5. Phase planes of the solutions with respect to the damping force on [0, 20] for Model 6.4 with p0 = 0.5 and
λ1 = λ2 = 0.05 .

technique for L = {1, 20} and λ = 0.01 , the oscillatory behaviors of the Mott polynomial and Mathematica
(MS) solutions are simulated in Figure 7 and their phase plane diagrams are established in Figure 8. From
N = 3 to N = 8 , the residual convergence estimation is determined as logarithmic behavior in Figure 9.

Model 6.6. [2, 7, 15, 26, 28] Consider the singular nonlinear differential equation modeling the radial
stress on a rotationally symmetric shallow membrane cap:

y′′ (t) +
3

t
y′(t) +

1

8y2(t)
=

1

2
, 0 < t < 1, (6.3)

subject to the boundary conditions y′ (0) = 0 and y (1) = 1 . Here, the exact solution to this problem
is unknown. Before this problem is solved, some operations on Eq. (6.3) should be performed to employ the
proposed method. Therefore, Eq. (6.3) can be written as a fully nonlinear form:

ty2(t)y′′ (t) + 3y2(t)y′(t)− ty2(t)

2
= − t

8
.

The above equation constrained by the boundary conditions can be solved via the proposed method.
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Figure 6. Logarithmic scale of the residual convergence estimation with respect to N for Model 6.4 with L = 1 ,
p1 = 0.2 , p0 = 0.5 , and λ1 = λ2 = 0.05 .

Figure 7. Oscillations of the solutions on [0, 20] for Model 6.5 with λ = 0.01 .

In Table 4, we compare the numerical results of the Mott polynomial solutions with the existing ones, which
were previously obtained by the shifted second-kind Chebyshev wavelet method (CWM) [26], the Adomian
decomposition method with Green functions [28], and the variational iteration method (VIM) [15]. It is easy
to see that the present results are in good agreement with the others. The residual convergence estimation is
demonstrated as logarithmic behavior in Figure 10, where the decaying diagram can be seen.

7. Conclusions
A reduced computational matrix approach based on the Mott polynomial and Chebyshev–Lobatto collocation
points has been proposed to solve model differential equations involving specific nonlinearities of quartic type.
These type equations have been considered in this study for the first time. The reduced matrix system has
provided a fast and efficient approximation to the considered problems as seen from Tables 1 and 3. The
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Figure 8. Phase planes of the solutions on [0, 20] for Model 6.5 with λ = 0.01 .

Figure 9. Logarithmic scale of the residual convergence estimation with respect to N for Model 6.5 with L = 1 and
λ = 0.01 .

consistency of the solutions has been varied via the parameter-α . Since α is a binomial coefficient in the
generalized Mott polynomial, it easily changes the behavior of the solutions. Thus, the optimal consistency of
the parameter α has been investigated in (0, 10] . Note that the augmented matrix (3.7) has not returned any
Mott coefficient for α = 0 . The residual convergence estimation has presented clear convergence accuracy with
respect to the computational limit of the method as observed in Table 2 and Figures 6, 9, and 10. Although
some problems have no exact solution, it can be noticed from Figures 1, 2, 4, 5, 7, and 8 that the displacements
of the approximate solutions have been accurately compared with the Mathematica solution. Besides, the
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Table 4. Comparison of the numerical results of the solutions for Model 6.6.

ti y5(ti; 0.6) CWM [26] GFADM [28] VIM [15]
0.0 0.954215 0.9546 0.954135 0.952148
0.1 0.954663 0.9551 0.954589 0.952632
0.2 0.956009 0.9564 0.955950 0.954081
0.3 0.958257 0.9587 0.958220 0.956495
0.4 0.961411 0.9619 0.961403 0.959870
0.5 0.965481 0.9660 0.965503 0.964202
0.6 0.970476 0.9710 0.970526 0.969487
0.7 0.976409 0.9769 0.976479 0.975717
0.8 0.983295 0.9837 0.983369 0.982885
0.9 0.991152 0.9914 0.991206 0.990983

Figure 10. Logarithmic scale of the residual convergence estimation with respect to N for Model 6.6.

oscillatory behaviors and phase planes of the solutions have been provided in Figures 4, 5, 7, and 8. Eventually,
it can be inferred from all results that the proposed method yields a fast, reliable, and simple scheme to treat
model problems derived from Eq. (1.1) type. It is also evident that the proposed method can be developed for
fractional differential and partial differential equations.
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