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Abstract: In this paper, we give the equation satisfied by umbilics-free Willmore spacelike hypersurfaces using the
conformal invariants in Lorentzian space forms. At the same time, we give the equation satisfied by hyperelastic
spacelike curves in 2 -dimensional Lorentzian space forms and classify the closed hyperelastic spacelike curves. Finally
conformally flat Willmore spacelike hypersurfaces are classified in terms of the hyperelastic spacelike curves in 2 -
dimensional Lorentzian space forms.
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1. Introduction
Recently Willmore submanifolds in a sphere Sn+1 have been studied extensively. In particular, Willmore
surfaces are the most interesting and long-term point of focus. An important result is that Marques solved the
famous Willmore conjecture [14]. The high-dimensional generalization of the Willmore surface is attributed to
Guo et al. [6], who proposed the high-dimensional version of the Willmore conjecture. Since then, there have
been many studies on the rigidity of Willmore hypersurfaces (see [1, 4–7, 9, 10, 12]). In [11], the second author
classified the Willmore hypersurfaces with two distinct principal curvatures in Sn+1 ; therefore, the conformally
flat Willmore hypersurfaces in Sn+1 have been classified.

As its parallel generalization, the Willmore spacelike submanifold in Lorentzian space forms is another
important submanifold. However, there are fewer results. In this paper, we investigate the Willmore spacelike
hypersurfaces in Lorentzian space form. One of our main goals is to generalize the results in [11] from sphere
space to Lorentzian space forms.

There exists a standard conformal mapping between the Lorentzian space forms Rn+1
1 , Sn+1

1 (1) and
Hn+1

1 (−1) (see [14], or Section 2). Since Willmore spacelike hypersurfaces are conformal invariants, the results
are the same between the Lorentzian space forms. In this paper we only consider the Willmore spacelike
hypersurfaces in Rn+1

1 , whose results also hold in other space.

Let f : Mn → Rn+1
1 , (n ≥ 4) be a spacelike hypersurface in Lorentzian space Rn+1

1 . Given the
first fundamental form I = 〈df, df〉1 and the second fundamental form II =

∑
ij hijθi ⊗ θj , we denote by

H = 1
n

∑
i hii the mean curvature and |II| the norm of the second fundamental form. The spacelike hypersurface
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f is called a Willmore spacelike hypersurface if it is a critical point of the following Willmore functional:

W (f) =

∫
Mn

(|II|2 − nH2)
n
2 dv,

where dv is the volume element with respect to I . The functional W (f) is invariant under the conformal
transformation of Rn+1

1 and so the Willmore spacelike hypersurfaces are conformal invariants. In this paper
we investigate the Willmore spacelike hypersurfaces using the framework of conformal geometry of Rn+1

1 . We
define the conformal metric of f by

g = ρ2df · df =
n

n− 1
(‖II‖2 − nH2)I.

When the spacelike hypersurface is umbilics-free, then g is a Riemannian metric that is invariant under
the conformal transformations of Rn+1

1 . Together with another quadratic form (called the conformal second
fundamental form), they form a complete system of invariants for the spacelike hypersurface (n ≥ 3) in the
conformal geometry of the Lorentzian space Rn+1

1 (see Section 2). In fact, the functional W (f) is the volume
with respect to the conformal metric g up to a constant.

The one-dimensional version of the functional W (f) is the r -elastic energy functional W r(γ) on a
spacelike curve γ for some natural number r . Let γ : I → M2

1 (c) be a spacelike curve in 2 -dimensional
Lorentzian space form M2

1 (c) with Gauss curvature c , and let s denote the arclength parametrization and κ

the oriented curvature of γ . The r -elastic energy functional W r(γ) is defined as follows:

W r(γ) =

∫
γ

κrds.

The critical point of the functional W r(γ) is call an r -hyperelastic spacelike curve. In this paper, we compute
the Euler–Lagrange equation of the functional W r(γ) , i.e. the r -hyperelastic curve equation.

Theorem 1.1 Let γ : I → M2
1 (c) be a spacelike curve in 2-dimensional Lorentzian space form M2

1 (c) with
Gauss curvature c , and let s denote the arclength parametrization and κ the oriented curvature of γ . Then γ

is an r -hyperelastic spacelike curve if and only if its oriented curvature satisfies

−r(r − 1)κr−3[κκss + (r − 2)κ2
s −

κ4

r
− κ2

r − 1
c] = 0.

Because of the causal character, there are no closed spacelike curves in R2
1 , but there are closed spacelike curves

in M2
1 (c)(c 6= 0) . The following theorem gives the classification of closed r -hyperelastic spacelike curves.

Theorem 1.2 Let γ : I → M2
1 (c) be an r -hyperelastic spacelike curve in 2-dimensional Lorentzian space form

M2
1 (c) . If γ is closed, then γ is the totally geodesic closed curve in S21(c)(c > 0) , or the totally umbilical closed

curve with the oriented curvature
√

−rc
r−1 in H2

1(c)(c < 0) .

One of our purposes is to classify the conformally flat Willmore spacelike hypersurfaces by n -hyperelastic
spacelike curves up to a conformal transformation. Two hypersurfaces f, f̃ : Mn → Rn+1

1 are conformally
equivalent if there exists a conformal transformation φ such that f(Mn) = φ ◦ f̃(Mn) .
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Theorem 1.3 Let f : Mn → Rn+1
1 , n ≥ 4, be a conformally flat Willmore spacelike hypersurface without

umbilical point. Then f is locally conformally equivalent to one of the following spacelike hypersurfaces in
Rn+1

1 :
(1) a cylinder over an n-hyperelastic spacelike curve in R2

1 ⊂ Rn+1
1 ,

(2) a cone over an n-hyperelastic spacelike curve in S21(−1) ⊂ R3
1 ⊂ Rn+1

1 ,
(3) a rotational hypersurface over an n-hyperelastic spacelike curve in R2

1+ ⊂ Rn+1
1 .

The Lorentzian hyperbolic 2-plane R2
1+ is defined by

R2
1+ = {(x, y) ∈ R2|y > 0},

and it is endowed with the Lorentzian metric ds2 = 1
y2 (−dx2 + dy2) . The Gauss curvature of R2

1+ is −1 with

respect to the Lorentzian metric ds2 . Letting H2
1(−1) be a 2 -dimensional anti-de Sitter sphere, there exists

the following standard isometric embedding:

φ : R2
1+ → H2

1(−1), φ(x, y) = (
y2 − x2 + 1

2y
,
x

y
,
y2 − x2 − 1

2y
). (1.1)

In this paper, all manifolds, maps, etc. will be assumed C∞ . The paper is organized as follows. In Section
2, we give the elementary facts about conformal geometry for spacelike hypersurfaces in Rn+1

1 . In Section 3,
we compute the Euler–Lagrange equation of the Willmore functional W (f) by conformal invariants. In Section
4, we compute the Euler–Lagrange equation of the functional W r(γ) and prove Theorem 1.2. In Section 5, we
present some examples of Willmore spacelike hypersurfaces in terms of the n -hyperelastic spacelike curves. In
Section 5, we give the proof of Theorem 1.3.

2. Conformal geometry of spacelike hypersurfaces

In this section, following Wang’s idea in [16], we define some conformal invariants on a spacelike hypersurface and
give a congruent theorem of the spacelike hypersurfaces under the conformal transformation group of Mn+1

1 (c)

(or see [13]).
Let Rn+2

s be the real vector space Rn+2 with the Lorentzian product 〈, 〉s given by

〈X,Y 〉s = −
s∑

i=1

xiyi +

n+2∑
j=s+1

xjyj .

For any a > 0 , the standard sphere Sn+1(a) , the hyperbolic space Hn+1(−a) , the de Sitter space Sn+1
1 (a) , and

the anti-de Sitter space Hn+1
1 (−a) are defined by

Sn+1(a) = {x ∈ Rn+2|x · x = a2}, Hn+1(−a) = {x ∈ Rn+2
1 |〈x, x〉1 = −a2},

Sn+1
1 (a) = {x ∈ Rn+2

1 |〈x, x〉1 = a2}, Hn+1
1 (−a) = {x ∈ Rn+2

2 |〈x, x〉2 = −a2},

respectively. Let Mn+1
1 (c) be a Lorentzian space form. When c = 0 , Mn+1

1 (c) = Rn+1
1 ; when c = 1 ,

Mn+1
1 (c) = Sn+1

1 (1) ; and when c = −1 , Mn+1
1 (c) = Hn+1

1 (−1) .
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Denoting by Cn+2 the cone in Rn+3
2 and by Qn+1

1 the conformal compactification space in RPn+3 ,

Cn+2 = {X ∈ Rn+3
2 |〈X,X〉2 = 0, X 6= 0}, Qn+1

1 = {[X] ∈ RPn+2|〈X,X〉2 = 0}.

Let O(n + 3, 2) be the Lorentzian group of Rn+3
2 keeping the Lorentzian product 〈X,Y 〉2 invariant. Then

O(n+ 3, 2) is a transformation group on Qn+1
1 defined by

T ([X]) = [XT ], X ∈ Cn+2, T ∈ O(n+ 3, 2).

Topologically, Qn+1
1 is identified with the compact space Sn×S1/S0 , which is endowed by a standard Lorentzian

metric h = gSn ⊕ (−gS1) , where gSk denotes the standard metric of the k -dimensional sphere Sk . Therefore,
Qn+1

1 has conformal metric [h] = {eτh}, τ ∈ C∞(Qn+1
1 ), and [O(n + 3, 2)] is the conformal transformation

group of Qn+1
1 (see [2, 15]).

Setting P = {[X] ∈ Qn+1
1 |x1 = xn+3}, P− = {[X] ∈ Qn+1

1 |xn+3 = 0}, P+ = {[X] ∈ Qn+1
1 |x1 = 0} , we

can define the following conformal diffeomorphisms:

σ0 : Rn+1
1 → Qn+1

1 \P, u 7→ [( ⟨u,u⟩1+1
2 , u, ⟨u,u⟩1−1

2 )],
σ1 : Sn+1

1 (1) → Qn+1
1 \P+, u 7→ [(1, u)],

σ−1 : Hn+1
1 (−1) → Qn+1

1 \P−, u 7→ [(u, 1)].

(2.1)

We may regard Qn+1
1 as the common compactification of Rn+1

1 ,Sn+1
1 (1),Hn+1

1 (−1) .

Let f : Mn → Mn+1
1 (c) be a spacelike hypersurface. Using σc , we obtain the hypersurface σc ◦ f :

Mn → Qn+1
1 in Qn+1

1 . Thus, from [15], we have the following results:

Theorem 2.1 Two hypersurfaces f, f̄ : Mn → Mn+1
1 (c) are conformally equivalent if and only if there exists

T ∈ O(n+ 3, 2) such that σc ◦ f = T (σc ◦ f̄) : Mn → Qn+1
1 .

Since f : Mn → Mn+1
1 (c) is a spacelike hypersurface, (σc◦f)∗(TMn) is a positive definite subbundle of TQn+1

1 .
For any local lift Z of the standard projection π : Cn+2 → Qn+1

1 , we get a local lift y = Z ◦ σc ◦ f : U → Cn+1

of σc ◦ f : M → Qn+1
1 in an open subset U of Mn . Thus, 〈dy, dy〉2 = ρ2〈df, df〉s is a local metric, where

ρ ∈ C∞(U) . We denote by ∆ and κ the Laplacian operator and the normalized scalar curvature with respect
to the local positive definite metric 〈dy, dy〉2 , respectively. Similar to Wang’s proof of Theorem 1.2 in [16], we
get the following theorem:

Theorem 2.2 Let f : Mn → Mn+1
1 (c) be a spacelike hypersurface. Then the 2-form

g = −(〈∆y,∆y〉2 − n2κ)〈dy, dy〉2

is a globally defined conformal invariant. Moreover, g is positive definite at any nonumbilical point of Mn .

We call g the conformal metric of the spacelike hypersurface f , and there exists a unique lift

Y : M → Cn+2

such that g = 〈dY, dY 〉2 . We call Y the conformal position vector of the spacelike hypersurface f . Theorem
2.2 implies the following:
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Theorem 2.3 Two spacelike hypersurfaces f, f̄ : Mn → Mn+1
1 (c) are conformally equivalent if and only if there

exists T ∈ O(n+ 3, 2) such that Ȳ = Y T , where Y, Ȳ are the conformal position vectors of f, f̄ , respectively.

Let {E1, · · · , En} be a local orthonormal basis of Mn with respect to g with dual basis {ω1, · · · , ωn} .
Denote Yi = Ei(Y ) and define

N = − 1

n
∆Y − 1

2n2
〈∆Y,∆Y 〉2Y,

where ∆ is the Laplace operator of g . Then we have

〈N,Y 〉2 = 1, 〈N,N〉2 = 0, 〈N,Yk〉2 = 0, 〈Yi, Yj〉2 = δij , 1 ≤ i, j, k ≤ n.

We may decompose Rn+3
2 such that

Rn+3
2 = span{Y,N} ⊕ span{Y1, · · · , Yn} ⊕ V,

where V⊥span{Y,N, Y1, · · · , Yn} . We call V the conformal normal bundle of f , which is a linear bundle. Let
ξ be a local section of V and 〈ξ, ξ〉2 = −1 , and then {Y,N, Y1, · · · , Yn, ξ} forms a moving frame in Rn+3

2 along
Mn . We write the structure equations as follows:

dY =
∑
i

ωiYi,

dN =
∑
ij

AijωjYi +
∑
i

Ciωiξ,

dYi = −
∑
j

AijωjY − ωiN +
∑
j

ωijYj +
∑
j

Bijωjξ,

dξ =
∑
i

CiωiY +
∑
ij

BijωjYi,

(2.2)

where ωij(= −ωji) are the connection 1-forms on Mn with respect to {ω1, · · · , ωn} . It is clear that A =∑
ij Aijωj ⊗ ωi, B =

∑
ij Bijωj ⊗ ωi, C =

∑
i Ciωi are globally defined conformal invariants. We call A, B ,

and C the Blaschke tensor, the conformal second fundamental form, and the conformal 1 -form, respectively.
The covariant derivatives of these tensors are defined by

∑
j

Ci,jωj = dCi +
∑
k

Ckωkj ,

∑
k

Aij,kωk = dAij +
∑
k

Aikωkj +
∑
k

Akjωki,

∑
k

Bij,kωk = dBij +
∑
k

Bikωkj +
∑
k

Bkjωki.

By exterior differentiation of the structure equations (2.2), we can get the integrable conditions of the structure
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equations:

Aij = Aji, Bij = Bji, (2.3)

Aij,k −Aik,j = BijCk −BikCj , (2.4)

Bij,k −Bik,j = δijCk − δikCj , (2.5)

Ci,j − Cj,i =
∑

k(BikAkj −BjkAki), (2.6)

Rijkl = BilBjk −BikBjl +Aikδjl +Ajlδik −Ailδjk −Ajkδil. (2.7)

Furthermore, we have

tr(A) =
1

2n
(n2κ− 1), Rij = tr(A)δij + (n− 2)Aij +

∑
k

BikBkj ,

(1− n)Ci =
∑
j

Bij,j ,
∑
ij

B2
ij =

n− 1

n
,

∑
i

Bii = 0,

(2.8)

where κ is the normalized scalar curvature of g . From (2.8), we see that when n ≥ 3 , all coefficients in the
structure equations are determined by the conformal metric g and the conformal second fundamental form B ,
and thus we get the congruent theorem:

Theorem 2.4 Two spacelike hypersurfaces f, f̄ : Mn → Mn+1
1 (c)(n ≥ 3) are conformally equivalent if and

only if there exists a diffeomorphism φ : Mn → Mn that preserves the conformal metric g and the conformal
second fundamental form B .

Next we give the relations between the conformal invariants and the isometric invariants of a spacelike
hypersurface in Rn+1

1 .

Assume that f : Mn → Rn+1
1 is an umbilic-free spacelike hypersurface. Let {e1, · · · , en} be an

orthonormal local basis with respect to the induced metric I = 〈df, df〉1 with dual basis {θ1, · · · , θn} . Let en+1

be a normal vector field of f , 〈en+1, en+1〉1 = −1 . Let II =
∑

ij hijθi ⊗ θj denote the second fundamental

form and H = 1
n

∑
i hii the mean curvature. Denote by ∆M the Laplacian operator and κM the normalized

scalar curvature for I . By the structure equation of f : Mn → Rn+1
1 we get that

∆Mf = nHen+1. (2.9)

There is a local lift of f :

y : Mn → Cn+2, y = (
〈f, f〉1 + 1

2
, f,

〈f, f〉1 − 1

2
).

It follows from (2.9) that 〈∆y,∆y〉2 − n2κM = n
n−1 (−|II|2 + n|H|2) = −e2τ . Therefore, the conformal metric

g , conformal position vector of f , and ξ have the following expressions:

g =
n

n− 1
(|II|2 − n|H|2)〈df, df〉1 = e2τI, Y = eτy,

ξ = −Hy + (〈f, en+1〉1, en+1, 〈f, en+1〉1).
(2.10)
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By a direct calculation we get the following expressions of the conformal invariants:

Aij = e−2τ [τiτj − hijH − τi,j +
1

2
(−|∇τ |2 + |H|2)δij ],

Bij = e−τ (hij −Hδij), Ci = e−2τ (Hτi −Hi −
∑
j

hijτj),
(2.11)

where τi = ei(τ) and |∇τ |2 =
∑

i τ
2
i , and τi,j is the Hessian of τ for I and Hi = ei(H) .

The eigenvalue of the conformal second fundamental form is called the conformal principal curvature
of the spacelike hypersurface. Clearly from (2.11) we know that the number of distinct conformal principal
curvatures is the same as that of its distinct principal curvatures.

3. The first variation of the Willmore functional
Let f0 : Mn → Mn+1

1 (c) be a compact spacelike hypersurface with boundary ∂Mn . The generalized Willmore
functional W (f0) is as the volume functional of the conformal metric g :

Volg(Mn) =

∫
M

dMg = (
n

n− 1
)

n
2

∫
Mn

(|II|2 − nH2)
n
2 dMI = (

n

n− 1
)

n
2 W (f0).

Let f : Mn × (−ϵ, ϵ) → Mn+1
1 (c) be an admissible variation of f0 such that

f(·, t)|∂Mn = f0|∂Mn , dft(TpM
n)|∂Mn = df0(TpM

n)|∂Mn

for each small t . For each t , ft is a spacelike hypersurface and g
t

denotes its conformal metric. As in Section
2, we have a moving frame {Y,N, Yi, ξ} in Rn+3

2 and the conformal volume functional W (ft) . Let ξ be a local
basis for the conformal normal bundle Vt of ft . Denote by d and dM the differential operators on Mn×(−ϵ, ϵ)

and Mn , respectively. Then we have

d = dM + dt ∧ ∂

∂t
. (3.1)

By (2.10) we can find functions w, vi, v : Mn × (−ϵ, ϵ) → R such that

∂Y

∂t
= wY +

∑
i

v
i
Yi + vξ. (3.2)

Since {Y,N, Yi, ξ} is a moving frame along Mn × (−ϵ, ϵ) , it follows from (3.1) and (3.2) that

dY = wdtY +
∑
i

ΩiYi + V ξ,

dN = −wdtN +
∑
i

ΨiYi +Φξ,

dYi = −ΨiY − ΩiN +
∑
j

ΩijYj + Fiξ,

dξ = −ΦY − V N −
∑
i

FiYi,

(3.3)
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where Ωij = −Ωji,Ωi = ωi + vidt, V = vdt . By exterior differentiation of (3.3) we get

dΩi =
∑
j

Ωij ∧ Ωj + wdt ∧ Ωi + vdt ∧ Fi,

dv ∧ dt =
∑
i

Ωi ∧ Fi,

dFi =
∑
j

Fj ∧ Ωji − Ωi ∧ Φ−Ψi ∧ V,

dΩij =
∑
k

Ωik ∧ Ωkj − Ωi ∧Ψj −Ψi ∧ Ωj + Fi ∧ Fj .

(3.4)

Since T∗(Mn × (−ϵ, ϵ)) = T∗Mn ⊕ T∗R , we have the following decomposition:

Ωij = ωij + Lijdt, Ψi = Ai + uidt, Φ = C + udt;Fi = Bi + bidt,

where {ui, u, Lij , bi} are local functions on M× (−ϵ, ϵ) . Using (3.4) and comparing the terms in T∗M∧ dt we
get

∂ωi

∂t
=

∑
j

(vi,j + Lij +Bijv)ωj + wωi, (3.5)

where {vi,j} is the covariant derivative of
∑

viEi with respect to gt . Here we have used the notations of
conformal invariants {Aij , Bij , Ci} for xt . In the same way we get from (3.4) that

bi = ei(v) +
∑
j

Bijvj ,

∂Fi

∂t
=

∑
j

(bi,j +
∑
k

LikBkj +Aijv − v
i
Cj)ωj + uωi,

(3.6)

where {bi,j} are covariant derivatives of
∑

i biωi . Using (3.5) and (3.6) we get

∂Bij

∂t
+ wBij = bi,j +

∑
k

(LikBik −BikLkj)

− viCj +Aijv + uδij −
∑
k

Bik(vk,j +Bkjv),

and

bi,j = v,ij +
∑
k

(Bik,jvk +Bikvk,j),

v,ij = dMei(v) +
∑
j

ej(v)ωji.

Therefore, we have

∂Bij

∂t
+ wBij = v,ij +

∑
k

(LikBik −BikLkj +Bij,kvk)

+ (Aij −
∑
k

BikBkj) + (u−
∑
k

vkCk)δij ,
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and
n− 1

n
w =

∑
ij

Bij [v,ij + (Aij −
∑
k

BikBkj)v]. (3.7)

Now we calculate the first variation of the conformal volume functional

W (t) = vol(gt) =

∫
Mn

ω1 ∧ · · · ∧ ωn =

∫
Mn

dMt,

where dM is the volume for g
t
. From (3.5) and (3.7) we get

W ′(t) =
∑
i

∫
Mn

ω1 ∧ · · · ∧ ∂ωi

∂t
∧ · · · ∧ ωn = n

∫
Mn

wdMt

=
n2

n− 1

∫
Mn

{
∑
ij

Bij [v,ij + (Aij −
∑
k

BikBkj)v]}dMt.

(3.8)

From the fact that the variation is admissible we know vi = 0, v = 0 , and ei(v) = 0 on ∂Mn . It follows from
(3.8) and Green’s formula that

W ′(t) =
n2

n− 1

∫
Mn

{
∑
ij

Bij,ij +
∑
ij

AijBij −
∑
ijk

BikBkjBij}vdMt.

Thus, we have the following results:

Theorem 3.1 A spacelike hypersurface x : Mn → Mn+1
1 (c) is a Willmore spacelike hypersurface (i.e. a critical

hypersurface to the conformal volume functional) if and only if∑
ij

Bij,ij +
∑
ij

AijBij −
∑
ijk

BikBkjBij = 0.

Using (2.8) we can write the Euler–Lagrange equations as

∑
i

Ci,i +
∑
ij

(
1

n− 1
Rij −Aij)Bij = 0. (3.9)

4. n-Hyperelastic spacelike curve

The Lorentzian metric of M2
1 (c) will be denoted by 〈, 〉1 and its Levi-Civita connection by ∇ . For vector fields

X,Y, Z on M2
1 (c) , we write the structure equation ∇XY −∇Y X = [X,Y ] and ∇X∇Y Z−∇Y ∇XZ−∇[X,Y ]Z =

R(X,Y )Z , where [, ] is the Lie bracket and R the curvature tensor.
Let γ : I → M2

1 (c) be an immersed curve, and V (t) will denote the tangent vector to γ(t) . If
〈V (t), V (t)〉1 > 0 , then we call the curve a spacelike curve. Now we always assume that the curve γ(t) is
a spacelike curve. Let T (t), N(t) be unit tangent and normal vectors, respectively. Thus, 〈T (t), T (t)〉1 = 1 and
〈N(t), N(t)〉1 = −1 . The Frenet equations for γ are given by

∇TT = κN, ∇TN = κT,
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where κ is the oriented curvature of γ .
The letter γ will also denote a variation γ = γµ(t) : (−ϵ, ϵ) × I → M2

1 (c) with γ(0, t) = γ(t) . For each
µ , the curve γµ : I → M2

1 (c) is a spacelike curve. Associated with such a variation is the variation vector field
Λ = Λ(t) = ∂γ

∂µ (0, t) along the curve γ(t) . We will also write V = V (µ, t), Λ = Λ(µ, t), T = T (µ, t), v =

v(µ, t) = 〈V (µ, t), V (µ, t)〉
1
2
1 , etc., with the obvious meanings. Let s denote the arclength parametrization and

L the length of γ . For a fixed natural number r we consider the functional

W r(γ) =

∫
γ

κrds =

∫ 1

0

κrvdt. (4.1)

The following lemma collects some elementary facts that facilitate the derivations of the variational
formulas, whose proof is standard.

Lemma 4.1 Under the above notation, we have the following results:
(1) [V,Λ] = 0 .
(2) ∂v

∂µ = 〈∇TΛ, T 〉1 = −ϖv , where ϖ = −〈∇TΛ, T 〉1 .

(3) [Λ, T ] = ϖT .

(4) ∂κ2

∂µ = −2〈∇T∇TΛ,∇TT 〉1 + 4ϖκ2 − 2〈R(Λ, T )T,∇TT 〉1 .

Using standard arguments that involve some integrations by parts, the Frenet equations of γ , and Lemma 4.1,
we can obtain the first variation formula of the functional W r(γ) :

dW r(γ)

dµ
= −r(r − 1)

∫
γ

κr−3[κκss + (r − 2)κ2
s −

κ4

r
− κ2

r − 1
c]〈Λ, N〉1ds

+ r(r − 2)κr−3κs〈Λ,∇TT 〉1|L0 + rκr−2〈Λ,∇T∇TT 〉1|L0

− rκr〈Λ, T 〉1|L0 − rκr−2〈∇TΛ,∇TT 〉1|L0 .

(4.2)

Thus, under suitable boundary conditions, γ is a critical point of W r(γ) if and only if the following Euler–
Lagrange equation is satisfied:

−r(r − 1)κr−3[κκss + (r − 2)κ2
s −

κ4

r
− κ2

r − 1
c] = 0. (4.3)

Example 4.2 Let Πd = {(x, y, z) ∈ R3
1|ax+ by+ cz = d} be a 2-dimensional plane. If −a2+ b2+ c2 < 0 , then

Πd is a spacelike plane. Moreover, we have the following:
(1) The totally geodesic curve Π0 ∩ S21(c) is an r -hyperelastic spacelike curve in S21 .

(2) The totally umbilical curve Πd ∩ H2
1(c) with the oriented curvature

√
−rc
r−1 is an r -hyperelastic spacelike

curve in H2
1 for some constant d .

Now we prove Theorem 1.2. If γ is a closed curve, then there are two points p, q such that

κ(p) = min
γ

{κ(s)}, κ(q) = max
γ

{κ(s)}.
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Thus,
κs(p) = κs(q) = 0, κss(p) ≥ 0, κss(q) ≤ 0.

If c > 0 , by the Euler–Lagrange equation (4.3) we get κ(p) = κ(q) = 0 and κ = 0 . Thus, the closed
r -hyperelastic spacelike curve is a totally geodesic curve in S21(c) .

If c = 0 , because there exists no closed spacelike curve in R2
1, there exists no closed r -hyperelastic

spacelike curve.
If c < 0 , by the Euler–Lagrange equation (4.3) we get

κ(q) = max
γ

{κ(s)} ≤
√

−rc

r − 1
, κ(p)2(

κ(p)2

r
+

c

r − 1
) ≥ 0.

If κ(p) = minγ{κ(s)} > 0 , then
√

−rc
r−1 ≤ κ(p) ≤ κ(q) ≤

√
−rc
r−1 and κ =

√
−rc
r−1 . Thus, the closed r -hyperelastic

spacelike curve is a totally umbilical curve in H2
1(c) .

If κ(p) = minγ{κ(s)} = 0 , we assume that p, q are adjacent, and there are no other extreme points between
them, and thus κs 6= 0 between p and q . Since κ(p) = κ(q) = 0 , then there exists a point p′ between p and q

such that κss(p
′) = 0 . We note that κ(p′) 6= 0 . By combination with equation (4.3) we have

κ(p′)2(
κ(p′)2

r
+

c

r − 1
) ≥ 0;

that is, κ(p′) ≥
√

−rc
r−1 , which is a contradiction with

κ(p′) < κ(q) = max
γ

{κ(s)} ≤
√

−rc

r − 1
.

Thus, κ(p) = minγ{κ(s)} > 0 and κ =
√

−rc
r−1 . Thus, the closed r -hyperelastic spacelike curve is a totally

umbilical curve in H2
1(c) . Thus, we finish the proof of Theorem 1.2.

5. Some special Willmore spacelike hypersurfaces

In this section, we construct some special Willmore spacelike hypersurfaces by n -hyperelastic curves in 2 -
dimensional Lorentzian space form.

Example 5.1 Let γ : R → R2
1 be a spacelike curve. The cylinder in Rn+1

1 over γ(s) ⊂ R2
1 is defined by

f : R× Rn−1 → Rn+1
1 , f(s, y) = (γ(s), y),

where y ∈ Rn−1 .

Proposition 5.2 If the cylinder in Rn+1
1 over γ(s) ⊂ R2

1 as in Example 5.1 is umbilics-free, then the cylinder
is a Willmore spacelike hypersurface if and only if γ(s) is an n-hyperelastic spacelike curve in R2

1 .
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Proof Let s denote the arclength parametrization of the curve. Then the first and the second fundamental
forms of the cylinder f are given by

I = ds2 + IRn−1 , II = κds2,

where κ(s) is the geodesic curvature of γ(s) ⊂ R2
1 and IRn−1 denotes the standard metric of the (n − 1) -

dimensional Euclidean space Rn−1 . Thus, the principal curvatures of the cylinder are κ, 0, ..., 0 , and the mean
curvature H = κ

n . Since the cylinder is umbilics-free, then κ 6= 0 . From (2.10), we see that the conformal metric

of the cylinder f is g = κ2(s)(ds2+ IRn−1). Let {e1 = ∂
∂s , e2, · · · , en} be an orthonormal basis of T (R×Rn−1) ,

and then the coefficients of conformal invariants of the cylinder f with respect to the orthonormal basis can be
computed from (2.11) as follows:

C1 = − 1

κ2
e1(κ) = − 1

κ2
κs, C2 = · · · = Cn = 0;

(Bij) = diag(
n− 1

n
,
−1

n
, · · · , −1

n
),

(Aij) = diag(a1, a2, · · · , a2),

(5.1)

where

a1 = −κss

κ3
+

3

2

(κs)
2

κ4
+

1− 2n

2n2
, a2 =

1

2
[
−(κs)

2

κ4
+

1

n2
].

Using (2.11) and (5.1), we get that

C1,1 =
−κss

κ3
+ 2

(κs)
2

κ4
, Ci,i = −C2

1 = − (κs)
2

κ4
, 2 ≤ i ≤ n. (5.2)

From (5.1) and (5.2), we have

− (n− 1)
∑
i

Ci,i −
∑
ijk

BijBjkBki +
∑
ij

BijAij

=
(n− 1)2

nκ4
[κκss + (n− 2)κ2

s −
κ4

n
].

(5.3)

Thus, from (3.9) the cylinder is a Willmore spacelike hypersurface if and only if γ(s) is an n -hyperelastic
spacelike curve in R2

1 . 2

Example 5.3 Let γ : R → S21(1) be a spacelike curve in 2-dimensional de Sitter space S21(1) . The cone in
Rn+1

1 over γ(s) ⊂ S21(1) ⊂ R3
1 is defined by

f : R× R+ × Rn−2 → Rn+1
1 , f(s, t, y) = (tγ(s), y),

where y ∈ Rn−2 and R+ = {t|t > 0}.

Proposition 5.4 If the cone in Rn+1
1 over γ(s) ⊂ S21(1) as in Example 5.3 is umbilics-free, then the cone is a

Willmore spacelike hypersurface if and only if γ(s) is an n-hyperelastic spacelike curve in S21(1) .
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Proof The first and the second fundamental forms of the cone f are given by

I = t2ds2 + IRn−1 , II = tκds2.

Let {e1 = 1
t

∂
∂s , e2 = ∂

∂t , · · · , en} be an orthonormal basis of T (I ×R+ ×Rn−2) with dual basis {ω1, · · · , ωn} ,
which consists of principal vectors. Let {ωij} be connection forms with respect to the basis {ω1, ω2, · · · , ωn} .
Then

ω1i = 0, for 3 ≤ i ≤ n and ω12 = e2(log
1

t
κ)ω1.

Under the orthonormal basis {e1, e2, · · · , en} , the coefficients of the second fundamental form of the hypersurface
f have the diagonal form: (hij) = diag( 1tκ, 0, · · · , 0). We assume that the hypersurface f is umbilics-free and

locally let κ > 0 , so ρ = κ
t and the conformal metric g of the cone f is g = ρ2I = κ2

t2 (t
2ds2 + IRn−1). Since

{ρ−1e1, · · · , ρ−1en} is an orthonormal basis with respect to g , the coefficients of conformal invariants of f with
respect to the orthonormal basis can be obtained as follows using (2.11):

C1 = − t

κ2
e1(κ) = − 1

κ2
κs, C2 = · · · = Cn = 0;

(Bij) = diag(
n− 1

n
,
−1

n
, · · · , −1

n
),

(Aij) = diag(a1, a2, · · · , a2),

(5.4)

where

a1 = −κss

κ3
+

3

2

(κs)
2

κ4
− 1

2κ2
− 2n− 1

2n2
, a2 =

1

2
[
−(κs)

2

κ4
+

1

κ2
+

1

n2
].

Using (2.11) and (5.7), we get that

C1,1 = −κss

κ3
+ 2

(κs)
2

κ4
, Ci,i = −C2

1 = − (κs)
2

κ4
, 2 ≤ i ≤ n. (5.5)

From (5.7) and (5.8), we have

− (n− 1)
∑
i

Ci,i −
∑
ijk

BijBjkBki +
∑
ij

BijAij

=
(n− 1)2

nκ4
[κκss + (n− 2)κ2

s −
κ4

n
− κ2

n− 1
].

(5.6)

Thus, from (3.9) the cone is a Willmore spacelike hypersurface if and only if γ(s) is an n -hyperelastic spacelike
curve in S21(1). 2

Example 5.5 Let γ : R → R2
1+ be a spacelike curve. The rotational hypersurface in Rn+1

1 over γ(s) ⊂ R2
1+ is

defined by
f : R× Sn−1 → Rn+1

1 , f(s, θ) = (x(s), y(s)θ),

where θ ∈ Sn−1 is the standard round sphere.

264



DENG and LI/Turk J Math

Proposition 5.6 If the rotational hypersurface in Rn+1
1 over γ(s) ⊂ R2

1+ as in Example 5.5 is umbilics-free,
then the rotational hypersurface is a Willmore spacelike hypersurface if and only if γ(s) is an n-hyperelastic
spacelike curve in R2

1+ .

Proof Denote the covariant differentiation of the metric ds2 by D in R2
1+ . For γ(s) = (x(s), y(s)) ⊂ R2

1+ ,
let ẋ denote derivative ∂x

∂s , and so on. Choose the unit tangent vector α = 1
y (ẋ, ẏ) and the unit normal

vector β = 1
y (ẏ, ẋ) . The geodesic curvature is computed via κ(s) =< Dαα, β >= ẋÿ−ẏẍ

y2 + ẋ
y . The rotational

hypersurface f has the unit normal vector η = 1
y (ẏ, ẋθ) . The first and the second fundamental forms of the

rotational hypersurface f are given by

I = df · df = y2(ds2 + ISn−1 ), II = −df · dη = (yκ− ẋ)ds2 − ẋISn−1 .

Thus, the principal curvatures of the rotational hypersurface f are yκ−ẋ
y2 , −ẋ

y2 , · · · , −ẋ
y2 . From (2.10), we know

that the conformal metric of the rotational hypersurface f is g = κ2(x)(ds2 + ISn−1), and ρ = κ
y . Let

{e1, · · · , en} be an orthonormal basis of T (R× Sn−1) , which consists of principal vectors. From (2.11) we can
obtain the coefficients of conformal invariants of f under the orthonormal basis {ρ−1e1, · · · , ρ−1en} for g as
follows:

C1 = − t

κ2
e1(κ) = − 1

κ2
κs, C2 = · · · = Cn = 0;

(Bij) = diag(
n− 1

n
,
−1

n
, · · · , −1

n
),

(Aij) = diag(a1, a2, · · · , a2),

(5.7)

where

a1 = −κss

κ3
+

3

2

(κs)
2

κ4
+

1

2κ2
− 2n− 1

2n2
, a2 =

1

2
[
−(κs)

2

κ4
− 1

κ2
+

1

n2
].

Using (2.11) and (5.7), we get that

C1,1 = −κss

κ3
+ 2

(κs)
2

κ4
, Ci,i = −C2

1 = − (κs)
2

κ4
, 2 ≤ i ≤ n. (5.8)

From (5.7) and (5.8), we have

− (n− 1)
∑
i

Ci,i −
∑
ijk

BijBjkBki +
∑
ij

BijAij

=
(n− 1)2

nκ4
[κκss + (n− 2)κ2

s −
κ4

n
+

κ2

n− 1
].

(5.9)

Thus, from (3.9) the rotational hypersurface is a Willmore spacelike hypersurface if and only if γ(s) is an
n -hyperelastic spacelike curve in R2

1+ . 2

6. The proof of Theorem 1.3
In this section we prove our main theorem, Theorem 1.3. For this we need the following lemma, and we refer
to [8] for the proof of the following lemma.
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Lemma 6.1 [8] Let (Mn, g) be a Riemannian manifold and g̃ another Riemannian metric on Mn such that
g̃ = e2τg, where τ is a smooth function on Mn . Let {e1, · · · , en} be a local orthonormal basis for g with
dual basis {ω1, · · · , ωn} , and let {ωij} be the connection forms with respect to the basis {ω1, · · · , ωn} . Then
{ẽ1 = e−τe1, · · · , ẽn = e−τen} is a local orthonormal basis for g̃ , and {ω̃1 = eτω1, · · · , ω̃n = eτωn} is the dual
basis.

Moreover, if {ω̃ij} are the connection forms with respect to the basis {ω̃1, · · · , ω̃n} , then

ω̃ij = ωij + ei(τ)ωj − ej(τ)ωi, 1 ≤ i, j ≤ n.

It is a classical result that an n -dimensional hypersurface in space forms has a principle curvature of multiplicity
of at least n− 1(n ≥ 4) everywhere if and only if it is conformally flat. Similarly, there are the same results for
spacelike hypersurfaces in Lorentzian space forms. Let f : Mn → Rn+1

1 (n ≥ 4) be a conformally flat Willmore
spacelike hypersurface without umbilical points. We denote by b1, b2 the conformal principal curvatures. From
(2.8), we can choose a local orthonormal basis {E1, · · · , En} with respect to the conformal metric g such that

(Bij) = diag(
n− 1

n
,
−1

n
, · · · , −1

n
).

In the following section we make use of the following convention on the ranges of indices:

1 ≤ i, j, k ≤ n; 2 ≤ α, β, γ ≤ n.

Since Bαβ = 1
nδαβ , we can rechoose a local orthonormal basis {E1, · · · , En} with respect to the conformal

metric g such that

(Bij) = diag(
n− 1

n
,
−1

n
, · · · , −1

n
), (Aij) =


A11 A12 A13 · · · A1n

A21 a2 0 · · · 0
A31 0 a3 · · · 0

...
...

... . . . ...
An1 0 0 · · · an

.

 (6.1)

Let {ω1, · · · , ωn} be the dual basis and {ωij} the connection forms.

Lemma 6.2 Let f : Mn → Rn+1
1 (n ≥ 4) be a conformally flat Willmore spacelike hypersurface. If f is

umbilics-free, then we can choose a local orthonormal basis {E1, · · · , En} with respect to the conformal metric
g such that

(Bij) = diag{n− 1

n
,
−1

n
, · · · , −1

n
}, (Aij) = diag{a1, a2, · · · , a2}.

Moreover, the distribution span{E2, · · · , En} is integrable.

Proof Using dBij +
∑

k Bkjωki +
∑

k Bikωkj =
∑

k Bij,kωk , equation (2.5), and (6.1), we get

B1α,α = −C1, otherwise, Bij,k = 0;

ω1α = −C1ωα, Cα = 0.
(6.2)

Thus, we have dω1 =
∑

α ω1α ∧ ωα = 0 and the distribution D = span{E2, · · · , En} is integrable.
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Using dCi +
∑

k Ckωki =
∑

k Ci,kωk and (6.2), we can obtain

Cα,α = −C2
1 , Cα,k = 0, α 6= k. (6.3)

From (6.2),

dω1α = −dC1 ∧ ωα − C1dωα

= −dC1 ∧ ωα + C2
1ω1 ∧ ωα − C1

∑
γ

ωγ ∧ ωγα,

and dω1α −
∑

j ω1j ∧ ωjα = − 1
2

∑
kl R1αklωk ∧ ωl , we get that

R1α1α = C1,1 − C2
1 , R1αβα − C1,β = 0. (6.4)

Since R1α1α = n−1
n2 + a1 + aα = C1,1 − C2

1 and R1αβα = A1β , α 6= β , we have

a2 = a3 = · · · = an, A1β = C1,β . (6.5)

Thus, A|D = aI, a = a2 . Since E1 is a principal vector field, then vector E = A12E2 + · · · + A1nEn is well
defined. If E = 0 , then A12 = · · · = A1n = 0 and (Aij) = diag{a1, a2, · · · , a2} . Thus, Lemma 6.2 holds.

If E 6= 0 , we can rechoose a local orthonormal basis {Ẽ2 = E
|E| , Ẽ3, · · · , Ẽn} of D with respect to the

conformal metric g such that

(Bij) = diag(
n− 1

n
,
−1

n
, · · · , −1

n
), (Aij) =


A11 A12 0 · · · 0
A21 a2 0 · · · 0
0 0 a2 · · · 0
...

...
... . . . ...

0 0 0 · · · a2

.

 (6.6)

Thus, C1,α = A1α = 0, α ≥ 3. To prove the lemma, we only to prove that A12 = 0 . Since f is a Willmore
spacelike hypersurface, using equation (3.9),

−(n− 1)
∑
i

Ci,i −
∑
i

b3i +
∑
i

biai = 0,

and (6.3) and (6.4), we get that

a1 − a2 = nC1,1 − n(n− 1)C2
1 +

n− 2

n
,

a1 + a2 = C1,1 − C2
1 − n− 1

n2
.

Thus, we have

a1 =
n+ 1

2
C1,1 −

n2 − n+ 1

2
C2

1 +
n2 − 3n+ 1

2n2
,

a2 =
1− n

2
C1,1 +

n2 − n− 1

2
C2

1 − n2 − n− 1

2n2
.

(6.7)
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Using dAαβ +
∑

k Akβωkα +
∑

k Aαkωkβ =
∑

k Aαβ,kωk and Cα = 0 we get that

Eβ(a2) = Aαα,β = 0, α ≥ 3, E2(a2) = Aα2,α = −A12C1,

Aαβ,1 = 0, Aαβ,γ = 0, α 6= β, β 6= γ, α 6= γ,

E1(a2) = Aαα,1 = Aββ,1, A1α,α = Aαα,1 +
1

n
C1.

(6.8)

Combining (6.7), we can obtain

Eβ(C1,1) = 0, Eβ(a1) = 0, α ≥ 3,

E2(C1,1) = 2nC1A12, E2(a1) = (2n− 1)C1A12,

E1(a2) = (a2 − a1 −
1

n
)C1.

(6.9)

Similarly, using dAij+
∑

k Akjωki+
∑

k Aikωkj =
∑

k Aij,kωk for i = 1, 2, j = α ≥ 3 and equation (6.6),
we have

(a1 − a2)ω1α +A12ω2α =
∑
k

A1α,kωk, α ≥ 3,

A12ω1α =
∑
k

A2α,kωk.
(6.10)

Similarly, using dAij +
∑

k Akjωki+
∑

k Aikωkj =
∑

k Aij,kωk for i = 1, 2, j = 1, 2 and equation (6.6), we have

dA11 + 2A12ω21 =
∑
k

A11,kωk,

dA22 + 2A12ω12 =
∑
k

A22,kωk,

dA12 + (a1 − a2)ω12 =
∑
k

A12,kωk.

(6.11)

From (6.11), we know that Eα(a1) = A11,α = 0, α ≥ 3. On the other hand, from (2.4) and (6.10), we have

A11,α = A1α,1 = A12ω2α(E1), α ≥ 3.

If we assume that A12 6= 0 , from (6.10) we obtain that

ω2α(E1) = 0, ω2α(Eβ) = 0, β 6= α,

A12ω2α(Eα) = (a1 − a2)C1 +A1α,α = (a1 − a2 +
1

n
)C1 + E1(a2).

(6.12)

Since E1(a2) = A22,1 = A12,2 − 1
nC1 = E2(A12)− 1

nC1 , we have

A12ω2α(Eα) = E2(A12). (6.13)

Combining (6.12) and (6.14), we have

ω2α =
E2(A12)

A12
ωα = φωα. (6.14)
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Using dω2α −
∑

k ω2k ∧ ωkα = − 1
2

∑
kl R2αklωk ∧ ωl , we can obtain

E1(φ)− C1φ = −R2α1α = −A12. (6.15)

Since E2(a1) = (2n− 1)C1A12 , from (6.11), we have A11,2 = (2n+ 1)C1A12 , and thus A12,1 = (2n+ 1)C1A12

and
E1(A12) = (2n+ 1)C1A12. (6.16)

Since ω1α = −C1ωα and ω2α = φωα , then

E1E2 − E2E1 = [E1, E2] = C1E2.

Thus,

E1(φ)− C1φ = E1(
E2(A12)

A12
)− C1

E2(A12)

A12

=
E1(E2(A12))

A12
− E2(A12)E1(A12)

A2
12

− C1
E2(A12)

A12

=
E2(E1(A12)) + C1E2(A12)

A12
− E2(A12)E1(A12)

A2
12

− C1
E2(A12)

A12

= (2n+ 1)A12.

From (6.15) we derive
2(n+ 1)A12 = 0.

This is a contradiction and thus
A12 = 0.

Thus, we finish the proof of Lemma 6.2. 2

Now we choose the local orthonormal basis {E1, · · · , En} as in Lemma 4.1, which consists of principal
vectors. Then {Y,N, Y1, · · · , Yn, ξ} forms a moving frame in Rn+3

2 along Mn . We define

F =
−1

n
Y − ξ, X1 = −C1Y − Y1, P = −a2Y +N + C1X1 −

1

n
F. (6.17)

Let K = 2a2 + C2
1 − 1

n2 . By direct computations we have

〈F,X1〉2 = 0, 〈F, P 〉2 = 0, 〈X1, P 〉2 = 0,

〈F, F 〉2 = −1, 〈X1, X1〉2 = 1, 〈P, P 〉2 = −K.
(6.18)

From Lemma 4.1, (6.9), and the structure equations of f we derive that

E1(F ) = X1, Eα(F ) = 0,

E1(X1) = P − F, Eα(X1) = 0,

E1(P ) = C1P +KX1, Eα(P ) = 0.

(6.19)

Thus, subspace V = span{F,X1, P} is fixed along Mn . From (6.9) we get that

E1(K) = 2C1K, Eα(K) = 0. (6.20)
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Using the theory of linear first-order differential equations for K , formula (6.20) implies that K ≡ 0 or K 6= 0

on an open subset U ⊂ Mn . Therefore, we have to consider the following three cases:
Case 1 K = 0 on Mn ; Case 2 K < 0 on Mn ; Case 3 K > 0 on Mn .

Theorem 1.2 is proved by the following three propositions, treating them case by case.

Proposition 6.3 Let f : Mn → Rn+1
1 (n ≥ 3) be a conformally flat Willmore spacelike hypersurface without

umbilical point. If K = 2a2+C2
1 − 1

n2 = 0 , then f is conformally equivalent to a cylinder over an n-hyperelastic
spacelike curve in R2

1 .

Proof Since K = 0 , then 〈P, P 〉2 = 0 . From (6.19), we know that P is of fixed direction. From (6.18), up
to a conformal transformation we can write

P = ν(1, 0, · · · , 0, 1), ν ∈ C∞(U),

V = span{F,X1, P}

= span{(1, 0, · · · , 0, 1), (0, 1, 0, · · · , 0), (0, 0, 1, 0, · · · , 0)} = R3
0.

Let (k1, k2, · · · , k2) be the principal curvatures of f : Mn → Rn+1
1 , and then

b1 = e−τ (k1 −H) =
n− 1

n
, b2 = e−τ (k2 −H) =

−1

n
, · · · , bn = e−τ (k2 −H) =

−1

n
.

From (2.10), we have

F = b2Y − ξ

= k2(
〈f, f〉1 + 1

2
, f,

〈f, f〉1 − 1

2
)− (〈f, en+1〉1, en+1, 〈f, en+1〉1).

(6.21)

From (6.18),
〈P, F 〉2 = 〈(1, 0, · · · , 0, 1), F 〉2 = 0, 〈X1, P 〉2 = 0.

Thus,
k2 = 0, C1 + E1(τ) = 0, i.e. E1(τ) = −C1. (6.22)

From the definition of F,X1 , and P , we get that Yα ⊥ V ; thus, < P, Yα >= 0 , and

Eα(τ) = 0. (6.23)

Let {ei = eτEi, 1 ≤ i ≤ n} . Then {e1, · · · , en} is a local orthonormal basis with respect to the first fundamental
form 〈df, df〉1 . Let {ω̃1, · · · , ω̃n} be the dual basis and {ω̃ij} connection forms with respect to the basis
{ω̃1, · · · , ω̃n} . Then, from Lemma 6.1, (6.22), and (6.23) , we get

ω̃1α = 0. (6.24)

Therefore, the spacelike hypersurface f : Mn → Rn+1
1 is conformally equivalent to a spacelike hypersurface

given by Example 5.1. Since f is a Willmore spacelike hypersurface, from Proposition 5.2 we finish the proof
of Proposition 6.3. 2
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Proposition 6.4 Let f : Mn → Rn+1
1 (n ≥ 4) be a conformally flat Willmore spacelike hypersurface without

umbilical points. If K = 2a2 +C2
1 + 1

n2 < 0 , then f is conformally equivalent to a cone over an n-hyperelastic
spacelike curve in S2

1 .

Proof of Proposition (6.4) Since K < 0 , then 〈P, P 〉2 is positive. From (6.18), up to a conformal
transformation we can write

V = span{F,X1, P}

= span{(0, 1, 0, · · · , 0), (0, 0, 1, 0, · · · , 0), (0, 0, 0, 1, 0, · · · , 0)} = R3
1.

Thus,
e = (1, 0, · · · , 0, 1) ⊥ V.

Let (k1, k2, · · · , k2) be the principal curvatures of f : Mn → Rn+1
1 , and then

b1 = e−τ (k1 −H) =
n− 1

n
, b2 = e−τ (k2 −H) =

−1

n
, · · · , bn = e−τ (k2 −H) =

−1

n
.

From (2.10), we have

F = b2Y − ξ

= k2(
〈f, f〉1 + 1

2
, f,

〈f, f〉1 − 1

2
)− (〈f, en+1〉1, en+1, 〈f, en+1〉1).

(6.25)

Since 〈e, F 〉2 = 〈e,X1〉2 = 0, we have

k2 = 0, C1 + E1(τ) = 0, i.e., E1(τ) = −C1. (6.26)

Setting

T = −a2Y −N + C1Y1 −
1

n
ξ, P̄ =

P√
−K

, θ =
T√
−K

,

then

〈P̄ , P̄ 〉2 = 1, 〈θ, θ〉2 = −1,

θ ⊥ V = R3, 〈θ, Yα〉2 = 0.
(6.27)

From Lemma 4.1, (6.19), and the structure equations of f we derive that

E1(θ) = 0, Eα(θ) =
√
−KYα. (6.28)

Since P + T = −KY , so

Y =
1√
−K

(P̄ , θ) ∈ Rn+3
1 = R3

1 × Rn
1 .

Since the distribution span{E2, · · · , En} is integrable, from (6.19), (6.27), and (6.28), the map Y factors
through a conformal diffeomorphism θ from the space of leaves V of this foliation to Hn−1 . Thus,

P̄ : I → S2
1 ⊂ R3, θ : Hn−1 → Rn

1 .
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Thus, the spacelike hypersurface f : Mn → Rn+1
1 is conformal equivalent to a spacelike hypersurface given

by Example 5.3. Since f is a Willmore spacelike hypersurface, from Proposition 5.4 we finish the proof of
Proposition 6.4.

Proposition 6.5 Let f : Mn → Rn+1
1 (n ≥ 4) be a conformally flat Willmore spacelike hypersurface without

umbilical points. If K = 2a2 +C2
1 +

1
n2 > 0 , then f is conformally equivalent to a rotational hypersurface over

an n-hyperelastic spacelike curve in R2
1+ .

Proof of Proposition (6.5), Since K > 0, then 〈P, P 〉2 is negative. From (6.18), up to a conformal
transformation we can write

V = span{F,X1, P}

= span{(1, 0, · · · , 0), (0, 1, 0, · · · , 0), (0, 0, 1, 0, · · · , 0)} = R3
2.

Thus, e = (1, 0, · · · , 0, 1) ∈ V and 〈e, Yα〉2 = 0 , and we get that

Eα(τ) = 0. (6.29)

Setting

T = −a2Y −N + C1Y1 −
1

n
ξ, P̄ =

P√
−K

, θ =
T√
−K

,

then

〈P̄ , P̄ 〉2 = −1, 〈θ, θ〉2 = 1,

θ ⊥ V = R3
1, 〈θ, Yα〉2 = 0.

(6.30)

From Lemma 4.1, (6.19), and the structure equations of f we derive that

E1(θ) = 0, Eα(θ) = −
√
KYα. (6.31)

Since P + T = −KY , so

Y =
1

−
√
K

(P̄ , θ) ∈ Rn+3
1 = R3

2 × Rn.

Since the distribution span{E2, · · · , En} is integrable, from (6.19), (6.30), and (6.31), the map Y factors
through a conformal diffeomorphism θ from the space of leaves V of this foliation to Sn−1 . Thus,

P̄ : I → H2
1 ⊂ R3

1, θ : Sn−1 → Rn.

Writing P̄ = (u1, u2, u3) ∈ H2
1 , then

Y =
u1 − u3

−
√
K

(
u1

u1 − u3
,

u2

u1 − u3
,

u3

u1 − u3
,

1

u1 − u3
θ). (6.32)

Then hypersurface f : I × Sn−1 → Rn+1
1 , and

f = (
u2

u1 − u3
,

1

u1 − u3
θ).
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Using φ−1 : H2
1 → R2

1+ , we know that the spacelike hypersurface f : Mn → Rn+1
1 is conformal equivalent to a

spacelike hypersurface given by Example 5.5. Since f is a Willmore spacelike hypersurface, from Proposition
5.6 we finish the proof of Proposition 6.5.

Combining Proposition 6.3, Proposition 6.4, and Proposition 6.5, we finish the proof of Theorem 1.3.
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