
Turk J Math
(2020) 44: 274 – 283
© TÜBİTAK
doi:10.3906/mat-1908-9

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Vector fields and planes in E4 which play the role of Darboux vector

Mustafa DÜLDÜL∗

Department of Mathematics, Faculty of Science and Arts, Yıldız Technical University, İstanbul, Turkey

Received: 04.08.2019 • Accepted/Published Online: 13.12.2019 • Final Version: 20.01.2020

Abstract: In this paper, we define some new vector fields along a space curve with nonvanishing curvatures in Euclidean
4-space. By using these vector fields we determine some new planes, curves, and ruled hypersurfaces. We show that the
determined new planes play the role of the Darboux vector. We also show that, contrary to their definitions, osculating
curves of the first kind and rectifying curves in Euclidean 4-space can be considered as space curves whose position
vectors always lie in a two-dimensional subspace. Furthermore, we construct developable and nondevelopable ruled
hypersurfaces associated with the new vector fields in which the base curve is always a geodesic on the developable one.

Key words: Darboux vector, vector field, ruled hypersurface, geodesic curve

1. Introduction
Vector fields have always been used for studying differential geometry of curves and surfaces not only in 3-space
but also in higher dimensional spaces. The most common known vector fields are natural vector fields in space,
Frenet vector fields along curves, the Darboux vector field of a curve in 3-space, normal and tangent vector fields
of surfaces and hypersurfaces, etc. These vector fields determine most geometric properties of the related object.
Frenet vector fields along a curve constitute an orthonormal frame. This frame is called the Frenet frame and it
includes all the information about the curve. The rate of change of the Frenet frame is given by Frenet formulas.
These formulas can be rewritten as vector products by means of the Darboux vector field which determines
the instantaneous axis of rotation of Frenet frame. Besides, by considering the Darboux vector field of a space
curve, we can construct a special ruled surface (called rectifying developable) on which the base curve is always
a geodesic [6]. Therefore,the Darboux vector field plays an important role for space curves in Euclidean 3-space
E3 . This importance of the Darboux vector led us to look for such vector fields along a space curve in E4 . In
the literature, we can find a generalized Darboux vector in En and as a special case in E4 [2]. However, it does
not serve us as we desired.

The first purpose of this paper is to look for vector fields along a space curve in E4 which enable us
to rewrite the Frenet formulas as vector products. For this purpose, along a space curve with nonvanishing
curvatures in E4 , we introduce four special vector fields that will serve us as we desired. Later, by using
the introduced vector fields, we define some new planes, curves, and ruled hypersurfaces. We show that the
determined new planes play the role of the Darboux vector. We characterize the new curves and study singular
points of the obtained ruled hypersurfaces. We also show that, contrary to their definitions, osculating curves of
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the first kind and rectifying curves in E4 can be considered as space curves whose position vectors always lie in a
two-dimensional subspace. Furthermore, we study the developability of the ruled hypersurfaces associated with
the new vector fields. It is also shown that the base curve is always a geodesic on the obtained new developable
ruled hypersurface.

This paper is organized as follows:
Section 2 presents the Frenet formulas for curves in E3 and E4 , and also includes the definitions of

rectifying curve, osculating curve of the first kind and ternary product of vectors in E4 . In Section 3, by
defining some new vector fields along a space curve with nonzero curvatures in E4 , we introduce some planes
and curves, and give some characterizations. Finally, we define two new ruled hypersurfaces associated with
the introduced vector fields and show their developability in Section 4.

2. Preliminaries

2.1. Curves in E3 and E4

Let α be a unit speed curve in E3 , and {t,n,b} denote the Frenet frame of α . The Frenet formulas are given
by

t′ = κn, n′ = −κt+ τb, b′ = −τn, (2.1)

where κ and τ denote the curvature and the torsion of α , respectively. On the other hand, by using the
Darboux vector field d = τt+ κb of the curve, we can rewrite the Frenet formulas as [7]

t′ = d× t, n′ = d× n, b′ = d× b. (2.2)

Similarly, for a unit speed curve β with its Frenet frame {T,N,B1,B2} in E4 , the Frenet formulas are
given by

T′ = κ1N, N′ = −κ1T+ κ2B1, B′
1 = −κ2N+ κ3B2, B′

2 = −κ3B1, (2.3)

where T,N,B1 , and B2 denote the tangent, principal normal, first binormal and second binormal vector fields,
respectively, and κi , i = 1, 2, 3 denotes the i -th curvature function of the curve.

Definition 2.1 Let γ be a curve in E4 . γ is called as rectifying curve [5] if its position vector lies always in
the orthogonal complement of its principal normal vector field, and γ is called as osculating curve of the first
kind [8] if its position vector lies always in the orthogonal complement of its first binormal vector field.

Definition 2.2 Let {e1, e2, e3, e4} be the standard basis of R4 . The vector

a⊗ b⊗ c =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣
is called the ternary (triple) product of the vectors a =

4∑
i=1

aiei , b =
4∑

i=1

biei , and c =
4∑

i=1

ciei [9].
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3. New special curves in E4 and their characterizations

In this section, we define some new special vector fields along a regular curve in E4 . By using these vector
fields we define some new special curves, and we give their characterizations. Also, we associate these curves
with rectifying curves and osculating curve of the first kind.

It is known that the Darboux vector field which determines the instantaneous axis of rotation of the Frenet
frame plays an important role. Inspired by the equations given in (2.2), it is natural to ask the following question:

Question 1: Are there any vector fields that enable us to rewrite the Frenet formulas (2.3) as ternary products
of related Frenet vectors?

First of all, it is clear from the ternary product that we need at least two vector fields. Unfortunately, it
is impossible to rewrite (2.3) as ternary products by using two specific vector fields.

Let β be a unit speed curve in E4 with nonzero curvatures κ1, κ2, κ3 , and {T,N,B1,B2} denotes its
Frenet frame. Let us now introduce the following vector fields defined along β :

D1 = B2, D2 = κ2T+ κ1B1, D3 = κ3N+ κ2B2, D4 = T. (3.1)

Note that D1 and D4 are the Frenet vectors of the curve, and {D1,D2,D3,D4} is linearly independent along
the curve. Moreover, it is clear that {D1,D2} , {D3,D4} , and {D2,D3} are orthogonal sets. We denote
the subspaces spanned by {D1,D2} , {D3,D4} , and {D2,D3} as D1D2 -plane, D3D4 -plane, and D2D3 -plane,
respectively. Thus, by using these vector fields, as an answer to the above question, we may rewrite (2.3) as
follows:

T′ = D1 ⊗D2 ⊗T,
N′ = D1 ⊗D2 ⊗N,
B′

1 = D3 ⊗D4 ⊗B1,
B′

2 = D3 ⊗D4 ⊗B2.

(3.2)

It is seen from (3.2) that the Frenet vectors T and N rotate around the D1D2 -plane, and the Frenet vectors
B1 and B2 rotate around the D3D4 -plane. These two planes play the role that the Darboux vector d plays
in 3-space. Thus, considering these planes and inspired by the question of Chen [3] we may ask the following
questions:

Question 2: When does the position vector of a space curve in E4 always lie in its

a) D1D2 -plane, or
b) D3D4 -plane, or
c) D2D3 -plane?

For simplicity, we call such curves as D1D2 -curve, D3D4 -curve, and D2D3 -curve, respectively. The following
theorems characterize such curves.

Theorem 3.1 Let β : I ⊂ R → E4 be a unit speed curve with nonvanishing curvatures κ1, κ2, κ3 , and let s

denote its arc-length parameter. Then, β is a D1D2 -curve if and only if the curvatures of β satisfy{
1

κ3(s)

(
κ1(s)(s+ c)

κ2(s)

)′
}′

+
κ1(s)κ3(s)(s+ c)

κ2(s)
= 0, (3.3)
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where c is a constant.

Proof Let β be a D1D2 -curve with nonvanishing curvatures κ1, κ2, κ3 in E4 . Then, by the definition of
D1D2 -curve, we may write

β(s) = λ(s)D1(s) + µ(s)D2(s) (3.4)

for some functions λ(s) and µ(s) . If we take the derivative of (3.4) according to s and use the Frenet formulas,
we obtain (

µ(s)κ2(s)
)′ − 1 = 0,(

µ(s)κ1(s)
)′ − λ(s)κ3(s) = 0,

λ′(s) + µ(s)κ1(s)κ3(s) = 0.

(3.5)

The first and second equations above yield

µ(s) =
s+ c

κ2(s)
, λ(s) =

1

κ3(s)

(
κ1(s)(s+ c)

κ2(s)

)′

,

where c is an integration constant. Thus, substituting these results into the third equation of (3.5) gives the
desired result.

Conversely, we assume that the equation in (3.3) holds. Let us consider the vector

X(s) = β(s)− 1

κ3(s)

(
κ1(s)(s+ c)

κ2(s)

)′

D1(s)−
s+ c

κ2(s)
D2(s).

Differentiating X(s) with respect to s yields zero vector which implies that X(s) is a constant vector. Thus,
β(s) is congruent to a D1D2 -curve. 2

If we use Theorem 3.1 given in [5], we may give the following corollary:

Corollary 3.2 Let β : I ⊂ R → E4 be a unit speed curve with nonvanishing curvatures κ1, κ2, κ3 . Then, β is
a D1D2 -curve if and only if β is a rectifying curve in E4 .

Remark 3.3 According to Definition 2.1, position vector of a rectifying curve in E4 lies always in the orthogonal
complement of its principal normal vector field, i.e. it lies always in subspace spanned by {T,B1,B2} . However,
as a result of the above corollary, a rectifying curve in E4 can be considered as a space curve whose position
vector lies always in a two-dimensional subspace which we called D1D2 -plane.

Remark 3.4 Let us reconsider the characterization (3.3) of a D1D2 -curve. If we substitute

p =
κ1(s)(s+ c)

κ2(s)

and change the independent variable by using the transformation t =
∫
κ3(s)ds in (3.3), we obtain

d2p

dt2
+ p = 0

which has the general solution p = c1 cos t+ c2 sin t , c1, c2 are constants. Thus, the solution of (3.3) is obtained
as

κ1(s)(s+ c)

κ2(s)
= c1 cos

(∫
κ3(s)ds

)
+ c2 sin

(∫
κ3(s)ds

)
.
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Theorem 3.5 Let α : I ⊂ R → E4 be a unit speed curve with nonvanishing curvatures κ1, κ2, κ3 , and let s

denote its arc-length parameter. Then, α is a D3D4 -curve if and only if the curvatures of α satisfy

c

{
1

κ1(s)

(
κ3(s)

κ2(s)

)′
}′

+
cκ1(s)κ3(s)

κ2(s)
+ 1 = 0, (3.6)

where c is a constant.

Proof Let α be a D3D4 -curve with nonvanishing curvatures κ1, κ2, κ3 in E4 . Then, by the definition of
D3D4 -curve, we may write

α(s) = ν(s)D3(s) + η(s)D4(s) (3.7)

for some functions η(s) and ν(s) . If we take the derivative of (3.7) with respect to s and use the Frenet
formulas, we obtain (

ν(s)κ2(s)
)′

= 0,(
ν(s)κ3(s)

)′
+ η(s)κ1(s) = 0,

η′(s)− ν(s)κ1(s)κ3(s)− 1 = 0.

(3.8)

The first and second equations above yield

ν(s) =
c

κ2(s)
, η(s) = − c

κ1(s)

(
κ3(s)

κ2(s)

)′

,

where c is an integration constant. Thus, substituting these results into the third equation of (3.8) gives the
desired result.

Conversely, we assume that the curvatures of a unit speed curve α satisfy the equation in (3.6). Let us
consider the vector field

Y (s) = α(s)− c

κ2(s)
D3(s) +

c

κ1(s)

(
κ3(s)

κ2(s)

)′

D4(s).

Differentiating Y (s) according to s yields zero vector which implies that Y (s) is a constant vector. Thus, α(s)
is congruent to a D3D4 -curve. 2

If we use Lemma 1 given in [8], we may give the following corollary:

Corollary 3.6 Let α : I ⊂ R → E4 be a unit speed curve with nonvanishing curvatures κ1, κ2, κ3 . Then, α is
a D3D4 -curve if and only if α is an osculating curve of the first kind in E4 .

Remark 3.7 According to Definition 2.1, position vector of an osculating curve of the first kind in E4 lies
always in the orthogonal complement of its first binormal vector field, i.e. it lies always in subspace spanned
by {T,N,B2} . However, as a result of the above corollary, an osculating curve of the first kind in E4 can
be considered as a space curve whose position vector lies always in a two-dimensional subspace which we called
D3D4 -plane.

Remark 3.8 Let us reconsider the characterization (3.6) of a D3D4 -curve. If we substitute

q =
κ3(s)

κ2(s)
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and change the independent variable by using the transformation t =
∫
κ1(s)ds := f(s) in (3.6), we obtain the

nonhomogeneous second-order differential equation

d2q

dt2
+ q = g(t), g(t) :=

−1

cκ1 (f−1(t))
.

The general solution of the above differential equation is q =
(
C1 −

∫
g(t) sin tdt

)
cos t+

(
C2 +

∫
g(t) cos tdt

)
sin t ,

where C1, C2 are constants. Thus, the solution of (3.6) is obtained as

κ3(s)

κ2(s)
=

(
C1 +

1

c

∫
sin
(∫

κ1(s)ds
)
ds

)
cos

(∫
κ1(s)ds

)
+

(
C2 −

1

c

∫
cos
(∫

κ1(s)ds
)
ds

)
sin

(∫
κ1(s)ds

)
.

Theorem 3.9 Let γ : I ⊂ R → E4 be a unit speed curve with nonvanishing curvatures κ1, κ2, κ3 , and let s

denote its arc-length parameter. Then, γ is a D2D3 -curve if and only if the curvatures of γ satisfy

c2

(
κ2(s)

κ1(s)

)′

− c1κ1(s)− 1 = 0, c1

(
κ2(s)

κ3(s)

)′

+ c2κ3(s) = 0, (3.9)

where c1, c2 are constants.

Proof Let γ be a D2D3 -curve with nonvanishing curvatures κ1, κ2, κ3 in E4 . Then, by the definition of
D2D3 -curve, we may write

γ(s) = ρ(s)D2(s) + δ(s)D3(s) (3.10)

for some functions ρ(s) and δ(s) . If we take the derivative of (3.10) with respect to s and use the Frenet
formulas, we obtain (

δ(s)κ3(s)
)′

= 0,(
ρ(s)κ1(s)

)′
= 0,(

ρ(s)κ2(s)
)′ − δ(s)κ1(s)κ3(s)− 1 = 0,(

δ(s)κ2(s)
)′
+ ρ(s)κ1(s)κ3(s) = 0.

(3.11)

The first and second equations of (3.11) yield

δ(s) =
c1

κ3(s)
, ρ(s) =

c2
κ1(s)

,

where c1, c2 are integration constants. Thus, substituting these results into the third and fourth equations of
(3.11) give the desired result.

Conversely, we assume that the curvatures of γ satisfy the equations in (3.9). Let us consider the vector

Z(s) = γ(s)− c2
κ1(s)

D2(s)−
c1

κ3(s)
D3(s).

Differentiating Z(s) according to s yields zero vector which implies that Z(s) is a constant vector. Thus, γ(s)
is congruent to a D2D3 -curve. 2
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4. Special ruled hypersurfaces in E4 and their developability

In this section we introduce two ruled hypersurfaces associated to a space curve in E4 . A ruled hypersurface in
E4 is represented (locally) by the map

φ : I × R2 → E4, φ(t, v1, v2) = β(t) + v1e1(t) + v2e2(t),

where β : I ⊂ R → E4 denotes the base curve with unit tangent vector e0 , and {e1(t), e2(t)} denotes an
orthonormal basis of generating plane along β . Let

rank[e0, e1, e2, e′1, e′2] = 4− k. (4.1)

If k = 0 in (4.1), then the ruled hypersurface is called nondevelopable. If k = 1 in (4.1), then the ruled
hypersurface is called developable [1].

Let β : I ⊂ R → E4 be a unit speed curve with non-zero curvatures κ1, κ2, κ3 and arc-length function s .
Let us consider the vector fields Di, 1 ≤ i ≤ 4 defined in (3.1). Since {D1,D2} and {D2,D3} are orthogonal,
by normalizing these vectors we obtain the orthonormal frames {D1, D̄2} and {D̄2, D̄3} , where

D̄2(s) =
D2(s)

||D2(s)||
=

1√
κ2
1(s) + κ2

2(s)
{κ2(s)T(s) + κ1(s)B1(s)} , (4.2)

D̄3(s) =
D3(s)

||D3(s)||
=

1√
κ2
2(s) + κ2

3(s)
{κ3(s)N(s) + κ2(s)B2(s)} . (4.3)

If we differentiate these normalized vector fields with respect to s , we obtain

D̄′
2(s) = σ1(s) {κ1(s)T(s)− κ2(s)B1(s)}+ σ2(s)B2(s), (4.4)

D̄′
3(s) = −σ3(s)T(s) + σ4(s) [κ2(s)N(s)− κ3(s)B2(s)] , (4.5)

where

σ1(s) =

[(
κ2

κ1

)′
κ2
1

(κ2
1 + κ2

2)
3/2

]
(s), σ2(s) =

κ1κ3√
κ2
1 + κ2

2

(s),

σ4(s) =

[(
κ3

κ2

)′
κ2
2

(κ2
2 + κ2

3)
3/2

]
(s), σ3(s) =

κ1κ3√
κ2
2 + κ2

3

(s).

Thus, by considering the orthonormal frames {D1(s), D̄2(s)} and {D̄2(s), D̄3(s)} , we define the ruled hyper-
surfaces

φ(s, u, v) = β(s) + uD1(s) + vD̄2(s), s ∈ I, u, v ∈ R, (4.6)

ξ(s, u, v) = β(s) + uD̄2(s) + vD̄3(s), s ∈ I, u, v ∈ R, (4.7)

and call them as D1D̄2 -ruled hypersurface and D̄2D̄3 -ruled hypersurface of β(s) , respectively.
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Proposition 4.1 Let β : I ⊂ R → E4 be a unit speed curve with arc-length parameter s . Thus,
i) (s0, u0, v0) is a singular point of D1D̄2 -ruled hypersurface of β(s) if and only if it satisfies

κ1(s0) + u0 (κ2κ3) (s0) + v0
{
σ1

(
κ2
1 + κ2

2

)}
(s0) = 0.

ii) β is a geodesic curve on D1D̄2 -ruled hypersurface of β(s) .

Proof i) The partial derivatives of φ(s, u, v) are obtained as

φs = (1 + vσ1(s)κ1(s))T(s)− (uκ3(s) + vσ1(s)κ2(s))B1(s) + vσ2(s)B2(s),

φu = B2(s), φv =

(
κ2√

κ2
1 + κ2

2

)
(s)T(s) +

(
κ1√

κ2
1 + κ2

2

)
(s)B1(s).

Then, we have

φs ⊗ φu ⊗ φv =
κ1(s) + u (κ2κ3) (s) + v

{
σ1

(
κ2
1 + κ2

2

)}
(s)(√

κ2
1 + κ2

2

)
(s)

N(s). (4.8)

We know that (s0, u0, v0) is a singular point of φ(s, u, v) if and only if (φs ⊗ φu ⊗ φv)(s0, u0, v0) = 0 . Thus,
the assertion is clear from (4.8).

ii) We have u = v = 0 for the points of β . Thus, β(s) is a regular point of φ(s, u, v) for all s ∈ I .
Therefore, by using (4.8) the unit normal vector field of the hypersurface φ(s, u, v) along β is given by
N (s) = N(s) . Since principal normal of the curve is parallel to the hypersurface normal vector, β is a
geodesic curve on D1D̄2 -ruled hypersurface of β(s) . 2

Proposition 4.2 Let β : I ⊂ R → E4 be a unit speed curve with arc-length parameter s . The D1D̄2 -ruled
hypersurface associated with β is developable.

Proof We have

rank[T,D1, D̄2,D′
1, D̄′

2] = rank


1 0 0 0
0 0 0 1
κ2√
κ2
1+κ2

2

0 κ1√
κ2
1+κ2

2

0

0 0 −κ3 0
σ1κ1 0 −σ1κ2 σ2

 = 3.

Then, according to (4.1), D1D̄2 -ruled hypersurface associated with β is developable. 2

Remark 4.3 Note that, similar to the rectifying developable of a curve in E3 , the D1D̄2 -ruled hypersurface of
a space curve in E4 is developable, and its base curve is always a geodesic on it.

Proposition 4.4 Let β : I ⊂ R → E4 be a unit speed curve with arc-length parameter s . Thus, (s0, u0, v0) is
a singular point of D̄2D̄3 -ruled hypersurface of β(s) if and only if it satisfies the followings:{

κ1(s0) + u0

{
σ1

(
κ2
1 + κ2

2

)}
(s0)− v0 (κ1σ3) (s0) = 0,

v0
{
σ4

(
κ2
2 + κ2

3

)}
(s0)− u0 (κ3σ2) (s0) = 0.
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Proof The partial derivatives of ξ(s, u, v) are obtained as

ξs = (1 + uσ1(s)κ1(s)− vσ3(s))T(s) + vσ4(s)κ2(s)N(s)

−uσ1(s)κ2(s)B1(s) + (uσ2(s)− vσ4(s)κ3(s))B2(s),

ξu =

(
κ2√

κ2
1 + κ2

2

)
(s)T(s) +

(
κ1√

κ2
1 + κ2

2

)
(s)B1(s),

ξv =

(
κ3√

κ2
2 + κ2

3

)
(s)N(s) +

(
κ2√

κ2
2 + κ2

3

)
(s)B2(s).

Then, we have

ξs ⊗ ξu ⊗ ξv =
v{σ4(κ2

2+κ2
3)}(s)−u(κ3σ2)(s)√

κ2
1+κ2

2

√
κ2
2+κ2

3

(
κ1(s)T(s)− κ2(s)B1(s)

)
−κ1(s)+u{σ1(κ2

1+κ2
2)}(s)−v(κ1σ3)(s)√

κ2
1+κ2

2

√
κ2
2+κ2

3

(
κ2(s)N(s)− κ3(s)B2(s)

)
.

(4.9)

Thus, the assertion is clear from (4.9). 2

Corollary 4.5 β(s) , ∀s ∈ I , is a regular point of the D̄2D̄3 -ruled hypersurface.

Proposition 4.6 Let β : I ⊂ R → E4 be a unit speed curve with arc-length parameter s . The D̄2D̄3 -ruled
hypersurface associated with β is nondevelopable.

Proof We have

rank[T, D̄2, D̄3, D̄′
2, D̄′

3] = rank


1 0 0 0
κ2√
κ2
1+κ2

2

0 κ1√
κ2
1+κ2

2

0

0 κ3√
κ2
2+κ2

3

0 κ2√
κ2
2+κ2

3

σ1κ1 0 −σ1κ2 σ2

−σ3 σ4κ2 0 −σ4κ3

 = 4.

Then, according to (4.1), D̄2D̄3 -ruled hypersurface associated with β is nondevelopable. 2

Example 4.7 Let us consider the unit speed curve given by [4]

α(s) = (cos(ℓ1s), sin(ℓ1s), cos(ℓ2s), sin(ℓ2s)) ,

where ℓ1 =
√

2
3 , ℓ2 =

√
1
3 . The curvatures of this curve are given by κ1(s) =

√
5
3 , κ2(s) = 1

3

√
2
5 ,

κ3(s) =
√

2
5 . Since these curvatures satisfy (3.6) with c = − 1√

5
, α is a D3D4 -curve in E4 . Thus, since

D3(s) =
√

2
5

(
N(s) + 1

3B2(s)
)
, by using the Frenet vectors given in [4] it is easy to verify that we can write

α(s) = − 3√
2
D3(s) + 0.D4(s) .
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On the other hand, if we consider (4.6), we obtain the developable D1D̄2 -ruled hypersurface as

φ(s, u, v) = α(s) + uB2(s) + v
(√

6
9 T(s) + 5

√
3

9 B1(s)
)

=
((

1 + u√
5

)
cos(ℓ1s) +

1
3v sin(ℓ1s),

(
1 + u√

5

)
sin(ℓ1s)− 1

3v cos(ℓ1s),(
1− 2u√

5

)
cos(ℓ2s)− 2

√
2

3 v sin(ℓ2s),
(
1− 2u√

5

)
sin(ℓ2s) +

2
√
2

3 v cos(ℓ2s)
)

whose base curve α is a geodesic. Moreover, the point (s0, u0, v0) is a singular point on D1D̄2 -ruled hypersurface

if and only if u0 = − 5
√
5

2 , s0, v0 ∈ R .
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