Turk J Math
(2020) 44: $240-251$
© TÜBİTAK
doi:10.3906/mat-1910-100

General coefficient estimates for bi-univalent functions: a new approach

Oqlah AL-REFAI ${ }^{1, *}{ }^{(1)}$, Mohammed ALI 2 (1)
${ }^{1}$ Department of Mathematics, Faculty of Science, Taibah University, Almadinah Almunawwarah, Saudi Arabia
${ }^{2}$ Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid, Jordan

Received: 27.10.2019 \quad Accepted/Published Online: 03.12.2019 \quad • Final Version: 20.01.2020

Abstract: We prove for univalent functions $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} ;(n \geq 2)$ in the unit disk $\left.\mathbb{U}=\{z:|z|<1\}\right)$ with $f^{-1}(w)=w+\sum_{k=n}^{\infty} b_{k} w^{k} ;\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$ that

$$
b_{2 n-1}=n a_{n}^{2}-a_{2 n-1} \text { and } b_{k}=-a_{k} \text { for }(n \leq k \leq 2 n-2)
$$

As applications, we find estimates for $\left|a_{n}\right|$ whenever f is bi-univalent, bi-close-to-convex, bi-starlike, bi-convex, or for bi-univalent functions having positive real part derivatives in \mathbb{U}. Moreover, we estimate $\left|n a_{n}^{2}-a_{2 n-1}\right|$ whenever f is univalent in \mathbb{U} or belongs to certain subclasses of univalent functions. The estimation method can be applied for various subclasses of bi-univalent functions in \mathbb{U} and it helps to improve well-known estimates and to generalize some known results as shown in the last section.

Key words: Univalent functions, bi-univalent functions, starlike functions, convex functions, close-to-convex functions, Faber polynomials, coefficient estimates

1. Introduction and preliminaries

Let \mathcal{A} denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ and normalized by $f(0)=f^{\prime}(0)-1=0$. Furthermore, let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U}. The class \mathcal{P} consists of analytic functions p satisfying $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0,(z \in \mathbb{U})$. The Carathéodory lemma states that the coefficients of $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \in \mathcal{P}$ satisfy $\left|c_{n}\right| \leq 2$ for $n \geq 1$. Denote by $\mathcal{C}, \mathcal{S}^{*}$ and $\mathcal{C} \mathcal{V}$ respectively the subclasses of \mathcal{S} consisting of close-to-convex, starlike, and convex functions in \mathbb{U}. Analytically, $f(z) \in \mathcal{S}^{*}$ if and only if $z f^{\prime}(z) / f(z) \in \mathcal{P},(z \in \mathbb{U})$, while $f(z) \in \mathcal{C} \mathcal{V}$ if and only if $1+z f^{\prime \prime}(z) / f^{\prime}(z) \in \mathcal{P},(z \in \mathbb{U})$. In addition, $f(z) \in \mathcal{C}$ if and only if $f^{\prime}(z) / g^{\prime}(z) \in \mathcal{P},(z \in \mathbb{U})$ for some $g \in \mathcal{C} \mathcal{V}$. Alexander's relation states that $f(z) \in \mathcal{C} \mathcal{V}$ if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}$. Indeed, $\mathcal{C} \mathcal{V} \subset \mathcal{S}^{*} \subset \mathcal{C} \subset \mathcal{S}$.

[^0]
AL-REFAI and ALI/Turk J Math

We know, for every $f \in \mathcal{S}$ defined by (1.1), that the inverse function f^{-1} exists and has the form

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right) \tag{1.2}
\end{equation*}
$$

That is, $f^{-1}(f(z))=z,(z \in \mathbb{U})$ and $f\left(f^{-1}(w)\right)=w,(|w|<1 / 4)$ according to the Koebe one-quarter theorem (see [15]). A function $f \in \mathcal{A}$ is said to be bi-property if both f and f^{-1} satisfy that property. The class of bi-univalent functions in \mathbb{U} is denoted by Σ. Some examples of functions in Σ (see $[7,31]$) are:

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \text { and } \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

However, the familiar Koebe function $z /(1-z)^{2}$ and the functions

$$
z-\frac{1}{2} z^{2}, \quad \frac{z}{1-z^{2}}
$$

are in \mathcal{S} but not members of Σ. Finding bounds for the coefficients of classes of bi-univalent functions dates back to 1967, since Lewin showed in [26] that $\left|a_{2}\right|<1.51$. However, Brannan and Clunie [7] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Later, Netanyahu [29] found that $\max _{f \in \Sigma}\left|a_{2}\right|=4 / 3$. The interest in the bounds of $\left|a_{n}\right|$ for classes of Σ increased with the publications $[17,31]$, where the nonsharp estimates for the first two coefficients were provided (see, for example, [8, 32]). In recent years, these works revived the investigation of the coefficient estimates for various subclasses of analytic and meromorphic bi-univalent functions (see [6, 9-11, 14, 19$22,24,28,30,34,36]$). Not much is known about the higher coefficients of bi-univalent functions as Ali et al. [4] also declared finding the bounds for $\left|a_{n}\right| ; n \geq 4$ an open problem, because the condition of bi-univalency makes the behavior of the higher coefficients unpredictable. In this work, however, we find particular solutions.

It is well known for $f \in \mathcal{S}$, defined by (1.1), and $f^{-1}(w)=w+\sum_{n=2}^{\infty} b_{n} w^{n}$, see [18, pp. 56-57], that

$$
b_{n}=\frac{(-1)^{n+1}}{n!}\left|\begin{array}{ccccc}
n a_{2} & 1 & 0 & \cdots & 0 \tag{1.3}\\
2 n a_{3} & (n+1) a_{2} & 2 & \cdots & 0 \\
3 n a_{4} & (2 n+1) a_{3} & (n+2) a_{2} & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & n-2 \\
(n-1) n a_{n} & {[(n-2) n+1] a_{n-1}} & {[(n-3) n+2] a_{n-2}} & \cdots & (2 n-2) a_{2}
\end{array}\right|
$$

The elements in the above determinants $\left|A_{i j}\right|$ are given by

$$
A_{i j}=\left\{\begin{array}{lr}
{[(i-j+1) n+j-1] a_{i-j+2},} & \text { if } i+1 \geq j \tag{1.4}\\
0, & \text { if } i+1<j
\end{array}\right.
$$

In particular, according to (1.3), we have $b_{2}=-a_{2}$,

$$
b_{3}=\frac{(-1)^{4}}{3!}\left|\begin{array}{cc}
3 a_{2} & 1 \\
6 a^{3} & 4 a_{2}
\end{array}\right|=2 a_{2}^{2}-a_{3}
$$

AL-REFAI and ALI/Turk J Math

$$
b_{4}=\frac{(-1)^{5}}{4!}\left|\begin{array}{ccc}
4 a_{2} & 1 & 0 \\
8 a_{3} & 5 a_{2} & 2 \\
12 a_{4} & 9 a_{3} & 6 a_{2}
\end{array}\right|=5 a_{2} a_{3}-5 a_{2}^{3}-a_{4}
$$

and

$$
b_{5}=\frac{(-1)^{6}}{5!}\left|\begin{array}{cccc}
5 a_{2} & 1 & 0 & 0 \\
10 a_{3} & 6 a_{2} & 2 & 0 \\
15 a_{4} & 11 a_{3} & 7 a_{2} & 3 \\
20 a_{5} & 16 a_{4} & 12 a_{3} & 8 a_{2}
\end{array}\right|=6 a_{2} a_{4}-21 a_{2}^{2} a_{3}+14 a_{2}^{4}+3 a_{3}^{2}-a_{5}
$$

Loewner, using his parametric method (see [27] and [23, p. 222]), proved that if f, defined by (1.1), belongs to \mathcal{S} or \mathcal{S}^{*}, then

$$
\begin{equation*}
\left|b_{n}\right| \leq \frac{\Gamma(2 n+1)}{\Gamma(n+2) \Gamma(n+1)}, \quad n \in\{2,3, \cdots\} \tag{1.5}
\end{equation*}
$$

where the extremal function that satisfies the equality in (1.5) is the inverse of the Koebe function.
Many authors have used the Faber polynomials, introduced by Faber [16], to estimate $\left|a_{n}\right|$ for various subclasses of Σ (see, for example, [5, 12, 13]). In fact, the coefficients b_{n} can be expressed, using the Faber polynomials, in the form

$$
b_{n}=\frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots, a_{n}\right)
$$

where

$$
\begin{aligned}
K_{n-1}^{-n} & =\frac{(-n)!}{(-2 n+1)!(n-1)!} a_{2}^{n-1}+\frac{(-n)!}{(2(-n+1))!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4}+\frac{(-n)!}{(2(-n+2))!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
& +\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right]+\sum_{j \geq 7} a_{2}^{n-j} V_{j}
\end{aligned}
$$

where such expressions as (for example) $(-n)$! are to be interpreted symbolically by

$$
(-n)!\equiv \Gamma(1-n):=(-n)(-n-1)(-n-2) \cdots, \quad(n \in\{0,1,2, \ldots\})
$$

and V_{j} is a homogeneous polynomial in the variables $a_{2}, a_{3}, \ldots, a_{n}$ (see [3]). In particular,

$$
K_{1}^{-2}=-2 a_{2}, \quad K_{2}^{-3}=3\left(2 a_{2}^{2}-a_{3}\right) \quad \text { and } \quad K_{3}^{-4}=-4\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)
$$

In general, an expansion of K_{n-1}^{p} is given by (see for details [2])

$$
\begin{equation*}
K_{n-1}^{p}=p a_{n}+\frac{p(p-1)}{2} D_{n-1}^{2}+\frac{p!}{(p-3)!3!} D_{n-1}^{3}+\cdots+\frac{p!}{(p-n+1)!(n-1)!} D_{n-1}^{n-1} \tag{1.6}
\end{equation*}
$$

where p is an integer number and $D_{n-1}^{p}=D_{n-1}^{p}\left(a_{2}, a_{3}, \ldots\right)$, and alternatively (see [33]),

$$
D_{n-1}^{m}\left(a_{2}, a_{3}, \ldots, a_{n}\right)=\sum \frac{m!}{\mu_{1}!\mu_{2}!\ldots \mu_{n-1}!} a_{2}^{\mu_{1}} a_{3}^{\mu_{2}} \ldots a_{n}^{\mu_{n-1}}
$$

AL-REFAI and ALI/Turk J Math

where the sum is taken over all nonnegative integers $\mu_{1}, \ldots, \mu_{n-1}$ satisfying the conditions

$$
\left\{\begin{array}{l}
\mu_{1}+\mu_{2}+\ldots+\mu_{n-1}=m, \\
\mu_{1}+2 \mu_{2}+\ldots+(n-1) \mu_{n-1}=n-1 .
\end{array}\right.
$$

Evidently, $D_{n-1}^{n-1}\left(a_{2}, a_{3}, \ldots, a_{n}\right)=a_{2}^{n-1}$.
In this paper, for a univalent function $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} ;(n \geq 2)$, we give the coefficients $b_{k} ;(n \leq k \leq 2 n-1)$ of the inverse function $f^{-1}(w)=w+\sum_{k=n}^{\infty} b_{k} w^{k}$. This leads to estimate $\left|a_{n}\right|$ for $f \in \Sigma$ or f belongs to certain subclasses of Σ, whereby some of them are obtained here. Moreover, for $f \in \mathcal{S}$ or f belongs to certain subclasses of \mathcal{S}, we estimate $\left|n a_{n}^{2}-a_{2 n-1}\right|$.

2. Coefficients for inverses of univalent functions and estimates

Our first main result is given in the following theorem.
Theorem 2.1 Let $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} ;(n \geq 2)$ be a univalent function in \mathbb{U} and $f^{-1}(w)=w+\sum_{k=n}^{\infty} b_{k} w^{k}$; $\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$. Then,

$$
b_{2 n-1}=n a_{n}^{2}-a_{2 n-1} \text { and } b_{k}=-a_{k} \text { for }(n \leq k \leq 2 n-2) \text {. }
$$

Proof According to (1.3), the conclusion is trivial for $n=2$. Since $a_{k}=0 ;(2 \leq k \leq n-1)$, we have

$$
\begin{aligned}
b_{n} & =\frac{(-1)^{n+1}}{n!}\left|\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 2 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdot & \ldots & n-2 \\
(n-1) n a_{n} & 0 & 0 & \ldots & 0
\end{array}\right| \\
& =\frac{(-1)^{n+1}}{n!} \times(n-3)!(-1)^{n-3}\left|\begin{array}{cc}
0 & n-2 \\
(n-1) n a_{n} & 0
\end{array}\right| \\
& =-a_{n} .
\end{aligned}
$$

Next, for $n+1 \leq k \leq 2 n-1$ in (1.3), b_{k} can be expressed as $b_{k}=\frac{(-1)^{k+1}}{k!} \times$

$k a_{2}$	1	0	\ldots	.	\cdots	0
$2 k a_{3}$	$(k+1) a_{2}$	2	\cdots	\cdot	\cdots	0
$3 k a_{4}$	$(2 k+1) a_{3}$	$(k+2) a_{2}$	\cdots	\cdot	\cdots	\cdot
\cdot	\cdot	\cdot	\cdots	\cdot	\cdots	\cdot
$(n-1) k a_{n}$	\cdot	\cdot	\cdots	\cdot	\cdots	\cdot
$n k a_{n+1}$	$[(n-1) k+1] a_{n}$	\cdot	\cdots	\cdots	\cdot	\cdots
\cdot	\cdot	\cdot	\cdots	\cdot	\cdots	
$(k-1) k a_{k}$	$[(k-2) k+1] a_{k-1}$	$[(k-3) k+2] a_{k-2}$	\cdots	$(k+1-n)(k-1) a_{k+1-n}$	\cdots	$(2 k-2) a_{2}$.

AL-REFAI and ALI/Turk J Math

Therefore, since $a_{k}=0 ;(2 \leq k \leq n-1)$, we get $b_{k}=\frac{(-1)^{k+1}}{k!} \times$

Continue simplifying in this way by multiplying the entry A_{12} by the determinant of the resulting matrix formed by removing the first row and the second column to reach

$$
\begin{aligned}
& b_{k}=\frac{-(n-2)!}{k!}\left|\begin{array}{cccc}
(n-1) k a_{n} & n-1 & \cdots & \cdot \\
n k a_{n+1} & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & 0 \\
\cdot & \cdot & \cdots & k-2 \\
(k-1) k a_{k} & (k+1-n)(k-1) a_{k+1-n} & \cdots & 0
\end{array}\right| \\
& =\frac{-(n-2)!}{k!}\left|\begin{array}{cccccc}
0 & k-2 & 0 & \ldots & \cdot & 0 \\
0 & 0 & k-3 & \ldots & \cdot & 0 \\
\cdot & \cdot & \cdot & \ldots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \ldots & n & \cdot \\
(k+1-n)(k-1) a_{k+1-n} & \cdot & \cdot & \cdots & \cdot & n-1 \\
(k-1) k a_{k} & \cdot & \cdot & \cdots & \cdot & (n-1) k a_{n}
\end{array}\right| \\
& =\frac{(n-2)!(k-2)!}{k!(n-1)!}\left|\begin{array}{cc}
(k+1-n)(k-1) a_{k+1-n} & n-1 \\
(k-1) k a_{k} & (n-1) k a_{n}
\end{array}\right| \\
& =(k+1-n) a_{k+1-n} a_{n}-a_{k} \\
& = \begin{cases}n a_{n}^{2}-a_{2 n-1}, & \text { if } k=2 n-1, \\
-a_{k}, & \text { if } n+1 \leq k \leq 2 n-2 .\end{cases}
\end{aligned}
$$

This completes the proof of Theorem 2.1.

AL-REFAI and ALI/Turk J Math

Corollary 2.2 Let f and f^{-1} be defined as in Theorem 2.1. Then

$$
\left|a_{n}\right| \leq \sqrt{\frac{\left|a_{2 n-1}\right|+\left|b_{2 n-1}\right|}{n}}
$$

Corollary 2.3 If $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} ;(n \geq 2)$ is bi-univalent or bi-close-to-convex or bi-starlike function in \mathbb{U}, then

$$
\left|a_{n}\right| \leq \sqrt{4-\frac{2}{n}}
$$

Proof Let f and f^{-1} defined as in Theorem 2.1 be univalent or close-to-convex or starlike functions in \mathbb{U}. It is well known that $\left|a_{k}\right| \leq k$ and $\left|b_{k}\right| \leq k$, so $\left|a_{2 n-1}\right| \leq 2 n-1$ and $\left|b_{2 n-1}\right| \leq 2 n-1$. Hence, in view of Theorem 2.1, we obtain

$$
\left|a_{n}\right| \leq \sqrt{\frac{\left|a_{2 n-1}\right|+\left|b_{2 n-1}\right|}{n}} \leq \sqrt{\frac{2(2 n-1)}{n}}=\sqrt{4-\frac{2}{n}}
$$

Corollary 2.4 If $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} \in \mathcal{S}(n \geq 2)$ and f^{-1} belongs to \mathcal{S}^{*} or \mathcal{C} or \mathcal{S}, then

$$
\left|n a_{n}^{2}-a_{2 n-1}\right| \leq 2 n-1
$$

Using Theorem 2.1 and (1.5), we obtain the following:

Corollary 2.5 If $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k}, \quad(n \geq 2)$ belongs to \mathcal{S} or \mathcal{S}^{*}, and then

$$
\begin{equation*}
\left|n a_{n}^{2}-a_{2 n-1}\right| \leq \frac{\Gamma(4 n-1)}{\Gamma(2 n+1) \Gamma(2 n)} \tag{2.1}
\end{equation*}
$$

Note that if $n=2$, then the equality in (2.1) is attained for the Koebe function. It would be of interest to know the maximal function that satisfies the equality in (2.1) whenever $n>2$.

Corollary 2.6 If $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} ;(n \geq 2)$ is bi-convex function in \mathbb{U}, then

$$
\left|a_{n}\right| \leq \sqrt{\frac{2}{n}}
$$

Proof Let f and f^{-1} defined as in Theorem 2.1 be convex functions in \mathbb{U}. It is well known that $\left|a_{k}\right| \leq 1$ and $\left|b_{k}\right| \leq 1$, so $\left|a_{2 n-1}\right| \leq 1$ and $\left|b_{2 n-1}\right| \leq 1$. Therefore, by Theorem 2.1, we get

$$
\left|a_{n}\right| \leq \sqrt{\frac{\left|a_{2 n-1}\right|+\left|b_{2 n-1}\right|}{n}} \leq \sqrt{\frac{2}{n}}
$$

Corollary 2.7 If $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} \in \mathcal{S} ;(n \geq 2)$ and f^{-1} belongs to $\mathcal{C} \mathcal{V}$, then

$$
\left|n a_{n}^{2}-a_{2 n-1}\right| \leq 1
$$

According to Theorem 2.1, if $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} ;(n \geq 2)$ is univalent in \mathbb{U}, and then its inverse function f^{-1} has the form

$$
f^{-1}(w)=w-\sum_{k=n}^{2 n-2} a_{k} w^{k}+\left(n a_{n}^{2}-a_{2 n-1}\right) w^{2 n-1}+\cdots, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)
$$

Example 2.8 The inverse of the univalent function $f(z)=z+a_{n} z^{n} ;\left(\left|a_{n}\right| \leq 1 / n, n \geq 2\right)$ is given in the form

$$
f^{-1}(w)=w-a_{n} w^{n}+n a_{n}^{2} w^{2 n-1}+\cdots, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right)
$$

Note that f is a starlike function and it is convex whenever $\left|a_{n}\right| \leq 1 / n^{2}$.

3. Coefficient estimates for bi-univalent functions having positive real part derivatives

Using Theorem 2.1 and Faber polynomial expansion, we obtain coefficient estimates for the following subclass of Σ.

Definition 3.1 For $n \geq 2, p \in \mathbb{N}$, and $0 \leq \alpha<1$, a function $f(z)=z+\sum_{k=n}^{\infty} a_{k} z^{k} \in \Sigma$ is said to belong to the class $R(n, p ; \alpha)$ if

$$
\begin{equation*}
\operatorname{Re}\left\{\left(f^{\prime}(z)\right)^{p}\right\}>\alpha, \quad(z \in \mathbb{U}) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\left(g^{\prime}(w)\right)^{p}\right\}>\alpha, \quad(w \in \mathbb{U}) \tag{3.2}
\end{equation*}
$$

where $g=f^{-1}$.
Note that the functions of $R(n, 1 ; 0)$ are bi-close-to-convex in \mathbb{U}.

Theorem 3.2 If $f(z) \in R(n, p ; \alpha)$, then
(i) for $p=1$, we have

$$
\left|a_{n}\right| \leq \begin{cases}\sqrt{\frac{4(1-\alpha)}{n(2 n-1)}}, & \text { if } 0 \leq \alpha \leq \frac{n-1}{2 n-1} \\ \frac{2(1-\alpha)}{n}, & \text { if } \frac{n-1}{2 n-1} \leq \alpha<1\end{cases}
$$

(ii) for $p \geq 2$, we have

$$
\left|a_{n}\right| \leq \frac{2(1-\alpha)}{n p}
$$

(iii)

$$
\left|a_{k}\right| \leq \frac{2(1-\alpha)}{k p}, \quad(k>n \geq 2, \quad p \in \mathbb{N})
$$

(iv)

$$
\left|n a_{n}^{2}-a_{2 n-1}\right| \leq \frac{2(1-\alpha)}{(2 n-1) p}, \quad(p \in \mathbb{N})
$$

AL-REFAI and ALI/Turk J Math

Proof According to [1, Equation (4), p. 449], if $\psi(z)=1+\sum_{k=1}^{\infty} \psi_{k} z^{k}$ is analytic in \mathbb{U} and $p \in \mathbb{N}$, then

$$
(\psi(z))^{p}=1+\sum_{k=1}^{\infty} K_{k}^{p}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{k}\right) z^{k}
$$

Thus,

$$
\begin{align*}
\left(f^{\prime}(z)\right)^{p} & =1+\sum_{k=1}^{\infty} K_{k}^{p}\left(2 a_{2}, 3 a_{3}, \ldots,(k+1) a_{k+1}\right) z^{k} \\
& =1+\sum_{k=2}^{\infty} K_{k-1}^{p}\left(2 a_{2}, 3 a_{3}, \ldots, k a_{k}\right) z^{k-1} \tag{3.3}
\end{align*}
$$

Similarly, for $g=f^{-1}$, we have

$$
\begin{aligned}
g^{\prime}(w) & =1+\sum_{k=2}^{\infty} k b_{k} w^{k} \\
& =1+\sum_{k=2}^{\infty} K_{k-1}^{-k}\left(a_{2}, a_{3}, \ldots, a_{k}\right) w^{k-1}
\end{aligned}
$$

and

$$
\begin{equation*}
\left(g^{\prime}(w)\right)^{p}=1+\sum_{k=2}^{\infty} K_{k-1}^{p}\left(2 b_{2}, 3 b_{3}, \ldots, k b_{k}\right) w^{k-1} \tag{3.4}
\end{equation*}
$$

By (3.1) and (3.2), there exist two positive real part functions $p(z)=1+\sum_{k=1}^{\infty} p_{k} z^{k} \in \mathcal{P}$ and $q(w)=$ $1+\sum_{k=1}^{\infty} q_{k} w^{k} \in \mathcal{P}$ such that

$$
\begin{align*}
\left(f^{\prime}(z)\right)^{p} & =\alpha+(1-\alpha) p(z) \\
& =1+(1-\alpha) p_{1} z+(1-\alpha) p_{2} z^{2}+\cdots \tag{3.5}
\end{align*}
$$

and

$$
\begin{align*}
\left(g^{\prime}(w)\right)^{p} & =\alpha+(1-\alpha) q(w) \\
& =1+(1-\alpha) q_{1} w+(1-\alpha) q_{2} w^{2}+\cdots \tag{3.6}
\end{align*}
$$

Comparing the corresponding coefficients of (3.3) and (3.5) gives

$$
\begin{equation*}
K_{k-1}^{p}\left(2 a_{2}, 3 a_{3}, \ldots, k a_{k}\right)=(1-\alpha) p_{k-1} \tag{3.7}
\end{equation*}
$$

Similarly, from (3.4) and (3.6), we obtain

$$
\begin{equation*}
K_{k-1}^{p}\left(2 b_{2}, 3 b_{3}, \ldots, k b_{k}\right)=(1-\alpha) q_{k-1} \tag{3.8}
\end{equation*}
$$

Therefore, equations (3.7) and (3.8) in conjunction with (1.6) yield

$$
k p a_{k}=(1-\alpha) p_{k-1}, \quad(k \geq n \geq 2)
$$

AL-REFAI and ALI/Turk J Math

and

$$
k p b_{k}=(1-\alpha) q_{k-1}, \quad(k \geq n \geq 2)
$$

Hence, using the Carathéodory lemma, we get

$$
\left|a_{k}\right| \leq \frac{(1-\alpha)\left|p_{k-1}\right|}{k p} \leq \frac{2(1-\alpha)}{k p}, \quad(k \geq n \geq 2)
$$

and

$$
\left|b_{k}\right| \leq \frac{(1-\alpha)\left|q_{k-1}\right|}{k p} \leq \frac{2(1-\alpha)}{k p}, \quad(k \geq n \geq 2)
$$

In particular, we have

$$
\begin{gather*}
\left|a_{n}\right| \leq \frac{2(1-\alpha)}{n p} \tag{3.9}\\
\left|a_{2 n-1}\right| \leq \frac{2(1-\alpha)}{(2 n-1) p}, \quad \text { and } \quad\left|b_{2 n-1}\right| \leq \frac{2(1-\alpha)}{(2 n-1) p} \tag{3.10}
\end{gather*}
$$

Thus, in view of Theorem 2.1 and (3.10), we obtain

$$
\begin{equation*}
\left|a_{n}\right| \leq \sqrt{\frac{\left|a_{2 n-1}\right|+\left|b_{2 n-1}\right|}{n}} \leq \sqrt{\frac{4(1-\alpha)}{(2 n-1) n p}} \tag{3.11}
\end{equation*}
$$

and

$$
\left|n a_{n}^{2}-a_{2 n-1}\right|=\left|b_{2 n-1}\right| \leq \frac{2(1-\alpha)}{(2 n-1) p}
$$

Considering the estimates (3.9) and (3.11) implies, for $p=1$ and $0 \leq \alpha \leq(n-1) /(2 n-1)$, that

$$
\sqrt{\frac{4(1-\alpha)}{(2 n-1) n p}} \leq \frac{2(1-\alpha)}{n p}
$$

On the other hand, for $(p=1$ and $(n-1) /(2 n-1) \leq \alpha<1)$ or for $(p \geq 2$ and $0 \leq \alpha<1)$, we have

$$
\frac{2(1-\alpha)}{n p} \leq \sqrt{\frac{4(1-\alpha)}{(2 n-1) n p}}
$$

This completes the proof of Theorem 3.2.

Remark 3.3 (1) The estimate of $\left|a_{n}\right|$ given in Theorem 3.2 (i) for $p=1$ is much better than that given by Jahangiri et al. in [25, Theorem 2.1].
(2) Setting $n=2, p=1$, and $k=3$ in Theorem 3.2 gives [13, Corollary 7]. The estimates of $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are much better than those given by Srivastava et al. [31] and the estimate of $\left|a_{2}\right|$ is much better than that given by Xu et al. [35].
(3) In [25, Example 2.1], it is stated wrongly that the inverse of $f(z)=z+\frac{1-\alpha}{n p} z^{n}$ is given by $g(w)=w-\frac{1-\alpha}{n p} w^{n}$. It can be easily checked that $f(g(w)) \neq w$. Indeed, $g(w)$ must be in the following form (see Example 2.8):

$$
g(w)=w-\frac{1-\alpha}{n p} w^{n}+n\left(\frac{1-\alpha}{n p}\right)^{2} w^{2 n-1}+\cdots
$$

AL-REFAI and ALI/Turk J Math

The following is an example of a function in $R(2,1 ; 0)$ that satisfies the conclusions of Theorem 3.2.
Example 3.4 Consider the function $f(z)=-\log (1-z)$. Then

$$
f(z)=z+\sum_{k=2}^{\infty} \frac{1}{k} z^{k}
$$

and

$$
f^{-1}(w)=1-e^{-w}=w+\sum_{k=2}^{\infty} \frac{(-1)^{k+1}}{k!} w^{k} .
$$

Now $\operatorname{Re}\left\{f^{\prime}(z)\right\}=\operatorname{Re}\{1 /(1-z)\}>0$ and $\operatorname{Re}\left\{\left(f^{-1}\right)^{\prime}(w)\right\}=\operatorname{Re}\left\{e^{-w}\right\}>0$ implies that $f \in R(2,1 ; 0)$. In view of Theorem 3.2 (i) and (iv), we have

$$
\left|a_{2}\right|=\frac{1}{2} \leq \sqrt{\frac{2}{3}}
$$

and

$$
\left|b_{3}\right|=\left|2 a_{2}^{2}-a_{3}\right|=\frac{1}{6} \leq \frac{2}{3} .
$$

Acknowledgment

The authors declare that they have no conflicts of interest.

References

[1] Airault H. Remarks on Faber polynomials. International Mathematical Forum 2008; 3: 449-456.
[2] Airault H, Bouali A. Differential calculus on the Faber polynomials. Bulletin des Sciences Mathématiques 2006; 130 (3): 179-222.
[3] Airault H, Ren J. An algebra of differential operators and generating functions on the set of univalent functions. Bulletin des Sciences Mathématiques 2002; 126 (5): 343-367.
[4] Ali RM, Lee SK, Ravichandran V, Supramaniam S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters 2012; 25: 344-351.
[5] Altınkaya Ş, Yalçın S, Çakmak S. A subclass of bi-univalent functions based on the Faber polynomial expansions and the Fibonacci numbers. Mathematics 2019; 7: 160.
[6] Aouf MK, El-Ashwah RM, Abd-Eltawab AM. New subclasses of biunivalent functions involving Dziok-Srivastava operator. ISRN Mathematical Analysis 2013; 2013: 387178.
[7] Brannan DA, Clunie JG (editors). Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute Held at the University of Durham; July 20, 1979). New York, NY, USA: Academic Press, 1980.
[8] Brannan DA, Taha TS. On some classes of bi-univalent functions. In: Mazhar SM, Hamoui A, Faour NS (editors). Mathematical Analysis and Its Applications; Kuwait; 1985. KFAS Proceedings Series, Vol. 3. Oxford, UK: Pergamon Press, 1988, pp. 53-60.
[9] Bulut S. Coefficient estimates for initial Taylor-Maclaurin coefficients for a subclass of analytic and bi-univalent functions defined by Al-Oboudi differential operator. Scientific World Journal 2013; 2013: 171039.
[10] Bulut S. Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator. Journal of Function Spaces and Applications 2013; 2013: 181932.

AL-REFAI and ALI/Turk J Math

[11] Bulut S. Coefficient estimates for a class of analytic and bi-univalent functions. Novi Sad Journal of Mathematics 2013; 43 (2): 59-65.
[12] Bulut S. Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions. Comptes rendus de l'Académie des Sciences Paris Series I 2014; 352 (6): 479-484.
[13] Bulut S. Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 2016; 30 (6): 1567-1575.
[14] Caglar M, Orhan H, Ya N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013; 27 (7): 1165-1171.
[15] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Vol. 259. New York, NY, USA: Springer, 1983.
[16] Faber G. Uber polynomische Entwickelungen. Mathematische Annalen 1903; 57 (3): 389-408 (in German).
[17] Frasin BA, Aouf MK. New subclasses of bi-univalent functions. Applied Mathematics Letter 2011; 24: 1569-1573.
[18] Goodman AW. Univalent Functions, Vol. I. Tampa, FL, USA: Mariner Publishing Company, 1983.
[19] Goyal SP, Goswami P. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives. Journal of Egyptian Mathematical Society 2012; 20: 179-182.
[20] Hamidi SG, Halim SA, Jahangiri JM. Coefficient estimates for a class of meromorphic bi-univalent functions. Comptes rendus de l'Académie des Sciences Paris Series I 2013; 351 (9-10): 349-352.
[21] Hamidi SG, Janani T, Murugusundaramoorthy G, Jahangiri JM. Coefficient estimates for certain classes of meromorphic bi-univalent functions. Comptes rendus de l'Académie des Sciences Paris Series I 2014; 352 (4): 277-282.
[22] Hayami T, Owa S. Coefficient bounds for bi-univalent functions. Pan-American Mathematical Journal 2012; 22 (4): 15-26.
[23] Hayman WK. Multivalent Functions, Second Edition. Cambridge, UK: Cambridge University Press, 1994.
[24] Jahangiri JM, Hamidi SG. Coefficient estimates for certain classes of bi-univalent functions. International Journal of Mathematics and Mathematical Sciences 2013; 2013: 190560.
[25] Jahangiri JM, Hamidi SG, Halim SA. Coefficients of bi-univalent functions with positive real part derivatives. Bulletin of the Malaysian Mathematical Sciences Society 2014; (2) 37: 633-640.
[26] Lewin M. On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society 1967; 18: 63-68.
[27] Loewner C. Untersuchungen uber schlichte konforme Abbildungen des Einheitskreises. Mathematische Annalen 1923; 89: 103-121 (in German).
[28] Murugusundaramoorthy G, Magesh N, Prameela V. Coefficient bounds for certain subclasses of bi-univalent functions. Abstract and Applied Analysis 2013; 2013: 573017.
[29] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Archive for Rational Mechanics and Analysis 1969; 32: 100-112.
[30] Porwal S, Darus M. On a new subclass of bi-univalent functions. Journal of Egyptian Mathematical Society 2013; 21 (3): 190-193.
[31] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters 2010; 23: 1188-1192.
[32] Taha TS. Topics in univalent function theory. PhD, University of London, London, UK, 1981.
[33] Todorov PG. On the Faber polynomials of the univalent functions of class Σ. Journal of Mathematical Analysis and Applications 1991; 162: 268-276.
[34] Wang ZG, Bulut S. A note on the coefficient estimates of bi-close-to-convex functions. Comptes Rendus Mathematique 2017; 355 (8): 876-880.
[35] Xu QH, Gui YC, Srivastava HM. Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters 2012; 25: 990-994.
[36] Xu QH, Xiao HG, Srivastava HM. A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation 2012; 218: 11461-11465.

[^0]: *Correspondence: oso__alrefai@yahoo.com
 2010 AMS Mathematics Subject Classification: 30C45

