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Abstract: We prove for univalent functions f(z) =z + > 5 axz";(n > 2) in the unit disk U = {z: |2| < 1}) with
FHw) = w+ 3352, bew®; (lw] < ro(f), 7o(f) > ) that

bon—1 = nai —azn—1 and by = —ap for (n <k <2n—2).

As applications, we find estimates for |a,| whenever f is bi-univalent, bi-close-to-convex, bi-starlike, bi-convex, or for
bi-univalent functions having positive real part derivatives in U. Moreover, we estimate |na2 — asn,—1| whenever f is
univalent in U or belongs to certain subclasses of univalent functions. The estimation method can be applied for various
subclasses of bi-univalent functions in U and it helps to improve well-known estimates and to generalize some known
results as shown in the last section.

Key words: Univalent functions, bi-univalent functions, starlike functions, convex functions, close-to-convex

functions, Faber polynomials, coefficient estimates

1. Introduction and preliminaries

Let A denote the class of functions f(z) of the form
f(z) = z—l—Zakzk, (1.1)
k=2

which are analytic in the open unit disk U = {z € C : |z| < 1} and normalized by f(0) = f'(0) —1 = 0.
Furthermore, let S be the subclass of A consisting of univalent functions in U. The class P consists of
analytic functions p satisfying p(0) =1 and Re{p(z)} > 0, (2 € U). The Carathéodory lemma states that the
coefficients of p(z) =1+ > 07, ¢ 2" € P satisfy |c,| <2 for n > 1. Denote by C, §* and CV respectively
the subclasses of S consisting of close-to-convex, starlike, and convex functions in U. Analytically, f(z) € S*
if and only if zf'(2)/f(z) € P, (¢ € U), while f(z) € CV if and only if 1+ zf"(2)/f'(z) € P, (z € U). In
addition, f(z) € C if and only if f'(2)/¢'(2) € P, (¢ € U) for some g € CV. Alexander’s relation states that
f(2) € CV if and only if zf/'(z) € S*. Indeed, CV C S* CCCS.
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We know, for every f € S defined by (1.1), that the inverse function f~! exists and has the form

I Hw) = w — agw? + (2a3 — az)w® — (5a3 — 5agaz + a))w* +---,  (Jw| < ro(f), ro(f) >

) (12)

Ry

That is, f~1(f(2)) =z, (z € U) and f(f '(w)) =w, (Jw| < 1/4) according to the Koebe one-quarter theorem
(see [15]). A function f € A is said to be bi-property if both f and f~! satisfy that property. The class of

bi-univalent functions in U is denoted by ¥. Some examples of functions in 3 (see [7, 31]) are:

z 1 1+2
T—> —log(l —2), and 2log<1_z).

2

However, the familiar Koebe function z/(1 — 2)* and the functions

1, z
1— 22

are in & but not members of ¥. Finding bounds for the coefficients of classes of bi-univalent functions dates
back to 1967, since Lewin showed in [26] that |az| < 1.51. However, Brannan and Clunie [7] conjectured that
lag| < V2. Later, Netanyahu [29] found that max ey |ag| = 4/3. The interest in the bounds of |a,| for classes
of ¥ increased with the publications [17, 31], where the nonsharp estimates for the first two coefficients were
provided (see, for example, [8, 32]). In recent years, these works revived the investigation of the coefficient
estimates for various subclasses of analytic and meromorphic bi-univalent functions (see [6, 9-11, 14, 19—
22, 24, 28, 30, 34, 36]). Not much is known about the higher coefficients of bi-univalent functions as Ali et
al. [4] also declared finding the bounds for |a,|; n > 4 an open problem, because the condition of bi-univalency
makes the behavior of the higher coefficients unpredictable. In this work, however, we find particular solutions.

It is well known for f € S, defined by (1.1), and f~'(w) =w+ > o2, b,w™, see [18, pp. 56-57], that

nas 1 0 o 0
2nag (n+1)asg 2 e 0
3nay (2n+1)ag (n+2)ag e 0
o - ~
by, = oy (1.3)
. . . . n—2
(n—1Dna, [(n—2)n+1an—1 [(n—3)n+2lan—2 ... (2n—2)ag

The elements in the above determinants |A;;| are given by

i e, i1
Aij = (i =3+ Dt = Uaizjre .1 .l - _.J (1.4)
0, if i+1<y.
In particular, according to (1.3), we have by = —as,
_EDBaz 1],
b3 = 3' 6(13 40,2 = 2&2 — as,
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(—1)° das 1 0
b4 = T 8&3 5&2 2 | = 5a2a3 — 5&% — Qy4,
: ].20,4 9&3 6032

and

5aq 1 0 0
_ (=1)°[10az 6az 2 0| _ 2 4 a0
bs = 5 150, 1las  Tas 3| = 6asays — 21ayas + 14asy + 3az — as.

20as 16a4 12a3 8as

Loewner, using his parametric method (see [27] and [23, p. 222]), proved that if f, defined by (1.1), belongs to
S or §*, then

I'(2 1
by < (2n+1)

where the extremal function that satisfies the equality in (1.5) is the inverse of the Koebe function.
Many authors have used the Faber polynomials, introduced by Faber [16], to estimate |a,| for various
subclasses of ¥ (see, for example, [5, 12, 13]). In fact, the coefficients b, can be expressed, using the Faber

polynomials, in the form

bn - 7K7:111(0/2,a3, aan)»
where
—n (7”’ ! n—1 (777’)' n—3
K =
n-1 Cont D=1 T eCar))im_3)i"

B % s+ (n o+ 2)ag]

+

)
(
(=n)! 4 (—n)!
( !
>( ay%lag + (—2n + 5)azay] + Z a;kj‘/}-,
Jj=7
where such expressions as (for example) (—n)! are to be interpreted symbolically by
(—n)!'=T(1—-n):=(-n)(-n—-1)(-n—-2)---, (ne{0,1,2,..})
and V; is a homogeneous polynomial in the variables as,as, ..., a, (see [3]). In particular,
K;? = —2ay, K;®=3(2d3—a3) and K;*= —4(5a3 — 5azas + as).
In general, an expansion of K _, is given by (see for details [2])

p' Dn—l

Kp = n 9
n-1 = Pan (p—n+1)(n—1) "1

-1 ! ;
MDQ 1+p7Dfl1+...+ (1.6)

2 "o

where p is an integer number and D? | = D? | (ag,as,...), and alternatively (see [33]),

m!
m _ M1 M2 Uy —
Dn71(a27a37-~-7an)— E ﬁag as ---alnn '
Mo iy —1:
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where the sum is taken over all nonnegative integers i, ..., t,—1 satisfying the conditions

P+ po+ o 1 =m,
1+ 22+ ...+ (n—Dpp—q =n—1.

Evidently, D""{(ag,az,...,a,) = aj *.

In this paper, for a univalent function f(z) = z 4+ Y ;o arz®; (n > 2), we give the coefficients
b; (n < k < 2n —1) of the inverse function f~1(w) = w+ Y ;= byw®. This leads to estimate |a,| for
f € X or f belongs to certain subclasses of ¥, whereby some of them are obtained here. Moreover, for f € S

or f belongs to certain subclasses of S, we estimate |na2 — ag,_1].

2. Coefficients for inverses of univalent functions and estimates

Our first main result is given in the following theorem.

Theorem 2.1 Let f(Z) = Z+Z;Q:n akzk; (n > 2) be a univalent function in U and fﬁl(w) _ w+2;c:n bkwk ;
(lw| <ro(f), ro(f) > ). Then,

bon_1 =na> — agn_1 and by = —ay for (n <k <2n—2).

Proof According to (1.3), the conclusion is trivial for n = 2. Since ar = 0; (2 <k <n —1), we have

0 1 0 0
0 0 2 0
0 0 0 0
_1\n+1
p, = DT
n!
. .. . o n—2
(n—1na, 0 0 ... 0
(—1)ntt 0 n—2

= xRy

n!
= —ay.
Next, for n+1 <k <2n —1 in (1.3), by can be expressed as by = #x
k;a2 1 0 PN . e 0
2kas (k + 1)as 2 . 0
3]'{3@4 (2]€ + 1)0,3 (k + 2)(12
(n—1)ka, . . n—1
nkan+1 [(n— 1Dk + 1]a, .
. . 0
. . . . k—2
(k — 1)kak [(k — 2)k + 1]04671 [(k — 3)k + Q]Gk,Q S (k +1-— n)(k — 1)ak+1,n . (Qk — 2)@2.
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Therefore, since ap =0; (2<k<n-—1), we get b = (_1k)lk+1 X
0 1 0 0
0 0 2 0
0
0 0 . .
(n — Dkay, 0 0 n—1
nkan41 [(n— 1Dk + 1]ay, 0 .
. 0
. . . . oo k=2
(k—Dkar [(k—2)k+1ag—1 [(k—3)k+2)ag—_2 (k+1-—n)(k—1)akrt1-n 0
0 2 0 0
0 0 3 0
1 0 0 . .
Tk |(n—1ka, 0 0 n—1
nkap11 0 0 .
. 0
. . . . k=2
(k—Dkar [(k—3)k+ 2)ag—2 (k+1—n)(k—Dagr1-n 0

Continue simplifying in this way by multiplying the entry A5 by the determinant of the resulting matrix formed

by removing the first row and the second column to reach

(n — Dkay, n—1
o on | Mkany1 .
b = % 0
: . . k—2
(k—1Dkar (k+1-—n)k—Dagri—n 0
0 k—2 0 0
0 0 k—3 0
_ —(n=2)!
B k! '
. n
(k+1-=n)k—1)agt1-n n—1
(k — Dkay (n —Dkay,
(n=2)(k=2)! [(k+1—n)(k—1)agr1—n n—1
El(n—1)! (k — Dkak (n —1)kay
= (k+1-n)akt1-nan — ay
if k=2n—1,

na? — asp_1,
—ag, ifn+1<k<2n-—2.

This completes the proof of Theorem 2.1.
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Corollary 2.2 Let f and f~! be defined as in Theorem 2.1. Then

lagn—1| + |b2n—1]
< _—
jan] < \/ n

Corollary 2.3 If f(2) = z+ Y o, arz®; (n > 2) is bi-univalent or bi-close-to-convex or bi-starlike function

in U, then
2
lan| < 4/4——.
n

Proof Let f and f~' defined as in Theorem 2.1 be univalent or close-to-convex or starlike functions in U. It

is well known that |ag| < k and |bg| < k, so |agn—1| < 2n—1 and |ba,—1] < 2n—1. Hence, in view of Theorem

NP i o A e B
n n n

2.1, we obtain

2n+ 1)I'(2n)’

O
Corollary 2.4 If f(z) =2+ o, apz* €S (n>2) and f~! belongs to S* or C or S, then
[na? — agn_1| < 2n — 1.
Using Theorem 2.1 and (1.5), we obtain the following:
Corollary 2.5 If f(z) =z + Y o, az®, (n>2) belongs to S or S8*, and then
Inai — agn-1| < T Ln—1) (2.1)

Note that if n = 2, then the equality in (2.1) is attained for the Koebe function. It would be of interest to

know the maximal function that satisfies the equality in (2.1) whenever n > 2.

Corollary 2.6 If f(z) =z + Y o, apz®; (n > 2) is bi-convex function in U, then

2
|an| < \/7
n

Proof Let f and f~! defined as in Theorem 2.1 be convex functions in U. It is well known that |ax| < 1

and |bg| <1, 80 |agp—1] <1 and |by,—1| < 1. Therefore, by Theorem 2.1, we get

|Cln‘ < \/|a2n—1| i |b2n—1| < \/5
n n

Corollary 2.7 If f(z) =z + Y o, apz* €S; (n >2) and f~1 belongs to CV, then

|na? — agn_1| < 1.
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According to Theorem 2.1, if f(z) = z+ > po, axz®; (n > 2) is univalent in U, and then its inverse function

f~1 has the form
2n—2
fHw) =w— Z arw® + (na — ag, 1) w4 (Jw| < ro(f), ro(f) > 1/4).
k=n
Example 2.8 The inverse of the univalent function f(z) = z+ anz™; (lan] < 1/n, n > 2) is given in the form
F7Hw) = w = anw” + nagw™ ™ 4 (Jw] <ro(f), ro(f) > 1/4).
Note that f is a starlike function and it is conver whenever |a,| < 1/n?.

3. Coefficient estimates for bi-univalent functions having positive real part derivatives

Using Theorem 2.1 and Faber polynomial expansion, we obtain coefficient estimates for the following subclass
of X.

Definition 3.1 For n>2, pe N, and 0 < a <1, a function f(z) =z+> ro, axz® € X is said to belong to
the class R(n,p;a) if
Re{(f'(2))’} > a, (z€0) (3.1)

and
Re{(g'(w))"} > a, (weU), (3.2)

where g = 1.
Note that the functions of R(n,1;0) are bi-close-to-convex in U.
Theorem 3.2 If f(z) € R(n,p;«), then

(i) for p=1, we have

4(1—a) . n—1
|an| < { n(2n—1)’ Zfo <as 2n—1

o b <a<,

n

(i) for p > 2, we have
2(1 —
jan < 212
np

(iii)

|ak\§2(1T;a), (k>n>2, peN),
(iv)
2(1 — )

M7 (p eN).

2
na;, — Gan—1| <
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Proof According to [1, Equation (4), p. 449], if ¢(z) =1+ Y p | ¢%2" is analytic in U and p € N, then
(W(2))P =14 KP(¢1,2, .. ) 2"
k=1

Thus,

o0

(f'(2))P = 1+ KP(2a2,3as,....(k + 1)ag1)z"
k=1

1+ KP_|(2a,3as, ... kag)z" " (3.3)
k=2

Similarly, for g = f~!, we have

Jgw) = 1+ Z kbjw®
k=2

o0

1+ ZK,;_’CI(aQ, as, ..., ax)wk 1
k=2

and

(¢'(w)P =1+ Y KP_ (2bg, 3bs, ..., kb )w* . (3.4)
k=2

By (3.1) and (3.2), there exist two positive real part functions p(z) = 1+ > po prz® € P and q(w) =
1+ Y22, qrw® € P such that

(f'(z)" = a+1-a)p(z)

= 1+ (1—a)piz+ (1 —a)p2® +--- (3.5)
and
(W)’ = a+1-a)(w)
= 1+(1-a)guw+(1-a)gpw®+---. (3.6)

Comparing the corresponding coefficients of (3.3) and (3.5) gives

K} 1(2a2,3as, ..., kay) = (1 — a)pr—1. (3.7)
Similarly, from (3.4) and (3.6), we obtain

K?_1(2bg,3bs, ..., kby) = (1 — @) qi—1. (3.8)
Therefore, equations (3.7) and (3.8) in conjunction with (1.6) yield

kpar = (1 — a)pp—1, (k>n>2)
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and
kpbp = (1 — a)qr—1, (k>n2>2).

Hence, using the Carathéodory lemma, we get

(1= a)lpial _ 2(1-a)

< k>n>2
o < =52 = znzy
and
(I —a)|ge—1| _ 2(1—a)
bl < < k>n>2).
In particular, we have
2(1 —
lan| < 2 -oa) a), (3.9)
np
2(1 — «) 2(1 — )
nt| < —-"7>, d |bop_1| < ——FF. 3.10
lazn—] < (2n—1)p and  [ban—1]| (2n—1)p ( )

Thus, in view of Theorem 2.1 and (3.10), we obtain

lan] < \/aznl + [b2n—1] < 41— a) (3.11)
n (2n — 1)np

21— «)
(2n—1)p
Considering the estimates (3.9) and (3.11) implies, for p=1 and 0 < a < (n—1)/(2n — 1), that

and

Ina2 — asp—1| = |bap_1| <

4(1 — «) < 21— «)
2n—1)np — np

On the other hand, for (p=1and (n—1)/(2n—1) <a<1)orfor (p>2 and 0 <a < 1), we have

2l-a) _ [ 4(1-0a)
np  ~ \| 2n—1)np

This completes the proof of Theorem 3.2. O

Remark 3.3 (1) The estimate of |ayn| given in Theorem 3.2 (i) for p = 1 is much better than that given by
Jahangiri et al. in [25, Theorem 2.1].

(2) Setting n =2, p=1, and k = 3 in Theorem 3.2 gives [13, Corollary 7]. The estimates of |as| and |as| are
much better than those given by Srivastava et al. [31] and the estimate of |aa| is much better than that given
by Xu et al. [35].

(8) In [25, Example 2.1], it is stated wrongly that the inverse of f(z) = z+ 177—:‘,2” is given by g(w) = w—ln_—;w".

It can be easily checked that f(g(w)) # w. Indeed, g(w) must be in the following form (see Example 2.8):

1-a n (1—&)2 2n—1
g(w) =w— w" +n w +---
np np
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The following is an example of a function in R(2,1;0) that satisfies the conclusions of Theorem 3.2.

Example 3.4 Consider the function f(z) = —log(l —z). Then

and

ffllw)=1-e " =w+ i (Vi wh.

Now Re{f'(2)} = Re{1/(1 —2)} > 0 and Re{(f~ 1) (w)} = Re{e~*} > 0 implies that f € R(2,1;0). In view
of Theorem 3.2 (i) and (iv), we have

as] 1 < 2
an| = = z
A2 =V3
and
1 2
bs| = |2a5 — =-<-.
[bs| = |23 —as| = g < 5
Acknowledgment
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