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Abstract: Generalizing earlier results, sums over the products of the Gaussian q -binomial coefficients are computed.
Some applications of the results for special choices of q are emphasized. The results are obtained by the elementary
technique of partial fraction decomposition.
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1. Introduction
Define the second-order linear sequences {Un} and {Vn} for n ≥ 2 by

Un = pUn−1 + Un−2 and Vn = pVn−1 + Vn−2,

with initial values U0 = 0 , U1 = 1 and V0 = 2 , V1 = p , respectively.
The Binet formulæ are

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
, Vn = αn + βn = αn(1 + qn),

where α, β =
(
p∓

√
∆

)
/2 with q = β/α = −α−2 and ∆ = p2 + 4 , so that α = iq−1/2 .

In the special instance p = 1 , the sequences {Un} and {Vn} are reduced to the Fibonacci sequence {Fn}
and the Lucas sequence {Ln} , respectively.

For integers n and k such that n ≥ k ≥ 0 and integer m , the generalized Fibonomial coefficients with
indices in arithmetic progressions are defined by{

n

k

}
U ;m

=
UmU2m . . . Unm

(UmU2m . . . Ukm)(UmU2m . . . U(n−k)m)

with
{
n
n

}
U ;m

=
{
n
0

}
U ;m

= 1 and 0 otherwise. When m = 1 , we have the generalized Fibonomial coefficients,

denoted by
{
n
k

}
U

. When Un = Fn , then the generalized Fibonomial coefficients are reduced to the usual

Fibonomial coefficients, denoted by
{
n
k

}
F

.
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Various sum formulæ including the Fibonomial coefficients with the Fibonacci and Lucas numbers as
coefficients have been studied by several authors (for more details, see [9, 10, 13, 16, 17]). For example,
Marques and Trojovsky [13] showed that for positive integers m and n ,

4n+2∑
j=0

(−1)(
j+1
2 )

{
4m+ 2

j

}
F

L2m+1−j = −
{
4m+ 2

4n+ 3

}
F

F4n+3

F2m+1

and
4m∑
j=0

(−1)(
j
2)
{
4m

j

}
F

Fn+4m−j =
1

2
F2m+n

4m∑
j=0

(−1)(
j
2)
{
4m

j

}
F

L2m−j .

The Gaussian q -binomial coefficients are defined by

[
n

k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
,

where (x; q)n is the q -Pochhammer symbol, (x; q)n = (1− x)(1− xq) . . . (1− xqn−1) with (x; q)0 = 1 .
We recall some useful formulæ [1, 6]:

∑
k≥0

[
n+ k

k

]
q

zk =
1

(z; q)n+1

and
n∑

k=0

[
n

k

]
q

q(
k+1
2 )zk =

n∏
k=1

(1 + zqk).

The link between the generalized Fibonomial and Gaussian q -binomial coefficients is

{
n

k

}
U ;m

= αmk(n−k)

[
n

k

]
qm

with q = β/α = −α−2 or α = iq−1/2.

Various sum formulæ including the Gaussian q -binomial coefficients with certain weight functions have
been studied by several authors [9, 10]. They also gave some applications by using the link between the
generalized Fibonomial and Gaussian q -binomial coefficients to sums including the generalized Fibonomial
coefficients.

Melham [14] derived families of identities between sums of powers of the Fibonacci and Lucas numbers.
In his work, while deriving these identities, he conjectured a complex identity between the Fibonacci and Lucas
numbers. We recall this conjecture:

(a) Let k,m, n ∈ Z with m > 0 show that

m−1∑
j=0

Fm+1
n+k+m−j

(Fm−j−1)(m−1)F(m+1)k+m−j
+ (−1)

m(m+3)
2

Fm+1
n−mk∏m

j=1 F(m+1)k+j
= F(m+1)(n+m

2 ).
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(b) The Lucas counterpart of (a) is given by

m−1∑
j=0

Lm+1
n+k+m−j

(Fm−j−1)(m−1)F(m+1)k+m−j
+ (−1)

m(m+3)
2

Lm+1
n−mk

m∏
j=1

F(m+1)k+j

=

{
5

m+1
2 F(m+1)(n+m

2 ) if m is odd,
5

m
2 L(m+1)(n+m

2 ) if m is even,

where (Fn)(m) is the “falling” factorial, which begins at Fn for n ̸= 0 , and is the product of m Fibonacci
numbers excluding F0 . For example (F6)(5) = F6F5F4F3F2 and (F3)(5) = F3F2F1F−1F−2 . For m > 0 , define
(F0)(m) = F−1F−2 . . . F−m and (F0)(0) = 1 .

The authors of [7] converted the sum identities conjectured by Melham into q -form. Recall that the first
sum identity (a) takes the form

(1− q(m+1)k+m)

[
(m+ 1)k +m− 1

m− 1

]
q

×
m−1∑
j=0

(−1)jqj(j+1)/2

[
m− 1

j

]
q

(1− qn+k+m−j)m+1

1− q(m+1)k+m−j

=
(
1− q

(m+1)(2n+m)
2

) (q; q)(m+1)k+m

(q; q)(m+1)k
− (−1)mq

m(m+1)(2k+1)
2 (1− qn−mk)m+1.

They used the contour integration method to prove this sum identity.
Quite recently, Li and Chu [12] used the q -derivative operator to prove the same conjecture. There are

many kinds of combinatorial sums as well as various proof methods. For example, for the method of integral
representation of combinatorial sums as a proof method that is mainly based on the use of residues, we refer to
[5].

Recently, Kılıç and Prodinger [10] computed the following sum identity in closed form for any positive
integer w , any nonzero real number a , nonnegative integer n , and integers t and r such that r ≥ −1 and
t ≥ −n :

n∑
j=0

[
n

j

]
q

(−1)jq(
j+1
2 )+tj 1

(aqj ; qw)r+1
.

As a particular consequence of the above sum, Kılıç and Arıkan [8] presented a proof of Clark’s conjecture.
More recently, Kılıç and Prodinger [11] presented and proved (using only the elementary partial fraction

decomposition method) three sum identities. For any real numbers a and b :

SUM1 =

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)−nk(a− qk),

SUM2 =

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)−nk 1

q−k − a
,

and

SUM3 =

n∑
k=0

[
n+ k − 1

k

]
q

[
n

k

]
q

(−1)kq(
k+1
2 )−nk a− q−k

b− q−k
.
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In this paper, inspired by the results of [11], we will present and compute a general sum formula including
the Gaussian q -binomial coefficients with a certain rational-parametric weight function. Namely, we consider
the sum S(n; t, a, p, r) :

S(n; t, a, p, r) =

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+k(t−n) 1

(aqk; p)r+1
.

If one chooses specific values of the parameters, many known formulæ can be derived from the above
sum.

For example, one can obtain the three sums from [11] from the sum S(n; t, a, p, r) as follows:

• For any values of a and p , setting r = −1 in the sum S(n; t, a, p, r) , we get SUM1 as

SUM1 = aS(n; 0, ·, ·,−1)− S(n; 1, ·, ·,−1).

• When r = 0 , t = 1 and p = q in the sum S(n; t, a, p, r) , we obtain SUM2 as

SUM2 = S(n; 1, a, q, 0).

• Since [
n+ k − 1

k

]
q

[
n

k

]
q

=

[
n+ k

k

]
q

[
n

k

]
q

1− qn

1− qn+k

and

1

(1− qn+k)(1− bqk)
=

1

(1− bq−n)(1− qn+k)
+

b

(b− qn)(1− bqk)
,

we obtain SUM3 from the sum S(n; t, a, p, r) via

SUM3 =
1− qn

1− bq−n

[
S(n; 1, qn, ·, 0)− aS(n; 2, qn, ·, 0)

]
+

b(1− qn)

b− qn
[
S(n; 1, b, ·, 0)− aS(n; 2, b, ·, 0)

]
.

Thus, our results generalize the results of [11].
We use a partial fraction method to prove our claims (for earlier results using this approach, we refer to

[2–4, 15]). All identities we will obtain hold for general p and q . Finally, we will present some applications of
our results for some special choices of p and q .

Throughout the paper, we assume that a , q , and p are nonzero real numbers; n is a nonnegative integer;
and r ≥ −1 is an integer such that apjqi ̸= 1 for all i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , r} .
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2. The main results
Theorem 2.1 For positive integer t such that t ≤ r + n+ 2 ,

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(t−n)k 1

(aqk; p)r+1
(2.1)

= a1−tq(
n+1
2 )(−1)n

r∑
k=0

(−1)kp
1
2k(k−2t+3) (apkq−n; q)n

(apk; q)n+1(p; p)k(p; p)r−k

− (−1)n+ta−r−1p−(
r+1
2 )q(

n+r−t+3
2 )

×
t−r−2∑
k=0

[
n

t− r − 2− k

]
q

(−1)kq(
k+1
2 )+k(2+n+r−t)

k∑
l=0

[
r + l

l

]
p

[
n+ k − l

n

]
q

(apr)−l.

Proof First we rewrite the LHS of the claim as

n∑
k=0

(q−k − q) . . . (q−k − qn)

(q; q)k(q; q)n−k

(−1)kq(
k
2)+k(t−r−1)

(q−k − a)(q−k − ap) . . . (q−k − apr)
.

Define

h(z) :=
(z − q) . . . (z − qn)

(1− z)(1− zq) . . . (1− zqn)

zr+1

(z − a)(z − ap) . . . (z − apr)

1

zt
.

Then the partial fraction expansion gives us

h(z) =

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k+1
2 )+k(t−n) 1

(1− zqk)(aqk; p)r+1

+

r∑
k=0

Ak

z − apk
+

t∑
k=1

Bk

zk
.

If we multiply both sides of the above equation by z and then let z → ∞ , we obtain

0 = −
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(t−n)k 1

(aqk; p)r+1
+

r∑
k=0

Ak +B1,

or
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(t−n)k 1

(aqk; p)r+1
=

r∑
k=0

Ak +B1.

Now, for 0 ≤ k ≤ r , we compute the coefficients Ak and B1 via

Ak = (z − apk)h(z)
∣∣∣
z=apk

and B1 = [z−1]h(z).
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First consider the coefficients Ak :

Ak = (z − apk)h(z)
∣∣∣
z=apk

=
(apk − q) . . . (apk − qn)

(1− apk)(1− apkq) . . . (1− apkqn)
ar−t+1pk(r−t+1)

× 1

(apk − a)(apk − ap) . . . (apk − ap(k−1))

× 1

(apk − ap(k+1))(apk − ap(k+2)) . . . (apk − apr)

=
ar−t+1pk(r−t+1)

(apk; q)n+1
(−1)nq(

n+1
2 )(apkq−n; q)n

× (−1)k

akp(
k
2)(1− pk)(1− p(k−1)) . . . (1− p)

× 1

ar−kpk(r−k)(1− p)(1− p2) . . . (1− p(r−k))

= a1−tq(
n+1
2 ) (−1)n+kp

1
2k(k−2t+3)

(apk; q)n+1

(apkq−n; q)n
(p; p)k(p; p)r−k

.

For the coefficient B1 , consider

B1 = [z−1]h(z)

= [z−2−r+t]
(z − q) . . . (z − qn)

(z; q)n+1

1

(z − a)(z − ap) . . . (z − apr)

= [z−2−r+t]zn

n∏
k=1

(1− z−1qk)

(z; q)n+1(−1)r+1ar+1p(
r+1
2 )(za−1p−r; p)r+1

=
(−1)r+1

ar+1p(
r+1
2 )

[z−2−r+t−n]
∑
k≥0

[
n+ k

k

]
q

zk

×
∑
k≥0

[
r + k

k

]
p

( z

apr

)k n∑
k=0

[
n

k

]
q

(−1)kq(
k+1
2 )z−k

=
(−1)r+1

ar+1p(
r+1
2 )

[z−2−r+t−n]
∑
k≥0

ckz
k

n∑
k=0

[
n

k

]
q

(−1)kq(
k+1
2 )z−k,

where

ck =

k∑
l=0

albk−l,

with

al =

[
r + l

l

]
p

1

alprl
and bl =

[
n+ l

l

]
q

.

312



ARIKAN et al./Turk J Math

Finally, for t ≤ n+ r + 2 , we get

B1 =
(−1)r+1

ar+1p(
r+1
2 )

[z−2−r+t−n]
∑
k≥0

ckz
k

n∑
k=0

[
n

k

]
q

(−1)kq(
k+1
2 )z−k

=
(−1)r+1

ar+1p(
r+1
2 )

t−r−2∑
k=0

ck

[
n

t− r − 2− k

]
q

(−1)k+n+r−tq(
k+2+n+r−t

2 )

= −(−1)n+ta−r−1q(
n+r−t+3

2 )p−(
r+1
2 )

×
t−r−2∑
k=0

(−1)kq(
k+1
2 )+k(2+n+r−t)

[
n

t− r − 2− k

]
q

ck,

as claimed. 2

In Theorem 2.1, we assumed t to be a positive integer. Now we separately consider the case t = 0 with
the following result.

Theorem 2.2

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)−nk 1

(aqk; p)r+1
= (−1)nq−(

n+1
2 )

+ a(−1)nq(
n+1
2 )

r∑
k=0

(−1)kp
1
2k(k+3) (apkq−n; q)n

(apk; q)n+1(p; p)k(p; p)r−k
.

Proof Define

h(z) :=
(z − q) . . . (z − qn)

(1− z)(1− zq) . . . (1− zqn)

zr+1

(z − a)(z − ap) . . . (z − apr)
.

By partial fraction expansion, we write

h(z) =

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k+1
2 )−nk 1

(1− zqk)(aqk; p)r+1

+

r∑
k=0

Ak

z − apk
.

Since limz→∞ zh(z) = (−1)n+1q−(
n+1
2 ) , we write

(−1)n+1q−(
n+1
2 ) = −

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)−nk 1

(aqk; p)r+1
+

r∑
k=0

Ak,

where Ak = (z − apk)h(z)
∣∣∣
z=apk

for 0 ≤ k ≤ r . Thus, the proof follows. 2

Now we present some corollaries of Theorem 2.1.

Corollary 2.3

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k+1
2 )−nk 1

(aqk; p)r+1
= (−1)nq(

n+1
2 )

r∑
k=0

(−1)kp(
k+1
2 ) (apkq−n; q)n

(apk; q)n+1(p; p)k(p; p)r−k
.
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Proof If we choose t = 1 , then
(
k
2

)
+ k =

(
k+1
2

)
and −r − 1 < 0 . By Theorem 2.1, the result follows. 2

Corollary 2.4 For any positive integer t such that t < r + 2 ,
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(t−n)k 1

(aqk; p)r+1
= a1−tq(

n+1
2 )(−1)n

r∑
k=0

(−1)kp
1
2k(k−2t+3) (apkq−n; q)n

(apk; q)n+1(p; p)k(p; p)r−k
.

Proof Since t− r − 2 < 0 , the last sum in the RHS of Eq. (2.1) equals 0 and so the claim follows. 2

Corollary 2.5 For any positive integer t such that t ≤ n+ 1 ,

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(t−n)k = (−1)n+t+1q(

n−t+2
2 )

t−1∑
k=0

[
n+ k

k

]
q

[
n

t− 1− k

]
q

(−1)kq(
k+1
2 )+k(n−t+1).

Proof The claim follows from Theorem 2.1 with r = −1 . 2

3. Further corollaries
In this section, we will present several generalized Fibonomial-Fibonacci-Lucas sum identities as corollaries of
our results.

Corollary 3.1 For n ≥ 0 ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

(−1)nk+(
k+1
2 ) 1

Un+k+1Vn+k+2Un+k+3

= (−1)(
n−1
2 )

[{
2n

n

}−1

U

1

U2n+1V 2
1

−
{
2n+ 2

n+ 1

}−1

V

∆

U2
2V1

+

{
2n+ 3

n+ 1

}−1

U

Un+2

U3
2

]
,

where ∆ = p2 + 4 is defined as before.

Proof Note that ∆ = (α− β)2 = −q−1(1− q)2 . Thus, this sum can be equivalently rewritten in q -form as

(1− q)2

α3n+4

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(2−n)k

(1− qn+k+1)(1 + qn+k+2)(1− qn+k+3)

=

[
2n

n

]−1

q

(−1)−
n
2 q

1
2n

2+n+1(1− q)

(1− q2n+1)(1 + q)2
−
[
2n+ 2

n+ 1

]−1

q

(−1)−
n
2 q

1
2n

2+n+1(1− q)4

(1− q2)2(1 + q)

+

[
2n+ 3

n+ 1

]−1

q

(−1)−
n
2 +1q

1
2n

2+n+2 (1− q)2(1− qn+2)

(1− q2)3
.

Applying Corollary 2.4 to the above sum on LHS for the parameters t = r = 2 , a = qn+1 , and p = −q , it
equals

(−1)−
n
2 q

1
2n

2+n+1(1− q)2
2∑

k=0

(−1)k(−q)
1
2k(k−1)((−1)kqk+1; q)n

((−1)kqn+k+1; q)n+1(−q;−q)k(−q;−q)2−k

= (−1)−
n
2 q

1
2n

2+n+1

[
(q; q)n(1− q)

(qn+1; q)n+1(1 + q)2
− (−q2; q)n(1− q)2

(−qn+2; q)n+1(1 + q)2
− q(q3; q)n(1− q)2

(qn+3; q)n+1(1 + q)(1− q2)

]
.
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After some algebraic operations and simplifications, the claim follows. 2

Corollary 3.2 For n ≥ 0 ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

(−1)nk+(
k
2)

Vk+2

Un+k+1Un+k+3
= (−1)(

n+1
2 )+1Un+2

U2

{
2n+ 1

n

}−1

U

[
Vn−1

Un+1Un+2
− Un+2

U2n+3

]
.

Proof We rewrite the claim in q -form as follows:
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

q(
k
2)+(1−n)k(−1)k

1 + qk+2

(1− qn+k+1)(1− qn+k+3)
(3.1)

= q(
n
2)+1(−1)n

1− qn+2

1− q2

[
2n+ 1

n

]−1

q

[
1 + qn−1

(1− qn+1)(1− qn+2)
− 1− qn+2

1− q2n+3

]
.

Consider the LHS of Eq. (3.1) as
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

q(
k
2)+k(1−n)(−1)k

1 + qk+2

(1− qn+k+1)(1− qn+k+3)

= S(n; 1, qn+1, q2, 1) + q2S(n; 2, qn+1, q2, 1).

By Theorem 2.1, we have that

S(n; 1, qn+1, q2, 1) = q(
n+1
2 )(−1)n

[
(q; q)n

(qn+1; q)n+1(1− q2)
− q2

(q3; q)n
(qn+3; q)n+1(1− q2)

]
and

S(n; 2, qn+1, q2, 1) = q(
n
2)−1(−1)n

[
(q; q)n

(qn+1; q)n+1(1− q2)
− (q3; q)n

(qn+3; q)n+1(1− q2)

]
.

The claim follows now after some simplifications. 2

Corollary 3.3 For n ≥ 1 ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

α−k(−1)nk+(
k+1
2 )UkUk+2 = ∆−1/2(−1)(

n
2)
[
Un2+nα

2 − (−1)nβn2+n+2UnUn+1

]
.

Proof If we convert the claim into q -form, then we have to prove that
n∑

k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)−nk(1− qk − qk+2 + q2k+2) (3.2)

= (−1)n
[
q−(

n+1
2 )(1− qn

2+n)− q(
n
2)+2 (1− qn)(1− qn+1)

1− q

]
.

Represent the LHS as

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)−nk(1− (1 + q2)qk + q2k+2) = T0 − (1 + q2)T1 + q2T2,
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with

Tj =

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(j−n)k,

for 0 ≤ j ≤ 2 . By Theorem 2.2 and Corollary 2.5, we get

T1 = (−1)nq−(
n+1
2 ), T2 = (−1)nq(

n+1
2 )

and

T3 = (−1)nq(
n
2)
[
1− qn

1− q
− qn

1− qn+1

1− q

]
.

After some simplifications, we obtain

T0 − (1 + q2)T1 + q2T2 = (−1)nq−(
n+1
2 )(1− qn

2+n)− (−1)nq(
n
2)+2 (1− qn)(1− qn+1)

1− q
,

which equals the RHS of Eq. (3.2). Thus, we have the conclusion. 2

Corollary 3.4 For n ≥ 3 ,

n∑
k=0

{
n+ k

k

}
U

{
n

k

}
U

(−1)nk+(
k+1
2 ) 1

Uk+1Uk+2Uk+3
= 0.

Proof If we convert the LHS of the claim into q -form, we get

(1− q)3

α3

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)kq(
k
2)+(2−n)k 1

(qk+1; q)3
,

which, by Corollary 2.4, equals

(1− q)3

α3
q(

n+1
2 )(−1)n

2∑
k=0

(−1)kq(
k
2)

(qk+1−n; q)n
(qk+1; q)n+1(q; q)k(q; q)2−k

,

which, since (qk+1−n; q)n = 0 for k = 0, 1, 2 and n ≥ 3 , equals 0 , as claimed. 2

Now we recall an auxiliary result from [15], for which we will prove a q -analogue.

Corollary 3.5 For 0 ≤ m ≤ n ,

n∑
k=0

(
n+ k

k

)(
n

k

)
(−1)n−k m+ k

j(j +m+ k)
=

1

j
− (j +m− 1)!2

(j +m− n− 1)!(j +m+ n)!
.

Proof Consider the sum

sn =

n∑
k=0

[
n+ k

k

]
q

[
n

k

]
q

(−1)n−k 1− qm+k

1− qj+m+k
= (−1)n

[
S(n; 0, qj+m, ., 0)− qmS(n; 1, qj+m, ., 0)

]
.
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Since limq→1
1−qn

1−q = n , we observe that

1

j
lim
q→1

sn =

n∑
k=0

(
n+ k

k

)(
n

k

)
(−1)n−k m+ k

j(j +m+ k)
.

By Theorems 2.1 and 2.2,

sn = (−1)n
[
S(n; 0, qj+m, ., 0)− qmS(n; 1, qj+m, ., 0)

]
= q−(

n+1
2 ) + q(

n+1
2 )+j+m (qj+m−n; q)n

(qj+m; q)n+1
− q(

n+1
2 )+m (qj+m−n; q)n

(qj+m; q)n+1

= q−(
n+1
2 ) − q(

n+1
2 )+m (qj+m−n; q)n

(qj+m; q)n+1
(1− qj)

= q−(
n+1
2 ) − q(

n+1
2 )+m

(q; q)2j+m−1

(q; q)j+m−n−1(q; q)j+m+n
(1− qj).

Multiplying this by 1
j and then performing the limit q → 1 , we finally have

1

j
lim
q→1

sn =
1

j
− (j +m− 1)!2

(j +m− n− 1)!(j +m+ n)!
,

and so the proof is complete. 2

The above example is a prototype of how to deduce binomial sum identities from our main results by
performing the limit q → 1 .
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