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Abstract: Our aim in the present paper is to initiate the study of submanifolds in an almost poly-Norden Riemannian
manifold, which is a new type of manifold first introduced by Şahin [17]. We give fundamental properties of submanifolds
equipped with induced structures provided by almost poly-Norden Riemannian structures and find some conditions
for such submanifolds to be totally geodesics. We introduce some subclasses of submanifolds in almost poly-Norden
Riemannian manifolds such as invariant and antiinvariant submanifolds. We investigate conditions for a hypersurface of
almost poly-Norden Riemannian manifolds to be invariant and totally geodesic, respectively, by using the components of
the structure induced by the almost poly-Norden Riemannian structure of the ambient manifold. We also obtain some
characterizations for totally umbilical hypersurfaces and give some examples of invariant and noninvariant hypersurfaces.

Key words: Bronze mean, poly-Norden structure, poly-Norden manifold, invariant submanifold, antiinvariant subman-
ifold

1. Introduction
In Riemannian (as well as semi-Riemannian) manifolds, different geometric structures such as almost complex
structures, almost product structures, almost contact structures, and almost paracontact structures allow
significant results to emerge while investigating differential and geometric properties of submanifolds.

As a generalization of the golden mean, the number ϕ = 1+
√
5

2 = 1.618... is known as a solution of the
equation x2 − x− 1 = 0 , Spinadel introduced a family of metallic proportions in [5]. The positive solutions of
the equation x2 − px − q = 0 create members of the metallic proportions (or means) family, which are called
(p, q) metallic numbers and denoted by

σp,q =
p+

√
p2 + 4q

2
. (1.1)

The well-known members of the metallic means family are the golden mean, the silver mean, the bronze mean,
the copper mean, etc. The members of the metallic means family have important mathematical properties in
physics and art.

In recent years, inspired by the golden mean and the metallic mean, the golden structure on a Riemannian
manifold and metallic Riemannian manifolds were introduced in [4] and [14], respectively. Golden Riemannian
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manifolds, which can be viewed as one of the most important subclasses of metallic Riemannian manifolds, and
their submanifolds have been studied extensively by many geometers (see [7–9, 12]). Poyraz Önen and Yaşar
[16] initiated the study of lightlike geometry in golden semi-Riemannian manifolds by investigating lightlike
hypersurfaces of a golden semi-Riemannian manifold. Since the metallic structure on the ambient Riemannian
(or semi-Riemannian) manifold provides more general geometric results than the consequences provided by the
golden structure on submanifolds, the metallic Riemannian (as well as semi-Riemannian) manifolds have been
studied by many authors. Invariant, antiinvariant, semiinvariant, slant, and semislant submanifolds of a metallic
Riemannian manifold were studied in [3, 10, 11]. Some special types of lightlike submanifolds on a metallic
semi-Riemannian manifold were introduced in [1, 6].

In 2011, by a different approach, Kalia [15] introduced a new bronze mean and studied bronze Fibonacci
and Lucas numbers. The author showed the relationship between the convergents of continued fractions of
the power of bronze means and the bronze Fibonacci and Lucas numbers. Note that, unlike the bronze mean
contained by the metallic means family defined in [5], that new bronze mean given by Kalia [15] cannot be
expressed with σp,q for any positive integers p and q .

Considering the study on a Riemannian manifold with the golden structure [4] and the bronze mean
introduced by [15], Şahin in [17] defined a new type of manifold equipped with the bronze structure and named
it an almost poly-Norden manifold. He gave some important geometric results and investigated the constancy
of certain maps.

In the present paper, we initiate the study of submanifolds in almost poly-Norden Riemannian manifolds.

2. Preliminaries
The positive solution of

x2 −mx+ 1 = 0

is called the bronze mean [15], which is defined by

Bm =
m+

√
m2 − 4

2
. (2.1)

A family of sequences (fm,n) given by the recurrence

fm,n+2 = mfm,n+1 − fm,n ,

where fm,0 = 0 and fm,1 = 1 , is called the bronze Fibonacci numbers. The bronze Lucas numbers denoted by
(lm,n) are a sequence family characterized by

lm,n+2 = mlm,n+1 − lm,n ,

where lm,0 = 2 and lm,1 = m. For the bronze means, the continued fractions are {m− 1; 1,m− 2}. Also, note
that Bn+2

m = mBn+1
m −Bn

m and the bronze Fibonacci numbers and the bronze Lucas numbers are related by

Bn
m =

lm,n + fm,n

√
m2 − 4

2
.
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For further reading, we refer to [15].
In [17], by using the bronze mean given in (2.1), the author defined a new type of differentiable manifold

equipped with a bronze structure. Let M̃ be a smooth manifold. If a tensor field Φ̃ of type (1, 1) satisfies

Φ̃2 = mΦ̃− I, (2.2)

then Φ̃ is said to be a poly-Norden structure on M̃ . Then we say that M̃ is an almost poly-Norden manifold
equipped with a poly-Norden structure Φ̃ . An almost poly-Norden structure Φ̃ is an isomorphism on a tangent

space of M̃ , which has eigenvalues m+
√
m2−4
2 and m−

√
m2−4
2 .

Also, if (M̃, g̃) is a semi-Riemannian manifold endowed with a poly-Norden structure Φ̃ such that the
semi-Riemannian metric g̃ is Φ̃ -compatible, i.e.

g̃(Φ̃X̃, Φ̃Ỹ ) = mg̃(Φ̃X̃, Ỹ )− g̃(X̃, Ỹ ), (2.3)

equivalent to

g̃(Φ̃X̃, Ỹ ) = g̃(X̃, Φ̃Ỹ ), (2.4)

for every X̃, Ỹ ∈ Γ(TM̃) , then (Φ̃, g̃) is called an almost poly-Norden semi-Riemannian structure and (M̃, Φ̃, g̃)

is named an almost poly-Norden semi-Riemannian manifold [17].

Proposition 2.1 [17] Every complex structure J̃ on a semi-Riemannian manifold induces two poly-Norden
structures on M̃ given by

Φ̃1 =
m

2
I +

√
4−m2

2
J̃ , Φ̃2 =

m

2
I −

√
4−m2

2
J̃ , −2 < m < 2.

Conversely, every poly-Norden structure Φ̃ on M̃ induces two almost complex structures on this manifold given
as follows:

J̃1 = − m√
4−m2

I +
2√

4−m2
Φ̃, J̃2 =

m√
4−m2

I − 2√
4−m2

Φ̃, −2 < m < 2.

Definition 2.2 [17] An almost poly-Norden semi-Riemannian manifold (M̃, Φ̃, g̃) is called a poly-Norden semi-
Riemannian manifold if the almost poly-Norden structure Φ̃ is parallel with respect to Levi-Civita connection
∇̃ on M̃.

Definition 2.3 [17] An almost poly-Norden structure Φ̃ is called integrable if its Nijenhuis tensor field
NΦ̃(X̃, Ỹ ) := [Φ̃X̃, Φ̃Ỹ ]− Φ̃[Φ̃X̃, Ỹ ]− Φ̃[X̃, Φ̃Ỹ ] + Φ̃2[X̃, Ỹ ] vanishes.

Note that NΦ̃ = 0 is equivalent to ∇̃Φ̃ = 0 . It was shown that every almost Norden manifold is an
almost poly-Norden manifold with m = 0 [17]. Throughout the paper we will consider that m ̸= 0 .
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3. Submanifolds of almost poly-Norden Riemannian manifolds

Let M be an n -dimensional submanifold of an (n+ k) -dimensional almost poly-Norden Riemannian manifold
(M̃, Φ̃, g) . We denote the induced Riemannian metric on M by g . For any X ∈ Γ(TM) and U ∈ Γ(TM⊥) ,
we put

Φ̃X = fX + wX, (3.1)

Φ̃U = BU + CU, (3.2)

where fX (resp. wX ) is the tangential (resp. normal) part of Φ̃X and BU (resp. CU ) is the tangential
(resp. normal) part of Φ̃U.

From (2.4) and (3.1)-(3.2) one can easily see that

g(fX, Y ) = g(X, fY ), ∀X,Y ∈ Γ(TM), (3.3)

g(CU, V ) = g(U,CV ), ∀U, V ∈ Γ(TM⊥). (3.4)

Also, the maps w and B are related by

g(wX,U) = g(X,BU).

The Levi-Civita connections on M and M̃ will be denoted by ∇ and ∇̃ , respectively. Then the Gauss
and Weingarten formulas are given by

∇̃X Y = ∇X Y +

k∑
β=1

hβ(X,Y )Nβ , (3.5)

∇̃X Nβ = −ANβ
X +

k∑
γ=1

σβγ(X)Nγ , (3.6)

for any X,Y ∈ Γ(TM) and an orthonormal basis {N1, N2, ..., Nk} of TM⊥ , where β, γ ∈ {1, 2, ..., k} . Here,
hβ (1 ≤ β ≤ k) are the second fundamental tensors that provide identification of the second fundamental form

h of M such that h(X,Y ) =
∑k

β=1 hβ(X,Y )Nβ and ANβ
denotes the shape operator in the direction of Nβ

given by g(ANβ
X,Y ) = hβ(X,Y ) . Also, σβγ (1 ≤ β, γ ≤ k) denotes the 1-forms on the submanifold M that

satisfy ∇⊥
X Nβ =

∑k
γ=1 σβγ(X)Nγ . Note that if we take the covariant derivative of g(Nβ , Nγ) = δβγ on M ,

then we have σβγ = −σγβ .
Note that a submanifold M is called:

i) totally geodesic if h (or equivalently the shape operator A) vanishes,

ii) minimal if the mean curvature vector H defined by H = 1
n trace h of the submanifold vanishes, and

iii) totally umbilical if A = aI , for some function a .

From (2.4) we give following.
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Lemma 3.1 Let (M̃, Φ̃, g) be an almost poly-Norden Riemannian manifold. Then we have

g((∇̃X̃ Φ̃)Ỹ , Z̃) = g(Ỹ , (∇̃X̃ Φ̃)Z̃), ∀X̃, Ỹ , Z̃ ∈ Γ(TM̃). (3.7)

Proposition 3.2 Let M be an n-dimensional submanifold of an (n + k)-dimensional almost poly-Norden
Riemannian manifold (M̃, Φ̃, g). Then we have

g((∇X f)Y, Z) = g(Y, (∇X f)Z), (3.8)

for any X,Y, Z ∈ Γ(TM).

Proof From (3.5) and (3.6) and by using equations (3.1) and (3.2), we write

(∇̃X Φ̃)Y = ∇̃X Φ̃Y − Φ̃(∇̃X Y )

= ∇̃X fY + ∇̃X wY − Φ̃∇X Y −
k∑

β=1

hβ(X,Y )Φ̃Nβ

= (∇X f)Y −
k∑

β=1

g(wY,Nβ)ANβ
X −

k∑
β=1

hβ(X,Y )BNβ

+

k∑
β=1

{hβ(X, fY ) +X (g(wY,Nβ))− g(wY,Nγ)σβγ(X)}Nβ

−
k∑

β=1

hβ(X,Y )CNβ − w∇X Y. (3.9)

If we use the fact g(wX,Nβ) = g(X, Φ̃Nβ), for 1 ≤ β ≤ k , the last equation above reduces to

g((∇̃X Φ̃)Y, Z) = g((∇X f)Y, Z)−
k∑

β=1

{
hβ(X,Z)g(Y, Φ̃Nβ)

+hβ(X,Y )g(Z, Φ̃Nβ)

}
. (3.10)

By interchanging the roles of Y and Z in (3.10) and using (3.8) we complete the proof. 2

Consider that (M̃, Φ̃, g) is an (n + k) -dimensional poly-Norden Riemannian manifold and M is a
submanifold of codimension k in M̃ . For any X,Y ∈ Γ(TM), we have

∇̃X wY =

k∑
β=1

{
X (g(wY,Nβ))Nβ − g(wY,Nβ)ANβ

X

+
∑k

γ=1 σβγ(X)g(wY,Nβ)Nγ

}
. (3.11)

Since M̃ is a poly-Norden Riemannian manifold, i.e. ∇̃Φ̃ = 0 , then by using (3.1), (3.2), (3.5), and (3.6), we
calculate

∇X fY +
∑k

β=1

{
hβ(X, fY )Nβ

−g(wY,Nβ)ANβ
X

}
+
∑k

β=1

{
X (g(wY,Nβ))Nβ

−
∑k

γ=1 σβγ(X)g(wY,Nγ)Nβ

} =
f ∇X Y + w∇X Y

+
∑k

β=1

{
hβ(X,Y )BNβ

+hβ(X,Y )CNβ

}
. (3.12)
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On the other hand, for any X ∈ Γ(TM) and U ∈ Γ(TM⊥) , we write

∇̃X U =

k∑
β=1

{
X (g(U,Nβ)) Nβ − g(U,Nβ)ANβ

X

+
∑k

γ=1 σβγ(X)g(U,Nβ)Nγ

}
. (3.13)

By applying Φ̃ to both sides of (3.13) and using the fact that M̃ is a poly-Norden Riemannian manifold, we
obtain

∇X BU +
∑k

β=1

{
hβ(X,BU)

+X(g(CU,Nβ))

}
Nβ

+
∑k

β=1

{
−g(CU,Nβ)ANβ

X

+
∑k

γ=1 g(CU,Nβ)σβγ(X)Nγ

} =

∑k
β=1


X(g(U,Nβ))BNβ

+X(g(U,Nβ))CNβ

−g(U,Nβ) fANβ
X

−g(U,Nβ)wANβ
X

∑k
β,γ=1

{
g(U,Nβ)σβγ(X)BNγ

+g(U,Nβ)σβγ(X)CNγ

} , (3.14)

via (3.1), (3.2), (3.5), and (3.6).
In view of (3.12) and (3.14), we get:

Proposition 3.3 Let M be an n-dimensional submanifold of an (n+k)-dimensional poly-Norden Riemannian
manifold (M̃, Φ̃, g). In this case, the followings hold:

(∇X f)Y =

k∑
β=1

{
g(wY,Nβ)ANβ

X + hβ(X,Y )BNβ

}
,

k∑
β=1

g(wY,Nβ)∇⊥
X Nβ = w∇X Y +

k∑
β=1

 hβ(X,Y )CNβ

−hβ(X, fY )Nβ

−X (g(wY,Nβ))Nβ

 ,

∇X BU =

k∑
β=1


g(CU,Nβ)ANβ

X − g(U,Nβ) f(ANβ
X)

+X(g(U,Nβ))BNβ

+
∑k

γ=1 σβγ(X)g(U,Nβ)BNγ

 ,

k∑
β=1

g(CU,Nβ)∇⊥
X Nβ =

k∑
β=1


− [X(g(CU,Nβ)) + hβ(X,BU)] Nβ

−g(U,Nβ)w
(
ANβ

X
)

+X(g(U,Nβ))CNβ

+
∑k

γ=1 σβγ(X)g(U,Nβ)CNγ

 .

Let {N1, N2, ..., Nk} be an orthonormal basis of the normal space TM⊥ of an n -dimensional submanifold
M in an (n+k) -dimensional almost poly-Norden Riemannian manifold (M̃, Φ̃, g) . Then, for any X ∈ Γ(TM) ,
Φ̃X and Φ̃Nβ (1 ≤ β ≤ k) can be written respectively in the following forms:

Φ̃X = fX +

k∑
β=1

υβ(X)Nβ , (3.15)
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Φ̃Nβ = ζβ +

k∑
γ=1

θβγ Nγ , (3.16)

where f is a tensor field of type (1, 1) on M , which transforms tangent vector field X on M to the tangential
component of Φ̃X , while υβ are real 1 -forms and ζβ vector fields on M . Here, θβγ are differentiable real
valued functions on the submanifold M provided a k × k matrix denoted by (θβγ)1≤β,γ≤k .

Since g(Φ̃X,Nβ) = g(X, Φ̃Nβ) and g(Φ̃Nβ , Nγ) = g(Nβ , Φ̃Nγ) , then by using (2.3) and (3.3), we have:

Lemma 3.4 In a submanifold M of an almost poly-Norden Riemannian manifold (M̃, Φ̃, g), we have

υβ(X) = g(Φ̃X,Nβ) = g(X, ζβ), (3.17)

g(fX, fY ) = mg(X, fY )− g(X,Y )−
k∑

β=1

υβ(X)υβ(Y ), (3.18)

θβγ = θγβ , (3.19)

for all X,Y ∈ Γ(TM) where 1 ≤ β, γ ≤ k.

Proposition 3.5 Let M be an n-dimensional submanifold of an (n + k)-dimensional almost poly-Norden
Riemannian manifold (M̃, Φ̃, g) . Then there exists a structure (f, g, υβ , ζβ , (θβγ)k×k) on M induced by the

almost poly-Norden structure of M̃ , which satisfies

f2X = mfX −X −
k∑

β=1

υβ(X)ζβ , (3.20)

υβ(fX) = mυβ(X)−
k∑

γ=1

θβγυγ(X), (3.21)

υγ(ζβ) = mθβγ − δβγ −
k∑

λ=1

θβλθλγ , (3.22)

f ζβ = mζβ −
k∑

γ=1

θβγζγ , (3.23)

for all X ∈ Γ(TM).

Proof Applying Φ̃ to both sides of equation (3.15) and using (2.2), we have

mΦ̃X −X = Φ̃ (fX) +

k∑
β=1

υβ(X)Φ̃Nβ ,
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which implies

mfX +m

k∑
β=1

υβ(X)Nβ −X = f2X +

k∑
β=1

υβ(fX)Nβ

+

k∑
β=1

υβ(X)

(
ζβ +

k∑
γ=1

θβγ Nγ

)
.

If we equate the tangential and the normal parts of the last equation we obtain (3.20) and (3.21), respectively.
From (3.16) we write

g(Φ̃Nβ , Φ̃Nγ) = g(ζβ , ζγ) +

k∑
λ=1

θβλθγλ. (3.24)

Also, from (2.3), we have
g(Φ̃Nβ , Φ̃Nγ) = mθβγ − δβγ . (3.25)

Then, by using (3.19), (3.24), and (3.25) we obtain (3.22). Finally, taking X = ζβ in (3.21) gives (3.23) and we
complete the proof. 2

Proposition 3.6 Let M be an n-dimensional submanifold of an (n+k)-dimensional poly-Norden Riemannian
manifold (M̃, Φ̃, g) . Then the following equations hold:

f ANβ
X +∇X ζβ −

k∑
γ=1

θβγANγ
X −

k∑
γ=1

σβγ(X)ζγ = 0,

X(θβλ) + hλ(X, ζβ) + hβ(X, ζλ) +

k∑
γ=1

(θβγσγλ(X)− θγλσβγ(X)) = 0.

Proof From (3.5), (3.6), (3.15), and (3.16), we calculate

(∇̃X Φ̃)Nβ = ∇̃X Φ̃Nβ − Φ̃
(
∇̃X Nβ

)
= ∇̃X

(
ζβ +

k∑
γ=1

θβγ Nγ

)
− Φ̃

(
−ANβ

X +

k∑
γ=1

σβγ(X)Nγ

)

= ∇X ζβ +

k∑
γ=1

X(θβγ)Nγ +

k∑
γ=1

θβγ

(
−ANγ

X +

k∑
λ=1

σγλ(X)Nλ

)

+f ANβ
X + wANβ

X −
k∑

γ=1

σβγ(X)

(
ζγ +

k∑
λ=1

θγλ Nλ

)

= f ANβ
X +∇X ζβ −

k∑
γ=1

θβγANγ
X −

k∑
γ=1

σβγ(X)ζγ

+

k∑
γ=1

X(θβγ)Nγ +

k∑
γ,λ=1

θβγσγλ(X)Nλ + wANβ
X −

k∑
γ,λ=1

σβγ(X)θγλ Nλ.

38



YÜKSEL PERKTAŞ/Turk J Math

Since M̃ is a poly-Norden manifold, i.e. (∇̃X Φ̃)Nβ = 0 for all X ∈ Γ(TM) , then by equating the tangential
and the normal parts of the last equation above we complete the proof. 2

Theorem 3.7 Let M be an n-dimensional submanifold of an (n + k)-dimensional poly-Norden Riemannian
manifold (M̃, Φ̃, g) . If ζβ (1 ≤ β ≤ k) are linearly independent and f is parallel with respect to the Levi-Civita
connection on M , then M is totally geodesic.

Proof From the first equation given in Proposition 3.3, we can write

k∑
β=1

{
g(wY,Nβ)g(ANβ

X,Z) + hβ(X,Y )g(BNβ , Z)
}
= 0,

for all Z ∈ Γ(TM), which implies

k∑
β=1

υβ(Y )hβ(X,Z) = −
k∑

β=1

υβ(Z)hβ(X,Y ),

via (3.17). If we change the roles of X and Z in the last equation, we get

k∑
β=1

υβ(Y )hβ(X,Z) = −
k∑

β=1

υβ(X)hβ(Y, Z).

Hence,
∑k

β=1 υβ(Y )hβ(X,Z) is symmetric and also skew-symmetric in X, Y . Then we get

k∑
β=1

υβ(Y )hβ(X,Z) = 0,

which implies
k∑

β=1

g(Y, hβ(X,Z)BNβ) = 0.

Since BNβ = ζβ (1 ≤ β ≤ k) are linearly independent, we complete the proof. 2

3.1. Invariant submanifolds of almost poly-Norden Riemannian manifolds

Definition 3.8 Let M be a submanifold of an almost poly-Norden Riemannian manifold (M̃, Φ̃, g) . If
Φ̃ (TpM) ⊂ TpM for any point p ∈ M then M is called an invariant submanifold.

Assume that M is an n -dimensional invariant submanifold of an (n+k) -dimensional almost poly-Norden
Riemannian manifold (M̃, Φ̃, g). Then from (3.15) we have υβ = 0 (equivalently, ζβ = 0) for 1 ≤ β ≤ k. The
converse of the last statement also holds.
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Proposition 3.9 Let M be an n-dimensional invariant submanifold of an (n + k)-dimensional almost
poly-Norden Riemannian manifold (M̃, Φ̃, g) . Then the matrix Θ = (θβγ)k×k of the induced structure
(f, g, υβ , ζβ , (θβγ)k×k) is an almost poly-Norden matrix; that is,

Θ2 = mΘ− Ik,

where Ik denotes the unit matrix of order k .

Proof Since M is an n -dimensional invariant submanifold, then from (3.22) we have

k∑
λ=1

θβλθλγ = mθβγ − δβγ ,

for 1 ≤ β, γ ≤ k . If we denote the matrix (θβγ)k×k by Θ , we complete the proof. 2

Proposition 3.10 Let (f, g, υβ , ζβ , (θβγ)k×k) be the induced structure on an n-dimensional submanifold M

of an (n + k)-dimensional almost poly-Norden Riemannian manifold (M̃, Φ̃, g) . Then M is an invariant
submanifold if and only if the induced structure (f, g) on M is an almost poly-Norden Riemannian structure.

Proof Assume that M is an invariant submanifold. Since υβ = 0 (equivalently, ζβ = 0) for 1 ≤ β ≤ k , then
from (3.18) and (3.20), we see that

f2X = mfX −X,

g(fX, fY ) = mg(X, fY )− g(X,Y ),

for all X,Y ∈ Γ(TM) , which imply that (f, g) is an almost poly-Norden Riemannian structure on M.

Conversely, if (f, g) is an almost poly-Norden Riemannian structure on M , then from (3.20) we write

k∑
β=1

υβ(X)ζβ = 0,

for all X ∈ Γ(TM) , which shows
υβ(X) = 0.

Hence, M is an invariant submanifold. This completes the proof. 2

Example 3.11 Let R4 be the 4-dimensional real number space with a coordinate system (x1, x2, y1, y2) . We
define

Φ̃ : R4 → R4

(x1, x2, y1, y2) → Φ̃(x1, x2, y1, y2) = (Bmx1, Bmx2, (m−Bm) y1, (m−Bm) y2) ,

where Bm = m+
√
m2−4
2 . Then (R4, Φ̃) is an almost poly-Norden manifold [17]. If we consider the usual scalar

product ⟨, ⟩ on R4 , then we see that it is Φ̃-compatible and (R4, Φ̃, ⟨, ⟩) is an almost poly-Norden Riemannian
manifold.
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Now assume that M is a submanifold of (R4, Φ̃, ⟨, ⟩) defined by

x1 = x2, y1 = y2.

In this case Γ(TM) = Span {X,Y } , where

X1 = (1, 1, 0, 0), X2 = (0, 0, 1, 1).

It is easy to see that Φ̃X = BmX and Φ̃Y = (m−Bm)Y , which imply that M is an invariant submanifold of
(R4, Φ̃, ⟨, ⟩) .

3.2. Antiinvariant submanifolds of almost poly-Norden Riemannian manifolds

Definition 3.12 Let M be a submanifold of an almost poly-Norden Riemannian manifold (M̃, Φ̃, g) . If
Φ̃ (TpM) ⊂ (TpM)⊥ for any point p ∈ M then M is called an antiinvariant submanifold.

Assume that M is an n -dimensional antiinvariant submanifold of an (n + k) -dimensional almost poly-
Norden Riemannian manifold (M̃, Φ̃, g). In this case, from (3.15) and (3.16), for any X ∈ Γ(TM) , Φ̃X and
Φ̃Nβ (1 ≤ β ≤ k) can be written respectively in the following forms:

Φ̃X =

k∑
β=1

υβ(X)Nβ , (3.26)

Φ̃Nβ = ζβ +

k∑
γ=1

θβγ Nγ . (3.27)

As a consequence of Proposition 3.3, we have:

Proposition 3.13 Let M be an n-dimensional antiinvariant submanifold of an (n + k)-dimensional poly-
Norden Riemannian manifold (M̃, Φ̃, g). In this case, the followings hold:

k∑
β=1

g(Φ̃Y,Nβ)ANβ
X = −

k∑
β=1

hβ(X,Y )BNβ ,

k∑
β=1

g(Φ̃Y,Nβ)∇⊥
X Nβ = w∇X Y +

k∑
β=1

{
hβ(X,Y )CNβ

−X (g(wY,Nβ))Nβ

}
.

Proposition 3.14 Let M be an n-dimensional antiinvariant submanifold of an (n + k)-dimensional almost
poly-Norden Riemannian manifold (M̃, Φ̃, g) . Then there exists a structure (g, υβ , ζβ , (θβγ)k×k) on M induced
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by the almost poly- Norden structure of M̃ , which satisfies

X = −
k∑

β=1

υβ(X)ζβ ,

υβ(X) =
1

m

k∑
γ=1

θβγυγ(X),

υγ(ζβ) = mθβγ − δβγ −
k∑

λ=1

θβλθλγ ,

ζβ =
1

m

k∑
γ=1

θβγζγ , (3.28)

g(X,Y ) = −
k∑

β=1

υβ(X)υβ(Y ),

for all X,Y ∈ Γ(TM) . Moreover, if M̃ is a poly-Norden Riemannian manifold then we have

∇X ζβ =

k∑
γ=1

(θβγANγ
X + σβγ(X)ζγ)

X(θβλ) + hλ(X, ζβ) + hβ(X, ζλ) = −
k∑

γ=1

(θβγσγλ(X)− θγλσβγ(X)) .

4. Hypersurfaces of almost poly-Norden Riemannian manifolds

Suppose that M is a hypersurface in an (n+1) -dimensional almost poly-Norden Riemannian manifold (M̃, Φ̃, g).

In this case (3.15) and (3.16) can be written as follows:

Φ̃X = fX + υ(X)N, (4.1)

Φ̃N = ζ + θ N, (4.2)

where υ(X) = g(X, ζ) , for all X ∈ Γ(TM) .
From Lemma 3.4 and Proposition 3.5, we have:

Proposition 4.1 Let (f, g, υ, ζ, θ) be the induced structure on a hypersurface M of an almost poly-Norden
Riemannian manifold (M̃, Φ̃, g) . Then for any X,Y ∈ Γ(TM) we have

f2X = mfX −X − υ(X)ζ,

υ(fX) = (m− θ) υ(X),

υ(ζ) = θ (m− θ)− 1, (4.3)

f ζ = (m− θ) ζ,

g(fX, fY ) = mg(X, fY )− g(X,Y )− υ(X)υ(Y ).
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For a hypersurface M, the Gauss and Weingarten formulas are given by

∇̃X Y = ∇X Y + h(X,Y )N,

∇̃X N = −ANX,

for any X ∈ Γ(TM) and N ∈ Γ(TM⊥) , respectively.

If (M̃, Φ̃, g) is a poly-Norden Riemannian manifold, by using Proposition 3.3 we get the following:

Proposition 4.2 Let (f, g, υ, ζ, θ) be the induced structure on a hypersurface M of a poly-Norden Riemannian
manifold (M̃, Φ̃, g) . Then we have

(∇X f)Y = υ(Y )ANX + h(X,Y ) ζ, (4.4)

(∇X υ)Y = −h(X, fY ) + θh(X,Y ), (4.5)

X(θ) + 2h(X, ζ) = 0, (4.6)

f ANX +∇X ζ − θANX = 0. (4.7)

Corollary 4.3 Let (f, g, υ, ζ, θ) be the induced structure on a hypersurface M of a poly-Norden Riemannian
manifold (M̃, Φ̃, g) . Then we have

(∇X υ)Y = g(∇X ζ, Y ). (4.8)

Corollary 4.4 Let M be an invariant hypersurface of a poly-Norden Riemannian manifold (M̃, Φ̃, g) with the
induced structure (f, g, υ, ζ, θ) . Then f is parallel with respect to ∇ .

Theorem 4.5 A hypersurface M of an almost poly-Norden Riemannian manifold (M̃, Φ̃, g) is invariant if and
only if the normal vector of M is an eigenvector of Φ̃ with the eigenvalue θ .

Proof Assume that M is an invariant hypersurface in (M̃, Φ̃, g) . Then we have υ = 0 (or equivalently ζ = 0),
which implies Φ̃N = θ N, via (4.2).

Conversely, let the normal vector N of M be an eigenvector of Φ̃ with the eigenvalue θ . Hence, we get
ζ = 0 . This completes the proof. 2

Theorem 4.6 Let M be a hypersurface of an almost poly-Norden Riemannian manifold (M̃, Φ̃, g) with the
induced structure (f, g, υ, ζ, θ) . Then M is invariant if and only if either θ = m−Bm or θ = Bm.

Proof Since υ(ζ) = g(ζ, ζ) = θ (m− θ)− 1 , if M is an invariant hypersurface, then we have

θ2 −mθ + 1 = 0,

which implies either θ = m−
√
m2−4
2 or θ = m+

√
m2−4
2 . Conversely, if either θ = m− Bm or θ = Bm, then we

get υ(ζ) = g(ζ, ζ) = 0 . This completes the proof. 2
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Theorem 4.7 Let M be a noninvariant hypersurface of an almost poly-Norden Riemannian manifold (M̃, Φ̃, g)

with the induced structure (f, g, υ, ζ, θ) . Then the following are satisfied equivalently:

(i) M is totally geodesic,

(ii) f is parallel on M with respect to ∇,

(iii) ∇ζ = 0,

(iv) ∇υ = 0.

Proof Assume that M is totally geodesic. Then from Proposition 4.2, one can easily see that ∇f = 0 ,
∇ζ = 0 , and ∇υ = 0 .

Suppose that f is parallel on M with respect to ∇. Then by using (4.7) in Proposition 4.2, we write

−g(Y, ζ)ANX = g(ANX,Y ) ζ, (4.9)

which gives
g(ANX,Y )g(Y, ζ) = 0,

for all X,Y ∈ Γ(TM) . Putting Y = ζ in the last equation, since ζ is a nonnull vector, then we have

g(ANX, ζ) = 0.

If we put Y = ANX , in (4.9), we get g(ANX,ANX) = 0 , which implies ANX = 0 , for all X ∈ Γ(TM) . Thus,
we observe that M is totally geodesic. Also, from (4.5) and (4.7) we get ∇ζ = 0 and ∇υ = 0.

Next, let ∇ζ = 0. Using (4.7) we write

f ANX = θANX,

for all X ∈ Γ(TM). If we apply f to both sides of the last equation, we get

f 2ANX = θ2ANX. (4.10)

By using the first equation of (4.3) and (4.6) in (4.10), we obtain

(θ(m− θ)− 1)ANX = −1

2
X(θ)ζ. (4.11)

Since υ (ζ) = g(ζ, ζ) = θ(m− θ)− 1 on a noninvariant hypersurface, then (4.11) can be written as

ANX = − 1

2 ∥ζ∥2
X(θ)ζ. (4.12)

Applying f again to both sides of (4.12) and using Proposition 4.1, we have

(2θ −m)

(
1

2 ∥ζ∥2
X(θ)

)
ζ = 0,
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which implies that either X(θ) = 0 or 2θ = m . For both cases it is obvious that X(θ) = 0 , and from (4.12) we
conclude that ANX = 0, for any X ∈ Γ(TM) . If ANX = 0 , then (i), (ii), and (iv) also hold.

Finally, assume that ∇υ = 0. From (4.8) we see that ∇ζ = 0. If ζ is parallel on M , then it is obvious
from the above parts of the proof that M is totally geodesic and f is parallel. This completes the proof. 2

Let M be a totally umbilical hypersurface of a poly-Norden Riemannian manifold (M̃, Φ̃, g) endowed
with the induced structure (f, g, υ, ζ, θ) . Then from Proposition 4.2 we have

(∇X f)Y = a (g(X,Y )ζ + υ(Y )X) ,

(∇X υ)Y = −a (g(X, fY )− θg(X,Y )) ,

X(θ) = −2aν(X), (4.13)

∇X ζ = −a (fX − θX) ,

∇ζ ζ = −a(m− 2θ)ζ,

for all X,Y ∈ Γ(TM).

By using the definition of an invariant hypersurface and the fourth equation in (4.13) we get:

Theorem 4.8 Let M be a totally umbilical invariant hypersurface of a poly-Norden Riemannian manifold
(M̃, Φ̃, g) endowed with the induced structure (f, g, υ, ζ, θ) . Then f = θI, where θ is a constant function on
M satisfying either θ = m−Bm or θ = Bm .

Conversely, suppose that M is a hypersurface of a poly-Norden Riemannian manifold (M̃, Φ̃, g) such that
f = θI , where (f, g, υ, ζ, θ) is the induced structure on M . Then from (4.13) we can easily see that ∇X ζ = 0

for any X ∈ Γ(TM), which implies that M is invariant.
Hence, we get the following.

Theorem 4.9 Let M be a hypersurface of a poly-Norden Riemannian manifold (M̃, Φ̃, g) endowed with the
induced structure (f, g, υ, ζ, θ) . If f = θI , then either M is an invariant hypersurface with θ = m − Bm

or θ = Bm , or M is a noninvariant totally geodesic hypersurface of the poly-Norden Riemannian manifold
(M̃, Φ̃, g) .

Inspired from the examples constructed for the golden case [13] and the metallic case [3, 10, 14], we give
the following examples:

Example 4.10 Let R5 be the 5-dimensional real number space with a coordinate system (x1, x2, y1, y2, z) . We
define

Φ̃ : R5 → R5

(x1, x2, y1, y2, z) → (Bmx1, Bmx2, (m−Bm) y1, (m−Bm) y2, Bmz) ,

where Bm = m+
√
m2−4
2 . It is easy to see that (R5, Φ̃) is an almost poly-Norden manifold. Since the usual

product ⟨, ⟩ on R5 is Φ̃-compatible, then (R5, Φ̃, ⟨, ⟩) becomes an almost poly-Norden Riemannian manifold.
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Now suppose that M is a hypersurface of (R5, Φ̃, ⟨, ⟩) defined by

x1 = z.

The tangent bundle of the hypersurface is generated by {Ψ1,Ψ2,Ψ3,Ψ4} , where

Ψ1 = (1, 0, 0, 0, 1), Ψ2 = (0, 1, 0, 0, 0),

Ψ3 = (0, 0, 1, 0, 0), Ψ4 = (0, 0, 0, 1, 0).

It can be seen that Φ̃(Ψi) = BmΨi and Φ̃(Ψj) = (m − Bm)Ψj , i = 1, 2, j = 3, 4 , which imply that M is an
invariant hypersurface of (R5, Φ̃, ⟨, ⟩).

Example 4.11 Let Rn+k be the (n+k)-dimensional real number space with a coordinate system (x1, ..., xn, y1, ..., yk) .
We define

Φ̃(x1, ..., xn, y1, ..., yk) = (Bmx1, ..., Bmxn, (m−Bm) y1, ..., (m−Bm) yk),

where Bm = m+
√
m2−4
2 . Then it is easy to verify that Φ̃2 = mΦ̃ − I , where I is the identity operator; that

is, (Rn+k, Φ̃) is an almost poly-Norden manifold (see also [17]). Since the usual product ⟨, ⟩ on Rn+k is
Φ̃-compatible, then (Rn+k, Φ̃, ⟨, ⟩) is an almost poly-Norden Riemannian manifold.

Consider the hypersphere Sn+k−1(r) of Rn+k , which is defined by

Sn+k−1(r) = {(x1, ..., xn, y1, ..., yk) :

n∑
i=1

x2
i +

k∑
j=1

y2j = r21 + r22 = r2} ⊂ Rn+k.

The normal vector field of Sn+k−1(r) at any point (x1, ..., xn, y1, ..., yk) ∈ Sn+k−1(r) is given by

N =
1

r
(x1, ..., xn, y1, ..., yk).

Then there exists a tangent vector (X1, ..., Xn, Y1, ..., Yk) on Sn+k−1(r) for every point (x1, ..., xn, y1, ..., yk) ∈
Sn+k−1(r) if and only if

n∑
i=1

xiXi +

k∑
j=1

yjYj = 0. (4.14)

By using (4.1) and (4.2), we write

Φ̃ (Xi, Yj) = f (Xi, Yj) + υ (Xi, Yj)N, (4.15)

Φ̃N = ζ + θN, (4.16)

where (Xi, Yj) = (X1, ..., Xn, Y1, ..., Yk) ∈ T(x1,...,xn,y1,...,yk)S
n+k−1(r). Since

Φ̃N =
1

r
(Bmx1, ..., Bmxn, (m−Bm) y1, ..., (m−Bm) yk)
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and θ =
⟨
Φ̃N,N

⟩
, then we calculate

θ =
1

r2
(Bmr21 + (m−Bm)r22). (4.17)

By using ζ = Φ̃N − θN and the last equation above we get

ζ =
2Bm −m

r3
(r21x1, ..., r

2
1xn,−r22y1, ...,−r22yk), (4.18)

which implies

υ (Xi, Yj) = ⟨(Xi, Yj), ζ⟩ (4.19)

=
2Bm −m

r3

r21

(
n∑

i=1

xiXi

)
− r22

 k∑
j=1

yjYj

 .

From (4.14), if we put
∑n

i=1 xiXi = −
∑k

j=1 yjYj = s, (4.19) can be written as

υ (Xi, Yj) =
2Bm −m

r
s. (4.20)

Furthermore, by using (4.15) and (4.20) we have

f (Xi, Yj) =

(
BmXi −

2Bm −m

r2
sxi, (m−Bm)Yj −

2Bm −m

r2
syj

)
. (4.21)

Hence, Sn+k−1(r) is a noninvariant hypersurface of the almost poly-Norden Riemannian manifold (Rn+k, Φ̃, ⟨, ⟩)
endowed with the induced structure (f, ⟨, ⟩ , υ, ζ, θ) given by (4.17)–(4.21).

Example 4.12 Consider that R2n+k is the (2n+ k)-dimensional real number space with a coordinate system
(x1, ..., xn, y1, ..., yn, z1, ..., zk) . We denote

(x1, ..., xn, y1, ..., yn, z1, ..., zk) = (xi, yi, zj),

where i ∈ {1, ..., n} , j ∈ {1, ..., k} , and we define

Φ̃(xi, yi, zj) =

(
m

2
xi +

√
m2 − 4

2
yi,

m

2
yi +

√
m2 − 4

2
xi, Bmzj

)
,

where Bm = m+
√
m2−4
2 . One can easily see that (2.2) is satisfied and the scalar product ⟨, ⟩ on R2n+k is

Φ̃-compatible. Then (R2n+k, Φ̃, ⟨, ⟩) is an almost poly-Norden Riemannian manifold. Let S2n+k−1(r) be the
hypersphere of R2n+k , which is defined by

S2n+k−1(r) = {(xi, yi, zj) :

n∑
i=1

(x2
i + y2i ) +

k∑
j=1

z2j = r21 + r22 + r23 = r2} ⊂ R2n+k.
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In this case, the normal vector field of S2n+k−1(r) for any point (xi, yi, zj) ∈ S2n+k−1(r) is given by

N =
1

r
(xi, yi, zj).

A vector field (X1, ..., Xn, Y1, ..., Yn, Z1, ..., Zk) on S2n+k−1(r) at each point (xi, yi, zj) ∈ Sn+k−1(r) will be
denoted by (Xi, Yi, Zj) . Since X⊥N , then we have

n∑
i=1

(xiXi + yiYi) +

k∑
j=1

zjZj = 0. (4.22)

Applying Φ̃ to N , we get

Φ̃N =
1

r

(
m

2
xi +

√
m2 − 4

2
yi,

m

2
yi +

√
m2 − 4

2
xi, Bmzj

)
.

By using θ =
⟨
Φ̃N,N

⟩
, we obtain

θ =
1

r2

(
m

2
(r21 + r22) +

√
m2 − 4

n∑
i=1

xiyi +Bmr23

)
.

From (4.2) and (4.1), we obtain

ζ =
1

r

((m
2

− θ
)
xi +

√
m2 − 4

2
yi,
(m
2

− θ
)
yi +

√
m2 − 4

2
xi, (Bm − θ)zj

)
,

and

υ (Xi, Yi, Zj) =

√
m2 − 4

2r

 n∑
i=1

(xiYi + yiXi) +

k∑
j=1

zjZj

 .

Moreover, we calculate

f (Xi, Yi, Zj) =

 m
2 Xi +

√
m2−4
2 Yi − 1

rυ (Xi, Yi, Zj)xi,
m
2 Yi +

√
m2−4
2 Xi − 1

rυ (Xi, Yi, Zj) yi,
BmZj − 1

rυ (Xi, Yi, Zj) zj

 .

Hence, S2n+k−1(r) is a noninvariant hypersurface of the almost poly-Norden Riemannian manifold (R2n+k, Φ̃, ⟨, ⟩)
endowed with the induced structure (f, ⟨, ⟩ , υ, ζ, θ) given above.
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