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Abstract: We prove for univalent functions f(z) = z +
∑∞

k=n akz
k; (n ≥ 2) in the unit disk U = {z : |z| < 1}) with

f−1(w) = w +
∑∞

k=n bkw
k; (|w| < r0(f), r0(f) ≥ 1

4
) that

b2n−1 = na2
n − a2n−1 and bk = −ak for (n ≤ k ≤ 2n− 2).

As applications, we find estimates for |an| whenever f is bi-univalent, bi-close-to-convex, bi-starlike, bi-convex, or for
bi-univalent functions having positive real part derivatives in U . Moreover, we estimate |na2

n − a2n−1| whenever f is
univalent in U or belongs to certain subclasses of univalent functions. The estimation method can be applied for various
subclasses of bi-univalent functions in U and it helps to improve well-known estimates and to generalize some known
results as shown in the last section.

Key words: Univalent functions, bi-univalent functions, starlike functions, convex functions, close-to-convex
functions, Faber polynomials, coefficient estimates

1. Introduction and preliminaries

Let A denote the class of functions f(z) of the form

f(z) = z +

∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1} and normalized by f(0) = f ′(0) − 1 = 0 .
Furthermore, let S be the subclass of A consisting of univalent functions in U . The class P consists of
analytic functions p satisfying p(0) = 1 and Re{p(z)} > 0 , (z ∈ U) . The Carathéodory lemma states that the
coefficients of p(z) = 1 +

∑∞
n=1 cnz

n ∈ P satisfy |cn| ≤ 2 for n ≥ 1 . Denote by C , S∗ and CV respectively
the subclasses of S consisting of close-to-convex, starlike, and convex functions in U . Analytically, f(z) ∈ S∗

if and only if zf ′(z)/f(z) ∈ P , (z ∈ U) , while f(z) ∈ CV if and only if 1 + zf ′′(z)/f ′(z) ∈ P , (z ∈ U) . In
addition, f(z) ∈ C if and only if f ′(z)/g′(z) ∈ P , (z ∈ U) for some g ∈ CV . Alexander’s relation states that
f(z) ∈ CV if and only if zf ′(z) ∈ S∗ . Indeed, CV ⊂ S∗ ⊂ C ⊂ S .
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We know, for every f ∈ S defined by (1.1), that the inverse function f−1 exists and has the form

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · , (|w| < r0(f), r0(f) ≥

1

4
). (1.2)

That is, f−1(f(z)) = z, (z ∈ U) and f(f−1(w)) = w, (|w| < 1/4) according to the Koebe one-quarter theorem
(see [15]). A function f ∈ A is said to be bi-property if both f and f−1 satisfy that property. The class of
bi-univalent functions in U is denoted by Σ . Some examples of functions in Σ (see [7, 31]) are:

z

1− z
, − log(1− z), and 1

2
log

(
1 + z

1− z

)
.

However, the familiar Koebe function z/(1− z)2 and the functions

z − 1

2
z2,

z

1− z2

are in S but not members of Σ . Finding bounds for the coefficients of classes of bi-univalent functions dates
back to 1967, since Lewin showed in [26] that |a2| < 1.51 . However, Brannan and Clunie [7] conjectured that
|a2| ≤

√
2 . Later, Netanyahu [29] found that maxf∈Σ |a2| = 4/3 . The interest in the bounds of |an| for classes

of Σ increased with the publications [17, 31], where the nonsharp estimates for the first two coefficients were
provided (see, for example, [8, 32]). In recent years, these works revived the investigation of the coefficient
estimates for various subclasses of analytic and meromorphic bi-univalent functions (see [6, 9–11, 14, 19–
22, 24, 28, 30, 34, 36]). Not much is known about the higher coefficients of bi-univalent functions as Ali et
al. [4] also declared finding the bounds for |an|; n ≥ 4 an open problem, because the condition of bi-univalency
makes the behavior of the higher coefficients unpredictable. In this work, however, we find particular solutions.

It is well known for f ∈ S , defined by (1.1), and f−1(w) = w +
∑∞

n=2 bnw
n , see [18, pp. 56–57], that

bn =
(−1)n+1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

na2 1 0 . . . 0
2na3 (n+ 1)a2 2 . . . 0
3na4 (2n+ 1)a3 (n+ 2)a2 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . n− 2

(n− 1)nan [(n− 2)n+ 1]an−1 [(n− 3)n+ 2]an−2 . . . (2n− 2)a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.3)

The elements in the above determinants |Aij | are given by

Aij =

{
[(i− j + 1)n+ j − 1]ai−j+2, if i+ 1 ≥ j

0, if i+ 1 < j.
(1.4)

In particular, according to (1.3), we have b2 = −a2 ,

b3 =
(−1)4

3!

∣∣∣∣3a2 1
6a3 4a2

∣∣∣∣ = 2a22 − a3,
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b4 =
(−1)5

4!

∣∣∣∣∣∣
4a2 1 0
8a3 5a2 2
12a4 9a3 6a2

∣∣∣∣∣∣ = 5a2a3 − 5a32 − a4,

and

b5 =
(−1)6

5!

∣∣∣∣∣∣∣∣
5a2 1 0 0
10a3 6a2 2 0
15a4 11a3 7a2 3
20a5 16a4 12a3 8a2

∣∣∣∣∣∣∣∣ = 6a2a4 − 21a22a3 + 14a42 + 3a23 − a5.

Loewner, using his parametric method (see [27] and [23, p. 222]), proved that if f , defined by (1.1), belongs to
S or S∗ , then

|bn| ≤
Γ(2n+ 1)

Γ(n+ 2)Γ(n+ 1)
, n ∈ {2, 3, · · · }, (1.5)

where the extremal function that satisfies the equality in (1.5) is the inverse of the Koebe function.
Many authors have used the Faber polynomials, introduced by Faber [16], to estimate |an| for various

subclasses of Σ (see, for example, [5, 12, 13]). In fact, the coefficients bn can be expressed, using the Faber
polynomials, in the form

bn =
1

n
K−n

n−1(a2, a3, ..., an),

where

K−n
n−1 =

(−n)!
(−2n+ 1)!(n− 1)!

an−1
2 +

(−n)!
(2(−n+ 1))!(n− 3)!

an−3
2 a3

+
(−n)!

(−2n+ 3)!(n− 4)!
an−4
2 a4 +

(−n)!
(2(−n+ 2))!(n− 5)!

an−5
2 [a5 + (−n+ 2)a23]

+
(−n)!

(−2n+ 5)!(n− 6)!
an−6
2 [a6 + (−2n+ 5)a3a4] +

∑
j≥7

an−j
2 Vj ,

where such expressions as (for example) (−n)! are to be interpreted symbolically by

(−n)! ≡ Γ(1− n) := (−n)(−n− 1)(−n− 2) · · · , (n ∈ {0, 1, 2, ...})

and Vj is a homogeneous polynomial in the variables a2, a3, ..., an (see [3]). In particular,

K−2
1 = −2a2, K−3

2 = 3(2a22 − a3) and K−4
3 = −4(5a32 − 5a2a3 + a4).

In general, an expansion of Kp
n−1 is given by (see for details [2])

Kp
n−1 = pan +

p(p− 1)

2
D2

n−1 +
p!

(p− 3)!3!
D3

n−1 + · · ·+ p!

(p− n+ 1)!(n− 1)!
Dn−1

n−1, (1.6)

where p is an integer number and Dp
n−1 = Dp

n−1(a2, a3, ...) , and alternatively (see [33]),

Dm
n−1(a2, a3, ..., an) =

∑ m!

µ1!µ2! . . . µn−1!
aµ1

2 aµ2

3 . . . aµn−1
n ,
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where the sum is taken over all nonnegative integers µ1, ..., µn−1 satisfying the conditions

{
µ1 + µ2 + ...+ µn−1 = m,

µ1 + 2µ2 + ...+ (n− 1)µn−1 = n− 1.

Evidently, Dn−1
n−1(a2, a3, ..., an) = an−1

2 .

In this paper, for a univalent function f(z) = z +
∑∞

k=n akz
k; (n ≥ 2) , we give the coefficients

bk; (n ≤ k ≤ 2n − 1) of the inverse function f−1(w) = w +
∑∞

k=n bkw
k . This leads to estimate |an| for

f ∈ Σ or f belongs to certain subclasses of Σ , whereby some of them are obtained here. Moreover, for f ∈ S
or f belongs to certain subclasses of S , we estimate |na2n − a2n−1| .

2. Coefficients for inverses of univalent functions and estimates
Our first main result is given in the following theorem.

Theorem 2.1 Let f(z) = z+
∑∞

k=n akz
k; (n ≥ 2) be a univalent function in U and f−1(w) = w+

∑∞
k=n bkw

k ;
(|w| < r0(f), r0(f) ≥ 1

4 ) . Then,

b2n−1 = na2n − a2n−1 and bk = −ak for (n ≤ k ≤ 2n− 2).

Proof According to (1.3), the conclusion is trivial for n = 2 . Since ak = 0; (2 ≤ k ≤ n− 1) , we have

bn =
(−1)n+1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . 0
0 0 2 . . . 0
0 0 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . n− 2

(n− 1)nan 0 0 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(−1)n+1

n!
× (n− 3)!(−1)n−3

∣∣∣∣ 0 n− 2
(n− 1)nan 0

∣∣∣∣
= −an.

Next, for n+ 1 ≤ k ≤ 2n− 1 in (1.3), bk can be expressed as bk = (−1)k+1

k! ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ka2 1 0 . . . . . . . 0
2ka3 (k + 1)a2 2 . . . . . . . 0
3ka4 (2k + 1)a3 (k + 2)a2 . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .

(n− 1)kan . . . . . n− 1 . . . .
nkan+1 [(n− 1)k + 1]an . . . . . . . . .

. . . . . . . . . . 0

. . . . . . . . . . k − 2
(k − 1)kak [(k − 2)k + 1]ak−1 [(k − 3)k + 2]ak−2 . . . (k + 1− n)(k − 1)ak+1−n . . . (2k − 2)a2.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Therefore, since ak = 0; (2 ≤ k ≤ n− 1) , we get bk = (−1)k+1

k! ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 . . . . . . . 0
0 0 2 . . . . . . . 0
. . 0 . . . . . . . .
. . . . . . . . . . .
0 0 . . . . . . . . .

(n− 1)kan 0 0 . . . n− 1 . . . .
nkan+1 [(n− 1)k + 1]an 0 . . . . . . . .

. . . . . . . . . . 0

. . . . . . . . . . k − 2
(k − 1)kak [(k − 2)k + 1]ak−1 [(k − 3)k + 2]ak−2 . . . (k + 1− n)(k − 1)ak+1−n . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 2 0 . . . . . . . 0
0 0 3 . . . . . . . 0
. . . . . . . . . . .
. . . . . . . . . . .
0 0 . . . . . . . . .

(n− 1)kan 0 0 . . . n− 1 . . . .
nkan+1 0 0 . . . . . . . .

. . . . . . . . . . 0

. . . . . . . . . . k − 2
(k − 1)kak [(k − 3)k + 2]ak−2 . . . . (k + 1− n)(k − 1)ak+1−n . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Continue simplifying in this way by multiplying the entry A12 by the determinant of the resulting matrix formed
by removing the first row and the second column to reach

bk =
−(n− 2)!

k!

∣∣∣∣∣∣∣∣∣∣
(n− 1)kan n− 1 . . . .
nkan+1 . . . . .

. . . . . 0

. . . . . k − 2
(k − 1)kak (k + 1− n)(k − 1)ak+1−n . . . 0

∣∣∣∣∣∣∣∣∣∣

=
−(n− 2)!

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 k − 2 0 . . . . 0
0 0 k − 3 . . . . 0
. . . . . . . .
. . . . . . . .
. . . . . . n .

(k + 1− n)(k − 1)ak+1−n . . . . . . n− 1
(k − 1)kak . . . . . . (n− 1)kan

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(n− 2)!(k − 2)!

k!(n− 1)!

∣∣∣∣(k + 1− n)(k − 1)ak+1−n n− 1
(k − 1)kak (n− 1)kan

∣∣∣∣
= (k + 1− n)ak+1−nan − ak

=

{
na2n − a2n−1, if k = 2n− 1,
−ak, if n+ 1 ≤ k ≤ 2n− 2.

This completes the proof of Theorem 2.1. 2
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Corollary 2.2 Let f and f−1 be defined as in Theorem 2.1. Then

|an| ≤
√

|a2n−1|+ |b2n−1|
n

.

Corollary 2.3 If f(z) = z +
∑∞

k=n akz
k; (n ≥ 2) is bi-univalent or bi-close-to-convex or bi-starlike function

in U , then

|an| ≤
√
4− 2

n
.

Proof Let f and f−1 defined as in Theorem 2.1 be univalent or close-to-convex or starlike functions in U . It
is well known that |ak| ≤ k and |bk| ≤ k , so |a2n−1| ≤ 2n−1 and |b2n−1| ≤ 2n−1 . Hence, in view of Theorem
2.1, we obtain

|an| ≤
√

|a2n−1|+ |b2n−1|
n

≤
√

2(2n− 1)

n
=

√
4− 2

n
.

2

Corollary 2.4 If f(z) = z +
∑∞

k=n akz
k ∈ S (n ≥ 2) and f−1 belongs to S∗ or C or S , then

|na2n − a2n−1| ≤ 2n− 1.

Using Theorem 2.1 and (1.5), we obtain the following:

Corollary 2.5 If f(z) = z +
∑∞

k=n akz
k, (n ≥ 2) belongs to S or S∗ , and then

|na2n − a2n−1| ≤
Γ(4n− 1)

Γ(2n+ 1)Γ(2n)
. (2.1)

Note that if n = 2 , then the equality in (2.1) is attained for the Koebe function. It would be of interest to
know the maximal function that satisfies the equality in (2.1) whenever n > 2 .

Corollary 2.6 If f(z) = z +
∑∞

k=n akz
k; (n ≥ 2) is bi-convex function in U , then

|an| ≤
√

2

n
.

Proof Let f and f−1 defined as in Theorem 2.1 be convex functions in U . It is well known that |ak| ≤ 1

and |bk| ≤ 1 , so |a2n−1| ≤ 1 and |b2n−1| ≤ 1 . Therefore, by Theorem 2.1, we get

|an| ≤
√

|a2n−1|+ |b2n−1|
n

≤
√

2

n
.

2

Corollary 2.7 If f(z) = z +
∑∞

k=n akz
k ∈ S; (n ≥ 2) and f−1 belongs to CV , then

|na2n − a2n−1| ≤ 1.
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According to Theorem 2.1, if f(z) = z +
∑∞

k=n akz
k; (n ≥ 2) is univalent in U , and then its inverse function

f−1 has the form

f−1(w) = w −
2n−2∑
k=n

akw
k + (na2n − a2n−1)w

2n−1 + · · · , (|w| < r0(f), r0(f) ≥ 1/4).

Example 2.8 The inverse of the univalent function f(z) = z+ anz
n; (|an| ≤ 1/n, n ≥ 2) is given in the form

f−1(w) = w − anw
n + na2nw

2n−1 + · · · , (|w| < r0(f), r0(f) ≥ 1/4).

Note that f is a starlike function and it is convex whenever |an| ≤ 1/n2 .

3. Coefficient estimates for bi-univalent functions having positive real part derivatives

Using Theorem 2.1 and Faber polynomial expansion, we obtain coefficient estimates for the following subclass
of Σ .

Definition 3.1 For n ≥ 2 , p ∈ N , and 0 ≤ α < 1 , a function f(z) = z +
∑∞

k=n akz
k ∈ Σ is said to belong to

the class R(n, p;α) if
Re{(f ′(z))p} > α, (z ∈ U) (3.1)

and
Re{(g′(w))p} > α, (w ∈ U), (3.2)

where g = f−1 .

Note that the functions of R(n, 1; 0) are bi-close-to-convex in U .

Theorem 3.2 If f(z) ∈ R(n, p;α) , then

(i) for p = 1 , we have

|an| ≤

{√
4(1−α)
n(2n−1) , if 0 ≤ α ≤ n−1

2n−1
2(1−α)

n , if n−1
2n−1 ≤ α < 1,

(ii) for p ≥ 2 , we have

|an| ≤
2(1− α)

np
,

(iii)

|ak| ≤
2(1− α)

kp
, (k > n ≥ 2, p ∈ N),

(iv)

|na2n − a2n−1| ≤
2(1− α)

(2n− 1)p
, (p ∈ N).
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Proof According to [1, Equation (4), p. 449], if ψ(z) = 1 +
∑∞

k=1 ψkz
k is analytic in U and p ∈ N , then

(ψ(z))p = 1 +

∞∑
k=1

Kp
k(ψ1, ψ2, ..., ψk)z

k.

Thus,

(f ′(z))p = 1 +

∞∑
k=1

Kp
k(2a2, 3a3, ..., (k + 1)ak+1)z

k

= 1 +

∞∑
k=2

Kp
k−1(2a2, 3a3, ..., kak)z

k−1. (3.3)

Similarly, for g = f−1 , we have

g′(w) = 1 +

∞∑
k=2

kbkw
k

= 1 +

∞∑
k=2

K−k
k−1(a2, a3, ..., ak)w

k−1

and

(g′(w))p = 1 +

∞∑
k=2

Kp
k−1(2b2, 3b3, ..., kbk)w

k−1. (3.4)

By (3.1) and (3.2), there exist two positive real part functions p(z) = 1 +
∑∞

k=1 pkz
k ∈ P and q(w) =

1 +
∑∞

k=1 qkw
k ∈ P such that

(f ′(z))p = α+ (1− α)p(z)

= 1 + (1− α)p1z + (1− α)p2z
2 + · · · (3.5)

and

(g′(w))p = α+ (1− α)q(w)

= 1 + (1− α)q1w + (1− α)q2w
2 + · · · . (3.6)

Comparing the corresponding coefficients of (3.3) and (3.5) gives

Kp
k−1(2a2, 3a3, ..., kak) = (1− α)pk−1. (3.7)

Similarly, from (3.4) and (3.6), we obtain

Kp
k−1(2b2, 3b3, ..., kbk) = (1− α)qk−1. (3.8)

Therefore, equations (3.7) and (3.8) in conjunction with (1.6) yield

kpak = (1− α)pk−1, (k ≥ n ≥ 2)
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and
kpbk = (1− α)qk−1, (k ≥ n ≥ 2).

Hence, using the Carathéodory lemma, we get

|ak| ≤
(1− α)|pk−1|

kp
≤ 2(1− α)

kp
, (k ≥ n ≥ 2)

and

|bk| ≤
(1− α)|qk−1|

kp
≤ 2(1− α)

kp
, (k ≥ n ≥ 2).

In particular, we have

|an| ≤
2(1− α)

np
, (3.9)

|a2n−1| ≤
2(1− α)

(2n− 1)p
, and |b2n−1| ≤

2(1− α)

(2n− 1)p
. (3.10)

Thus, in view of Theorem 2.1 and (3.10), we obtain

|an| ≤
√

|a2n−1|+ |b2n−1|
n

≤

√
4(1− α)

(2n− 1)np
(3.11)

and

|na2n − a2n−1| = |b2n−1| ≤
2(1− α)

(2n− 1)p
.

Considering the estimates (3.9) and (3.11) implies, for p = 1 and 0 ≤ α ≤ (n− 1)/(2n− 1) , that√
4(1− α)

(2n− 1)np
≤ 2(1− α)

np
.

On the other hand, for (p = 1 and (n− 1)/(2n− 1) ≤ α < 1) or for (p ≥ 2 and 0 ≤ α < 1), we have

2(1− α)

np
≤

√
4(1− α)

(2n− 1)np
.

This completes the proof of Theorem 3.2. 2

Remark 3.3 (1) The estimate of |an| given in Theorem 3.2 (i) for p = 1 is much better than that given by
Jahangiri et al. in [25, Theorem 2.1].
(2) Setting n = 2 , p = 1 , and k = 3 in Theorem 3.2 gives [13, Corollary 7]. The estimates of |a2| and |a3| are
much better than those given by Srivastava et al. [31] and the estimate of |a2| is much better than that given
by Xu et al. [35].
(3) In [25, Example 2.1], it is stated wrongly that the inverse of f(z) = z+ 1−α

np z
n is given by g(w) = w− 1−α

np w
n .

It can be easily checked that f(g(w)) ̸= w . Indeed, g(w) must be in the following form (see Example 2.8):

g(w) = w − 1− α

np
wn + n

(
1− α

np

)2

w2n−1 + · · · .
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The following is an example of a function in R(2, 1; 0) that satisfies the conclusions of Theorem 3.2.

Example 3.4 Consider the function f(z) = − log(1− z) . Then

f(z) = z +

∞∑
k=2

1

k
zk

and

f−1(w) = 1− e−w = w +

∞∑
k=2

(−1)k+1

k!
wk.

Now Re{f ′(z)} = Re{1/(1− z)} > 0 and Re{(f−1)′(w)} = Re{e−w} > 0 implies that f ∈ R(2, 1; 0) . In view
of Theorem 3.2 (i) and (iv), we have

|a2| =
1

2
≤

√
2

3

and

|b3| = |2a22 − a3| =
1

6
≤ 2

3
.
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