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1. Introduction

The homotopy theory of categorical structures is nowadays a relevant part of the machinery in algebraic topology
and algebraic K -theory. To briefly refer to the historical background in which this paper fits, let us recall that
Thomason [27] proved that the classifying space functor from the small categories to spaces, & +— B,
establishes an equivalence of model categories and therefore induces an equivalence between the corresponding
homotopy categories. When a small category & is equipped with a symmetric monoidal structure, then the
group completion of its classifying space B« is an infinite loop space. More precisely, thanks to its symmetric
monoidal structure, the category &/ has associated a connective spectrum

Spte/ = (Sptn,;zf, J:Spt,, o ~ QSpth,ﬁzf)

n>0’

endowed with a group completion map j : B&/ — QSpt,«/, which is usually called the algebraic K -theory
of the symmetric monoidal category .«/. The following are relevant examples: The spectrum associated to a
skeleton of the category of finitely generated projective modules and isomorphisms over a unitary ring, under
direct sum, is Quillen’s algebraic K -theory of the ring. The spectrum associated to an abelian group regarded
as a discrete symmetric monoidal category is its Eilenberg—MacLane spectrum. The spectrum associated to
a skeleton of the category of finite sets and isomorphisms, under disjoint union, is isomorphic to the sphere
spectrum in the stable homotopy category.

There are several constructions of an algebraic K -theory functor Spt : o/ +— Spt«/, from the category
of symmetric monoidal small categories to the category of connective spectra, satisfying that the Oth space of
Spte? is the group completion of the classifying space B/, for any symmetric monoidal category &7. These
constructions are known as infinite loop space machines. For instance, we have those of Segal [22], May [17, 18],
or Thomason [26], but in fact all of them are shown to be naturally equivalent when they are considered in
the stable homotopy category of connective spectra [18, 19, 28]. Nevertheless, there is a problem with the

spaces Spt,, &7 since their construction, by means of any known infinite loop space machine, produces huge
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CW-complexes having many cells with little apparent intuitive connection with the data of the symmetric
monoidal category. This leads one to search for any smaller simplicial sets that geometrically realize the spaces
Spt,,«/ and whose cells give a logical meaning to the data of the symmetric monoidal category. In this paper
we provide an Eilenberg—MacLane-style response for n = 0, 1,2, which, summarizing, is as follows.

With the “guiding delooping hypotheses of higher category theory” in mind, for each positive integer
n < 3, we associate to a symmetric monoidal category &/ a weak (n + 1)-category with only one i-cell for
i < n and whose hom-category of endomorphisms of its (n — 1)-cell is &/. This is denoted by X"« and
called the nth suspension of the symmetric monoidal category /. Then, following Street [24], for each positive
integer n < 4, we introduce (nonabelian, normalized) n-cocycles of a small category C with coefficients in
a symmetric monoidal category .7 to be normalized lax functors C' — X" "1/, from the category C to the
(n — 1)-suspension n-category L" 1o/ .

Thereafter, for 1 <n < 4, we define pointed simplicial sets
K(o/,n): A°? — Set., [p] = Z™([p], &),

whose p-simplices are the m-cocycles, with coefficients in o7, of the category defined by the ordered set
[p]={0<--- <p}.

The more striking instance is for &/ the one-object symmetric monoidal category whose morphisms are
the elements of an abelian group A since, in this case, K (<, n) = K(A,n) is just the nth Eilenberg—MacLane
minimal complex defined by the abelian group. For arbitrary symmetric monoidal categories <7, these simplicial
sets K (&7, n) have the desired size, properties and geometrical realizations, as we elucidate in the paper. Thus,
for example, K(47,n) is a (n + 1)-coskeletal simplicial set. It has only one m-simplex for m < n — 1. Its

(n — 1)-simplices are the objects a of &/ and its n-simplices are morphisms of & of the form

a; — agp, if n=1,
a1 — ag + asg, if n=2,
az + a1 — ag + as, if n=23,

a3 +ay — ag +ag +aq, if n=4,

with the object a; as corresponding i-face, for 0 <1i < n.

For n = 1, we have that K(«7,1) is = Ner«, the ordinary nerve of the underlying category, and its
geometric realization |K(«7,1)| is B4/, the classifying space of the category. For n = 2,3, 4, there are natural
homotopy equivalences

|K (<7 ,n)| ~ Spt,,_o(<).

It is worth pointing out that, for now, we are not able to establish a similar description of spaces Spt,, (/)
for n>3. This is because the constructions and arguments we use in this paper for the cocycle description of
Spt,, (&) need of combinatorial notions and facts concerning weak (n+ 2)-categories and, to go further with n,
we are faced with the obstacle that finding an explicit combinatorial definition of weak m-categories for m>5,
as far as we know, is an ongoing research topic.

The plan of the paper, briefly, is as follows. After this introductory first section, the rest is organized in
four sections. We dedicate the second section to the notion of n-cocycle of a small category with coefficients
in a symmetric monoidal category, for 1 < n < 4. In the third section we describe the simplicial sets K (<7, n)

associated to a symmetric monoidal category &7, define the suspension maps S : XK («/,n) - K(o/,n+ 1),
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and state the main result of the paper, namely, Theorem 3.2, whose proof we give in the fifth section, after a
preparatory fourth section, where we show the weak (n — 1)-categories that the n-cocycles form.

For simplicity, we have written the paper in terms of permutative categories, that is, symmetric strict
monoidal categories. For our purposes, there is no real loss of generality in dealing with permutative categories,

as every symmetric monoidal category is monoidally equivalent to a permutative one by Isbell’s theorem [14].

2. Cocycles

Throughout this paper, o/ = (<, +,0,C) denotes a (small) permutative category, that is, a small category &/
with a functor + : & X &/ — &/ and an object 0 € Ob/ such that

a+(b+c)=(a+b)+¢c and O4+a=a=a+0

naturally for objects a,b,c € ObZ, together with a natural family of isomorphisms
c=cCygp:a+b—=>b+a

such that the diagrams below commute.

a+0-—>0+4a a+b*1>a+b a+b+c——sc+a+b

H 1 H c\«a/: 14& /c:-l

a——>a at+c+b

Symmetric monoidal categories are closely related to higher categories, see the studies by Cheng and
Gurski [6-8] on the hypothesized Periodic Table of n-categories by Baez and Dolan [1]. In particular, a
permutative category 7 gives rise to a one-object (strict) 2-category, denoted by .o, whose hom-category
is the underlying category to the permutative category. This is usually called the “suspension” or “delooping”
2-category of the underlaying category &7 defined by its monoidal structure, see Kapranov and Voevodsky [16]
or Street [25] for the terminology. Going higher, thanks to its symmetric monoidal structure, o/ also produces
an one-object one-1-cell (semistrict, aka Gray-category) 3-category [11, 12], denoted by Y2/ and called its
“double suspension”, whose hom 2-category is the suspension 2-category .7, as well as an one-object one-
1-cell one-2-cell (semistrict) 4-category [13]*, denoted by ¥3&/ and called its “triple suspension”, whose hom
3-category is the double suspension 3-category %247 .

Next, following Street [24], we introduce (nonabelian, normalized) n-cocycles of a small category C with

coefficients in a permutative category <7, for n < 4.

Definition 2.1 For 1 <n <4, an n-cocycle of a small category C with coefficients in a permutative &7 is a
unitary laz functor from C to X" Lo/, Let Z"(C, o) denote the set of such n-cocycles.

We unpack below the definition of n-cocycle.

& A 1-cocycle F = (F, f) € Z'(C, <) is a functor from C to the underlaying category .27, so it consists
of

e objects f(c) of &7, one for each object ¢ of C,

*See also the unpublished paper by T. Trimble: Notes on tetracategories 2006. Available at: math. ucr.
edu/home/baez/trimble/tetracategories. html.
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e morphisms F(o): f(co) = f(c1), one for each morphism o : ¢y — ¢; of C,
such that
e for any object c of C', F(1.) = 1y,
e for any two composable morphisms co 7 ¢; B ¢o in O,  F(0201) = F(02)F(01).

The set Z1(C, /) is pointed by the zero 1-cocycle 0 = (1g,0), which is defined by 0(c) = 0, for any
object ¢ of C', and 1g(o) = 1, for any morphism o of C.
¢ A 2-cocycle G = (G, g) € Z*(C, o) consists of

e objects g(o) of o7, one for each morphism ¢y % ¢; of C,

e morphisms G(o1,02) : g(o201) = g(02)+g(o1), one for each pair of composable morphisms cg 2% ¢; 2% ¢,
such that

e for any object ¢ of C', ¢(1.) =0,
e for any morphism ¢y > ¢; of C, G(1,0) = lyoy = G(o,1),
e for any three composable morphisms co 2 ¢; 3 ¢ 3 ¢5 of C, the diagram below commutes.

G(o’ga’l,ag)

g(030201) g(o3) + g(o201)

G(01,0‘30'2)\L J/1+G(01,G’2)

G(02,03)+1
—_—

g(o302) + g(o1) g(o3) + g(o2) + g(o1)

The set Z2(C, <7) is pointed by the zero 2-cocycle 0 = (1¢,0), which is defined by 0(c) = 0, for any morphism
o of C,and 1¢(o1,02) = 1g, for any pair of composable morphisms of C'.
¢ A 3-cocycle H = (H,h) € Z3(C, o) consists of

e objects h(o1,02) of &7, one for each two composable morphisms ¢y ey Boey of C

e morphisms H(o1,09,03) : h(o1,02)+h(0201,03) = h(o2,03)+h(01,0302), one for each three composable

morphisms co 2 ¢; B ¢ B e3 of O,
satisfying
e for any morphism ¢y % ¢; of C, h(l,0) =0 = h(o,1),
e for any pair of composable morphisms cq 2 ¢; 33 ¢y of C,

H(Ulaa27 ]-) = H(1a0—130—2) = H<017 1702) = ]-h(al,og)a
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e for any four composable morphisms ¢y =5 ¢; B3 ca 3 ¢35 B ¢4 of C, the following diagram commutes.

1+H(0201,03,04)

h(o1,02) + h(o201,03) + h(o30201, 04) h(o1,02) + h(os,04) + h(o201,0403)
H(o’l,oz,o'g)-&-ll lC-&—l
h(oz,03) + h(o1,0302) + h(o30201,04) h(os,04) + h(o1,02) + h(o201,0403)

1+H(0’17U30'270'4)\L l1+H(0‘1y0’270’403)

H(02,03,0'4)+1

h(o2,03) + h(0302,04) + h(o1,040302) h(os,04) + h(02,0403) + h(o1,040302)

The set Z3(C, /) is pointed by the zero 3-cocycle 0 = (1p,0) which is defined by 0(co1,02) = 0, for any pair
of composable morphisms in C, and 1¢(o1,02,03) = 1o, for any triplet of composable arrows.
¢ A 4d-cocycle T = (T,t) € Z*(C, /) consists of
e objects t(oq,02,03) of o, one for each triplet of morphisms co =5 ¢; 33 ¢3 22 ¢3 in C,
e morphisms of &

T(01,02,03,04)

t(o1,02,0403) + t(0201,03,04) t(02,03,04) + t(01,0302,04) + t(01,02,03) ,

one for each four composable morphisms cg By By Bz By of C ,
such that
e for any two composable morphisms co =5 ¢; 3 ¢y in C,

t(la 01702) =0= t(017 17U2> = t(0-170-2a 1)7
e for any three composable morphisms co 25 ¢; B3 ¢ B ¢5 in C,

T(1701502703) = 1t(a'1,0'2,0'3) = T(Uh 1702703) = T<01702a 1703) = T(Ula02a037 1)7

e for any five morphisms cog 2 ¢1 B s B s B ey B ¢5 in C, the diagram below commutes.

1+T(0201,03,04,05) C+1 14+T(01,02,0403,05)+1

Ay Az Az Ay
T(01702,03,0504)+1\L
A/l 1+T(01,02,03,04)
1+c¢
14+T(01,0302,04,05)+1 T(02,03,04,05)+1 1+C+1
A A A As

= t(01,02,050403) + t(0201,03,0504) + t(030201,04,05),

t(o1,02,050403) + t(03,04,05) + t(0201,0403,05) + t(0201,03,04),

02,0403,05) + t(01,040302,05) + t(01,02,0403) + t(0201,03,04),

( )
( )
t(o3,04,05) + t(o1,09,0403,05) + t(0201,0403,05) + t(o201,03,04),
t(os,04,05) + t(
( t(

t(03,04,05) + t(o2,0403,05) + t(01,0403092,05) + t(02,03,04) + t(01,0302,04) + t(01,02,03),
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Al = t(02,03,0504) + t(01,0302,0504) + t(01,02,03) + t(0302071,04,05),

Al = t(og,03,0504) + t(01,0302,0504) + t(030201,04,05) + t(o1,02,03),

Al = t(0g,03,0504) + t(0302,04,05) + t(01,040302,05) + t(01,0302,04) + t(01,02,03),

Al = t(03,04,05) + t(02,0403,05) + t(02,03,04) + t(01,040302,05) + t(o1,0302,04) + t(o1,02,03).

The set Z*(C, <7) is pointed by the zero 4-cocycle 0 = (19, 0) defined by 0(c1,02,03) = 0, for any three

composable morphisms in C, and 1g(01,02,03,04) = 1g, for any four composable arrows in C'.

Example 2.2 Let YA denote the one-object permutative category whose morphisms are the elements of an
abelian group A and where both composition and addition are given by the addition in A. Then, for any
small category C' and 1 <n <4, Z"(C,XA) = Z™(C, A) is the usual set of normalized n-cocycles of C' with

coefficients in the abelian group A.

3. The simplicial sets K(<7,n)

Hereafter, we regard the ordered sets [p] = {0,1,...,p} of the simplicial category A as categories with only
one morphism ¢ — j whenever ¢ < j, so that a weakly order-preserving map « : [p] — [¢] in A is the same as
functor, which we usually identify with the list («(0),...,a(p)). Thus, a p-simplex of the simplicial standard
g-simplex Alg] = A(—,]g]) is also the same as a list of integers (9,41, ,4p) With 0 < ig < --- < ¢, < q.
The geometric realization |A[g]| = A? is the oriented topological standard ¢-simplex, whose vertices we denote
simply by 0,1,...,q, and whose oriented p-face with vertices iy, ...,i,, where 0 <ip < --- <1, < g, we denote
by (i0,%1,--- ,ip). The generating codegeneracy and coface maps in the simplicial category A are denoted, for
0<m<p,by

L R I 1 A KL FFRR T

If X :A° — Sets is a simplicial set, its degeneracy and face maps X (s™) and X (d™) are denoted as
usually by s,, and d,,, respectively.

For any given permutative category 7 and each integer n, with 1 < n < 4, the assignment C' —
Z™(C, ) that carries each small category C' to the pointed set of n-cocycles of C' in 7, is clearly functorial

on the category C', so we can define the pointed simplicial sets

K(o/,n) : A’ — Set,, lq] = Z"([q], ).

Example 3.1 Let ¥ A be the permutative category defined by an abelian group A, as in Example 2.2. Then,
for 1 <n<4, K(XA,n) = K(A,n) is the nth Eilenberg-MacLane minimal complex.

These simplicial sets K (<, n) have the following pleasing geometric descriptions and properties.
¢ K(o/,1) is just Ners/, the ordinary nerve of the underlying category, here pointed by 0, the zero

object of «7. Hence, its geometric realization
|K(c/,1)| = B

is the usual classifying space of the underlying category [21, 22]. This is a 2-coskeletal simplicial set, whose

g-simplices F' = (F, f) are geometrically represented as the 1-skeleton of an oriented standard g-simplex A9,
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with an object f(ip) of & placed on each ig-vertex, 0 < iy < ¢, and a morphism of &7

F(io,i1)

[(io) fli),

placed on each 1-face (ip,i1), 0 < ip < 41 < ¢, with the 1-cocycle requirement that every 2-face triangle
commutes, that is, F(i1,i2) F(ig,i1) = F(ig,12), for every 0 < iy < i; < iy <gq.
¢ K(47,2) is the geometric nerve of the suspension 2-category Yo7, see [2, 9, 25]. It is a 3-coskeletal

reduced (one vertex) simplicial set, whose g-simplices G = (G, g) are geometrically represented as the 2-skeleton
of the oriented standard g-simplex with an object ¢(ip,%1) of &7 placed on each 1-face (ig,i1), 0 <ig < i; <gq,

. glioyi1) .

g o=
and a morphism of &/

G(io,i1,i2)

g(i07i2) —— g(i177;2) + g(i07i1)

placed on the inside of each 2-face (ig,1,12), 0 <ip < i1 < iz <gq,

o
glioyin) "
i £ Gigyi1,2) g(io,iz) (see Street’s 2nd oriental [24])
g(in,ia) ;\l
12,

with the 2-cocycle requirement that every 3-face tetrahedron is commutative, that is, for any 0 < ig < 43 <

19 < i3 < q, the following diagram in &/ commutes

G(io,i2,i3)

g(io, i3) gli2,13) + g(io, i2)

G(ioyil,is)l ll“l’G(iOvilaiQ)

o o Glinizig)+l v o
g, is) + g(io, i1) —————> g(iz, i3) + (i, i2) + g(io, 1)

¢ K(o7,3) is the geometric nerve of the double suspension 3-category %247, see [4, 5]. This is a 4-coskeletal
1-reduced (only one 1-simplex) simplicial set, whose g-simplices H = (H, h) are geometrically represented as
the 3-skeleton of the oriented standard g-simplex AY, with an object h(ig,%1,i2) of & placed on each 2-face
(i0,11,12), 0 < < iy <iz < g,

- io,
i ‘ ﬁ(iml,iz):x’
12
and a morphism of 7

H (i0,i1,12,i3)

h(io,91,42) + h(io, i2,%3) h(iy,i2,43) + h(ig,i1,1%3)
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placed inside of each 3-face (ig,i1,42,13), 0 < ip < i1 < ia < i3 < ¢, (see Street’s third oriental [24]),

1o g

. . h(ioin,i3)

. /;h(‘ i ia) :h(' . ){~ H (i0,i1,92,i3) . F .

1 10,81,82) 7 h(20,92,93) 13 e ] D
1 V18 1 Zhs

' B h(iy,iziz) 7

12 12

with the 3-cocycle requirement that every 4-face is commutative. That is, the following diagram in .&/' commutes,

fOI"al'lyO§i0<i1<i2<i3<i4§q.

L. L. 1+ H (i0,92,13,14)
h(io,i1,i2) 4 hio, iz, i3) + h(io, iz, iq) ——— s

h(ig,i1,%2) + h(i1, 42,43, 14) + h(ig, 2, 14)
H(io,il,ig,ig)—&-li J{c+1
h(iy,i2,43) + h(ig,i1,43) + h(ig,i3,%4) h(iz,is,14) + h(io, i1,42) + h(io, i2,%4)

1+H(i0,i1,i37i4)i J/1+H(i07i1)i2;i4)

H(i1,i2,i3,54)+1
- - s

h(i1,d2,13) + h(i1, i3, 14) + h(lo, 1, 44) h(iz,is,14) + h(i1,d2,44) + h(do, 1, %4)

¢ K(o,4) is a b-coskeletal 2-reduced (i.e, with only one 2-simplex) simplicial set, whose ¢-simplices
T = (T,t) are geometrically represented as the 4-skeleton of the oriented standard g¢-simplex, with an object

t(ig,41,12,13) of &7 placed inside each 3-face (ig,i1,142,73) of A

) g
i1 Y ~ QAo Gy e > g

o i
and a morphism of &/

T (i0,1,12,13,i4)

t(io,ilviQa 7’4) + t(io,i27i3; 24) t(i17i27i37i4) + t(i07ilai37i4) + t(i07ilai27i3)
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placed on the inside of each oriented 4-face (ig,i1,12,43,%4), 0 < ip < i1 < ig < i3 < i4 < g,

o K KO
N t(iosiz,izia) . & BN t(ioyityin,ia) . £ Ny
11 : Tg e g Tg e ey

4y i AN : 4 :
tg >3 Tg ~o> 13 Tg >3
t(i0,i1,in,03) . T(io,il,iz,is,u)l S
ViO , ViO , < t(d1,2,13,04)
v N t(i0,01,i3,04) e B
i1 . - Ty e T oo gy
h) A Al el
Tg > 13 Tg > 43

(see Street’s fourth oriental [24])

with the 4-cocycle requirement that every 5-face is commutative, that is, the diagram in &/ below commutes

fOI‘al'lyO§i0<i1<i2<i3<i4<i5§q.

1+T(i0,i27i37i4,i5) C+1 1+T(i0,i1,i2,i4,i5)+1

Aq As As Ay
T(io,il,iz,ig,is)—o—li
A 14T (i0,i1,i2,03,04)
)
A, 14T (ig i1 yis i is)+1 m T (i1 ,i,i3,i4,05)+1 A, 1+c+1A5
A1 = t(io, 11, 92,15) + t(io, i2, 13, 15) + t(i0, i3, 14, 15),
As = t(ig,i1,%2,15) + t(in, i3, 14,15) + t(i, 92,14, 15) + t(ig, i2, 13, %4),
Az = t(ia,i3,94,15) + t(ig, 91,12, 15) + t(io, 92,14, 15) + t(ig, i2, 13, 4),
Ay = t(ia,i3,84,15) + t(i1,12,14,15) + t(io, 91,04, 5) + t(io, i1, 12, 14) + t(i0, i2, 93, 14),
As = t(ia, i3, 94,15) + t(i1, 12,14, 15) + t(i0, 91,04, 15) + t(i1, 42,13, 4) + t(i0, 11,13, 24) + t(d0, 01, 92, 13),
Al = t(i1, 12,13, 15) + t(i0, 41,13, 5) + (30, i1, 2, 13) + t(i0, 3, 94, 15)
Al = t(i1, 2,13, 15) + t(io, 41,13, 5) + (40, i3, 14, i5) + t(ig, i1, 92, 13),
Al = t(iq, 2,13, 15) + t(i1, i3, 11, i5) + t(i0, i1, 14, i5) + t(i0, i1, 13, %4) + t(d0, i1, 42, %3),
Al = t(ia, i3, 14,15) + t(i1, 42,14, 15) + t(i1, 42,3, 44) + t(io, i1, 44, i5) + t(i0, 41,13, 14) + t(0, 11, I2,%3) .

3.1. Suspensions

For each n = 1,2, 3, there are suspension pointed maps
S:z2"(lal, o) = 2" (lg + 1], ) (¢ >0),

carrying g-simplices of K(&7,n) to (¢ + 1)-simplices de K (<, n + 1), which are defined as follows:
¢ If F=(F f)e Z'([q],o), then its suspension SF = (SF,Sf) € Z?([q + 1], /) is given by

flio) ifir=q+1,
0 ifip <q+1,

F(io,il) if i3 = q+ 1,

(Sf)(io,in) = { 1o if iy < q+1.

(SF)(io, 11, %2) :{
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¢ 1f G = (G, g) € Z%(lq), o), then SG = (SG, Sg) € Z3([q+ 1], o) is defined by

Glio,i1,12) ifiz=q+1,
1 if iy < g+ 1.

g(io,i1) ifip =q+1,

Sqg)(ig,i1,12) =
(S9)(io, i1,142) {O ifiy<q+1,

(SG)(i(),’il,i27i3) = {

¢ If H=(H,h) e Z3([q), &), then SH = (SH, Sh) € Z*([q + 1], ) is given by

h(io,i1,12) if iz =q+1,

Sh)(io, i1, s, i3) =
(Sh)(io, 1,42, 15) {0 ifis < g1,

H(io,il,ing) if iy = q+1,

SH)(ig, i1, iz, i3,i4) =
(SH)(io, i1, iz, i3, 14) {10 if iy < g+ 1.

For any ¢ > 0, the suspension maps (3.1) satisfy the following simplicial equalities

dq+1S = 0
d;S = Sd;, for 0<j<q,
5;8 = Ss;, for 0<5<q

Hence, they define natural simplicial maps
S:YK(o,n)— Ko ,n+1)

one for each n = 1,2,3, from the Kan-suspension [15] of K(%7,n) to K(&/,n + 1). By composing the
induced map on geometric realizations S : |XK(&/,n)| — |K(</,n + 1)| with the natural homeomorphism
Y|K(o/,n)| 2 |XK(,n)|, between the ordinary (reduced) suspension of the geometric realization of K (<7, n)

and the geometric realization of its Kan-suspension [15, Proposition 2.3], we get an induced natural map
S:Y|K(o,n)| = |K(«,n+1)|. Let

7K (e ,n)| — QK (o ,n+1)| (3.2)

denote its adjoint map. The following is the main result in this paper, whose proof is given in the subsequent

Section 5.

Theorem 3.2 For n = 2,3, the map 3 in (3.2) is a homotopy equivalence; thus,
|K(«,2)| ~ QK (<, 3)|
|K(,3)| ~ QK (o7, 4)],

while 3 : |[K(o,1)| = QK (,2)| is a group completion map, that is, it induces isomorphism on homology after
inverting the action of the monoid my of components of |K(«/,1)| = B/,

(mo) T HL(|K (o7, 1)]) = H.(QUK (7, 2))).
Therefore, there are natural homotopy equivalences

|K(4,2)] =~ Spto(«), |K(#,3)| ~Spta(&), [K(o,4)| =~ Spta().
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4. The (n — 1)-categories of n-cocycles

This auxiliary section prepares for the proof of Theorem 3.2 we give in the next section. Here we mainly show
that, for any permutative category o/, any small category C, and each integer n = 2,3,4, the n-cocycles of
C with coefficients in & are the objects of a (n — 1)-category.

* Z1(C, ) is a monoid, where the addition F + F' = (F + F', f + f') of two 1-cocycles F' and F” is
the 1-cocycle given by (f + f')(c) = f(c) + f'(c), for any object ¢ of C, and (F + F')(c) = F(o) + F'(0), for

any morphism o of C.

* Z%(C,a) is the set of objects of a category, denoted by Z2(C, <), where

¢ a morphism F : G — G’ is a relative lax transformation, which consists of
e morphisms F (o) : g(o) — ¢'(0) in &7, one for each morphism ¢y % ¢; of C,
such that

e for any object ¢ of C', F(1.) = 1¢,

e for any two composable morphisms co 25 ¢; 33 ¢y in C, the diagram below commutes.

G(o1,02)
g(o201) s g(02) + g(on)
F(G’QO’l)\L J/F(UQ)'FF(UI)
/ G'(01,02) ’ ’
g'(o201) g'(o2) +g'(01)

the composition of two morphisms F : G — G’ and F’ : G’ — G" is the morphism F'F : G — G" given by
(F'F)(o) = F'(0) F(0), for any morphism o of C'. The identity of a 2-cocycle G is the morphism denoted by
1y : G — G which is given by 14(0) = 14, for each morphism o : cg — ¢; of C.

Let us stress the identification of monoids
Endz: (¢, (0) = Z'(C, £ End,(0)), 05 0= (F0),

where 3 End (0) is the one-object permutative category defined by the commutative monoid of endomorphisms

of the zero object in 7.

* Z3(C, ) is the set of objects of a (strict) 2-category, denoted by Z3(C,.o7), where

¢ al-cell G=(G,g): H— H' is a relative lax transformation, which consists of

e objects g(o) of &, one for each morphism cy = ¢; of C,

e morphisms G(o1,02) : h(o1,02) + g(o201) — g(o2) + g(o1) + h/(01,02), one for each two composable

morphisms ¢y =5 ¢; 33 ¢y of C,
such that

e for any object ¢ of C', g¢g(1.) =0,
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e for any morphism ¢y > ¢; of C, G(1,0) = lyoy = G(o,1),
e for any three composable morphisms co 2 ¢1 33 ¢o 23 ¢5 of C, the diagram below commutes.

14+G(0201,03)

h(c1,02) + h(oa01,03) + g(030201) h(o1,02) + g(o3) + g(o201) + W/ (0201, 03)

H(01,02,03)+1 C+1
h(og,03) + h(o1,0302) + g(o302,01) g(o3) + h(o1,02) + g(o201) + W' (0201, 03)
1+G(o1,0502) 14+G(01,00)+1
h(oa,03) + g(o302) + g(o1) + W' (01, 0302) g(os)+g(o2)+g(o1)+h (01,02)+h (0201, 03)
G(o2,03)+1 1+H'(01,02,03)

14+C+1
9(03)+9(02) + 1 (09, 33) +g(01) + 1 (01, 7302) > g(03)+g(02) +9(01) + 1 (09, 03) + 1 (01, 7302)

G
T
¢ a2-cell H F H’ is a relative modification, which consists of
~—T

G/
e morphisms F(c) : g(o) — ¢'(0) of &7, one for each morphism ¢y % ¢; of C,
such that
e for any object ¢ of C', F(1.) = 1o,

e for any two composable morphisms ¢y = ¢; 3 ¢y in C, the diagram below commutes.

G(o1,02)
T2 s g(o2) + glon) + W (o1, 09)

\LF(O’Q)-‘rF(O’])-‘rl

h(o1,02) + g(o201)

1+F(020'1)\L

G'(01,02)
h(o1,02) + g (0201) —————= ¢'(02) + g'(01) + (01, 02)

G €]
S s
¢ the vertical composition of 2-cells H ——C H' + H yr'r H’', is given by pointwise composition of
N
o G

arrows in o, that is, for any o : ¢y — ¢; in C,
(F'F)(0) = F'(0) F(0) : g(o) = ¢"(0),

and the identity of a 1-cell G = (G,g) : H — H" is the 2-cell denoted by 1, : G = G which is given by
14(0) = 14(4), the identity morphism of g(o) in &/, for any o :co — ¢ of C.
4 the horizontal composition of two 1-cells G: H — H' and G’ : H — H" is the 1-cell

G'+G=(G+G, g +g): H— H"
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where, for each co 55 ¢; of C, (¢’ + g)(0) = ¢'(0) + g(o) and, for any co 5 ¢ B ¢ in C, the morphism

(G' + G)(01,02) is the dotted one in the commutative diagram

(G'1G)(o1,02)

h(o1,02) + ¢'(0201) + g(o201) - ~>g'(02) + g(o2) + ¢'(01) + g(o1) + B (01, 02)
1+C\L Tl-‘rc-‘rl
h(o1,02) + g(o201) + g'(0201) g'(o2) + g(o2) + g(o1) + g'(o1) + b (01, 02)

G(01,0’2)+1\L TC+1
1+G/(0'1,0'2)

g(o2) + g(o1) + W' (01,02) + ¢'(0201) ———> g(02) + g(01) + ¢'(02) + ¢'(01) + b (01, 02),

el ed G'+G
T T TN
and the horizontal composition of 2-cells H 4F H' yr H” +— H yrF'+F H” is given by pointwise
ST ST ~_ 7
G G Gy +Gy

addition of objects in o7, that is, for any o : ¢y — ¢1 in &,

(F'+ F)(o) = F'(0) + F(0) : g'(0) + g(0) — g1(0) + g1(0).
The identity of a 3-cocycle H € Z3(C, o7) is the 1-cell (14,0) : H — H ,where 0(c) = 0, for any o : cg — ¢; of
C and 1(01,02) = lj(sy,0,), the identity of h(o1,02) in &7, for any co DeyBeyin C.

A quite straightforward verification proves that Z3(C, ) is actually a strict 2-category.

Let us point out the identification of categories (actually, of monoidal categories)

G
2 B ] F o PN
22(C, /) = Endzs (0, (0), ¢ha = 0w 0. (4.1)
G/

* Z4(C, ) is the set of objects of a (semistrict) 3-category (i.e. a strict, cubical tricategory [11], also
known as a Gray category), denoted by Z4(C,.o7), which is as follows.

¢ al-cell H=(H,h): T — T is a relative lax transformation; it consists of
e objects h(o1,02) of &, one for each two composable morphisms ¢y Z5 ¢; 53 ¢ of C,
e morphisms

H(o1,02,03)

t(o1,092,03) + h(o1,02) + h(o201,03) h(oa,03) + h(o1,0302) +t'(01,02,03) ,

one for each three composable morphisms co 2 ¢1 3 ¢o B ¢35 of C,
such that
e for any morphism ¢y 2> ¢; of C, h(l,0) =0=h(s,1),
e for any pair of composable morphisms cq > ¢1 33 ¢y of C,

H(Ulaa27 ]-) = 1h(01,02) = H(1,01;02) = H(Ula 130—2)3
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e for any morphisms co 3 ¢; B co B ¢5 B ¢4 of C, the following diagram commutes.

A, 1+C+1 Ay 1+H(0201,03,04) As 1+C+1 Ay H(o1,02,0403)+1 As 1+C+1 Ag
T(01,02,U3,U4)+1\L

All 14T (c1,02,03,04)
1+H(U1,02,U3)+1\L

A/21+C+1+CA§) 1+ H(o1,0302,04)+1 AZI H(o02,03,04)+1 Air) 1+C+1 A/6 C+1 A7

Ay =t(o1,02,0403) +t(0201,03,04) +h(01,02) +h(0201,03)+h(030201,04), Az = t(o1,02,0403)+h(01,02)+
t(0201,03,04) + h(0201,03) + h(os0201,04), As = t(01,02,0403) + h(o1,02) + h(os,04) + h(o901,0403) +
t'(0901,03,04), Ay = t(01,09,0403)+h(01,02)+h(0201,0403)+h(03,04)+t (0201,03,04), As = h(o2,0403)+
h(o1,040302) + t'(01,02,0403) + h(os,04) + t'(0201,05,04), As = h(0o2,0403) + h(o1,040502) + h(os,04) +
t'(o1,09,0403)+t' (0201,03,04), A7 = h(02,0403)+h(0o1,040302) +h(os,04) +t'(02,05,04) +1'(01,0302,04) +
t'(o1,09,03), Al = t(o2,03,04) + t(01,0302,04) + t(o1,02,03) + h(o1,02) + h(o201,03) + h(o30201,04),
Al =t(o9,03,04) +t(01,0302,04) + h(0o1,02) + h(o1,0302) +t' (01, 02,03) + h(030201,04), A5 = t(02,03,04) +
h(og,03)+t(01, 0309, 04)+h(01,0302)+h(030901,04)+t (01,02,03), A} = t(02,03,04)+h(02,03)+h(0302,04)+
o

,040309) + t'(01,0302,04) + t'(01,02,03), A5 = h(0s,04) + h(02,0403) +t'(02,03,04) + h(01,040302) +

>

/

~+

1
0'170'30'2,0'4) +tl(0'170'2,0'3), A% = h(0'3,0'4) + h(O’Q,O’40’3) + h(01,0'40'30'2) +t/(0'2,0'3,0'4) +t/(0'170'30'270'4) +

(
(
(
t'(o1,09,03).

H

/“\ . . . . . .
¢ a2-cell T Je T isarelative lax modification; it consists of
~_7
H/

e objects g(o) of o7, one for each morphism ¢y > ¢; of C,

e morphisms G(o1,03) : h(o1,02) + g(oe01) — g(o2) + g(o1) + h'(01,02), one for each two composable

morphisms cg o1 B ey of C,
such that

e for any object ¢ of C', ¢(1.) =0,
e for any morphism ¢y > ¢; of C, G(1,0) = lyoy = G(o,1),

e for any three composable morphisms ¢ B By Bey of O , the diagram below commutes.

1+G(o201,03) C+1 1+G(o1,02)+1 1+C+1
Ay Ay As Ay As
H(01’0270’3)+1\L 1+ H'(01,02,03)
1+C 14+G(01,0302)+1 G(o2,03)+1 1+C+1
AL AL A AL Ag

Ay =t(01,092,03) +h(o1,02)+h(0201,03)+g(030201), Az =t(01,02,03) +h(o1,02)+g(03) +g(0201)+
h'(oq01,03), As = g(03) +t(01,02,03) +h(o1,02) +g(o201) +h' (0201, 03), Ay = g(o3)+t(01,02,03)+g(o2) +
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g(o1)+h' (o1, 02)+h (0201,03), As = g(03)+g(02)+g(01)+t(01,02,03)+h (01, 02)+h (0201, 03), As = g(o3)+
g(o2)+g(o1)+h (02,03)+h (01,0302)+t (01,02,03), Ay = h(oa,03)+h(o1,0302)+1 (01, 02,03)+g(o30201),
Ay = h(o2,03) + h(01,0302) + g(030201) + t'(01,0302), A} = h(o2,03) + g(0302) + g(o1) + b/ (01,0302) +
t'(01,09,03), AL = g(o3) + g(o2) + h'(02,03) + g(01) + R/ (01, 0502) + t' (01,09, 03).
¢ a 3-cell
H

oL

is a relative perturbation, which consists of
e morphisms F(c) : g(o) — ¢'(0) of &, one for each morphism ¢y = ¢; of C,
such that

e for any object ¢ of C', F(1.) = 1o,
e for any two composable morphisms co = ¢; 3 ¢y in C, the diagram below commutes.

G(O’l,o'z)

h(o1,02) + g(o201) g(o2) +g(o1) + H'(01,02)

1+F(0’20’1)\L \LF(UZ)JFF(UI)JFI

G'(01,02)
h(o1,02) + g'(0201) g (02) +g'(01) + A (01,02)

¢ compositions and identities in the hom 2-category Homza (¢, ) (T,T"), are as follows.
e the horizontal composition of 3-cells

H
”G@G” T g_g/
is given by pointwise composition of arrows in o7; that is, for any o : cg — ¢; in C,

(F'F)(0) = F'(0)F(0) : g(o) = g"(0).

e the identity 3-cell of a 2-cell G = (G, g) : H = H' is the 3-cell denoted by 1, : G = G which is given by
ly(0) = 14(4) : g(0) = g(o), the identity morphism of g(o) in &/, for any o :co — ¢ of C.
e the vertical composition of 2-cells
H H
T TN
T—YH. T T ¢icl T
~__7

NGV

I’z u”
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is the 2-cell G/ +G = (G' + G, ¢' +g) : H = H" where, for each cog &5 ¢; of C, (¢’ +9)(c) = ¢'(0) +g(o)
and, for any co 2 ¢; B ¢y in O, the morphism (G’ + G)(01,02) is the dotted one in the commutative

diagram
(G +G)(U ,o )
h(o1,02) + ¢'(0201) + g(o201) -~ = g (02) + g(02) + g/ (01) + g(01) + B (01, 02)
1+C\L Tl—‘—c—‘rl
h(o1,02) + g(o201) + g'(0201) g'(02) + g(o2) + g(o1) + ¢'(01) + K (01, 02)
G(01702)+1\L TCJrl

1+G/(0'1,0'2)
- s

g(o2) + g(o1) + h'(01,02) + g'(0201) g(o2) + g(o1) + g'(02) + ¢'(01) + K" (01, 02).

e the identity 2-cell of a 1-cell H = (H,h) : T — 1" is the 2-cell (1;,0) : H = H where 0(c) = 0, for any
o:co— ¢y of C and 1,(01,02) = lp(0,,0,), for any co By Beyin C.
e the vertical composition of 3-cells

H

- /\
@T/ n T G+G<+F\G+G T
£)¢ W

H"

is given by pointwise addition of morphisms in &7, that is, for any o : ¢y — ¢ in &,
(F'+ F)(o) = F'(0) + F(0) : g'(0) + g(0) — di(0) + 91(0).
4 the composition and the identities in the Gray-category Z*4(C,.o7) are as follows.

e the composite of 1-cells 7 2 7/ & . T" is the lcell H' @ H = (H® HW+h): T — T", where
(W' + h)(o1,02) = B (01,02) + h(o1,02), for any cg 55 ¢1 B ¢y in C, and, for any co 2 ¢1 B 2 B ¢3,

(H' ® H)(01,09,03) is the dotted morphism in the commutative diagram

Al 1+C+1 A2 1+C A3
: \LH(Ul,Jg,Ug)+1

(H'®H) (r1.72.073) Ay
Y 1+C+1 C+1 l1+H/(Ul702)03)

Az Ag As

Ay =t(01,09,03)+h (01,02)+h(o1,02)+h (0901,03)+h(0201,03), As = t(01,02,03)+h(o1,02)+h (01,02)+
W (o901,03) + h(oa01,03), As = t(o1,02,03) + h(o1,02) + h(os01,03) + b/ (01,02) + W' (0201,03), Ay =
h(og,03) + h(o1,0302) + t'(01,02,03) + W' (01,02) + h'(0201,03), As = h(oa,03) + h(o1,0302) + h'(02,03) +
W (o1,03092) + t'(01,092,03), Ag = h'(02,03) + h(o2,03) + h(o1,0302) + W/ (01,0302) + t"(01,02,03), A7 =
W (c2,03) + h(oa,03) + h(o1,0302) + h'(01,0302) + (01,09, 03).
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e the (strict) identity 1-cell of any 4-cocycle T = (T,t) € Z*(C, o) is the 1-cell (1;,0) : T — T, where
0(o1,09) = 0, for any ¢g 2 ¢; B ¢y in C, and 14(0y,09,03) = Li(o1,00,04), for any three composable

morphisms ¢y 25 ¢1 B3 s B eg of C.

H o H,EBH
e the composition of 2-cells T 4G T ya' T" — T yc'ec T" is the 2-cell
~T 7 ~_ _~7
H Hy H{®H

GoG=(G 3G ¢ +g):H®H=H & H

where, for any ¢y > ¢; of C, (¢ @ g)(0) = ¢'(0) + g(0) and, for any co 75 ¢; 23 ¢y, the morphism

(G' ® G)(01,02) is the dotted one in the commutative diagram

A1 1+C+1 A2 G'(01,02)+G(01,02) A3
(G'®G)(01,02) \L1+C+C
\
As 1+C+1 A
Ay = W (o1,02) + h(o1,09) + ¢'(0201) + g(o207),
A2 = h'(01,02) + ¢'(0201) + h(o1,02) + g(o201),
=g'(02) + ¢ (01) + Wi (01,02) + g(o2) + g(o1) + hi(o1,02),
= ¢'(02) + g(o2) + g(o1) + ¢'(01) + I (01, 02) + hi(01,02),
= ¢'(02) + g(o2) + ¢'(01) + g(01) + I (01, 02) + hi(01,02).
e the composition of 3-cells
H ©H
\\ / N
T G\(>G1 T/ G’(()G/ T/I — T GSBG< >>G DG, T//
L/
H|@®H,;

is the 3-cell F/ + F: G’ ® G = G, @ G defined, at any ¢y > ¢;, by
(F'+ F)(0) = F'(0) + F(0) : g'(0) + g(0) — g1(0) + g1(0).
& For T,T',T" € Z*(C, o), the structure constraint of the composition cubical functor
@® : Homza(c o) (T, T') x Homza(c o) (T', T") — Homza(c o) (T, T")

Hy Hy

’
Gib Ho T e Hy

at the cells T T" is the invertible 3-cell

Hs H

(G +G) @ (Ga+Gh) = (GyoGr) + (G @ Gy)
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defined by the isomorphisms

G5(0) + 91(0) + 92(0) + 91(0) = gh(0) + 92(0) + 64 (0) + () (co D €C).

To prove in full details that Z*(C,.<7) is a Gray-category several verifications are necessary. Most of
them, however, are immediately apparent from the definitions, whereas all the others are quite straightforward
consequences of MacLane’s Coherence Theorem on symmetric monoidal categories. This, recall, states that
every diagram in </ whose vertices are permutated instances of + and whose edges are expansions instances of
C commutes.

Let us stress the identification of 2-categories (actually, of monoidal 2-categories)

a H
Z3(C, ) = End za(c o (0) H/l;?H/ =0 G<§>G/O.
’ (@)t ~ N\
H/

G

4.1. Unitary lax functors D — Z"(C, <)

For later use in the following section, we fix below what we mean by a unitary lax functor from a small category
D to the (n — 1)-category of n-cocycles of a small category C' with coefficients in the permutative category
o, for n=2,3,4.

¢ A unitary lax functor G = (G, F) : D — Z2?(C, &) is simply a functor, so it provides

e a 2-cocycle Gy = (Gy, gq), for each object d of D,
e a morphism Fs : G4, — Gg, , for each morphism dy LN dy of D,
satisfying
e for any object d of D, JFi, =1g,,
e for any morphisms d L2 dy LA do in D, Fs,5, = Fs5, F5y -
¢ A unitary lax functor H = (H,G,F): D — Z3(C, /) consists of
e a 3-cocycle Hq = (Ha, hq), for each object d of D,

e a l-cell Gs = (Gs,gs) : Hay — Ha, , for each morphism dy 2 dy of D,

e a 2-cell

G596,

Hayg ———— Hay

U»]:al,éz
Gs, Gsy

Ha, ,
for each dy 5# dq g dy in D,
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all subject to

e for any object d of D, G, =1y,
e for any morphism d LN dy of D, Fi5=1g; =Fs1,
e for any morphisms d LIy dy L2 ds kit ds in D, the following diagram commutes.

F51,65582

g535251 _ g5352_}_ Gs,

-7:5251,53H/ ﬂ]‘—a%%-&-l

Gss+ Gs,6, H:fm> Gss+ Gs, + Gs,

¢ A unitary lax functor 7 = (T,H,G,F): D — Z%C, &) consists of
e a 4-cocycle Ty = (Ta,tq), for each object d of D,

e a l-cell Hs = (Hs,hs): Ta, — Ta, , for each morphism dy 2 di of D,

e a 2-cell

Ta,
51 Hso
/ i&%k

M
Tdo T

Hesyoq

for each dy LIy dq % dy in D,
e a 3-cell

Gs5,65

D1
Hsy B Hes, D Hs, =——= Gs,6, D Ty,
.F
169@51,52ﬂ/ élg"s?’ ugﬁ,éséz

7—[53 @H52§1 _> H536261’

G555 ,63

for each dy LIy dq % do % ds in D,
all subject to
o for any object d of D, Hy, =17,

e for any morphism d RN di of D, Gis=1y, =Gs1,

. ) 5 .
e for any morphisms do = di = dz in D,  F 6, 5,) = Lgs, 5, = Fo1,0,60 = Fo1.60.1 5

e for any morphisms d LIy dy 2 da % ds L\ dy in D, the equation A = B on pasted 3-cells in 24(C,.«)

holds, where
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A= 1016Gs) 5, Hs, & Hs, © Hoys, 18G5, 6,55
w1+]:61,<52,53
Hs, ®Hs, ©Hs, ® Hs, 1605, 5,®1 18G5, 530, Hes, ® Hs5606,
Gs B1e1 G -
53,54 | Hs, ® Hszs, © Hs, LUHMS%M 536201 ,54
Fs5,85,04+1
Hs,o5 B Hs, & Hs, Go352.64 D1 H5,6565615
Goy,6465 D1 He 655, D Hs, Go1,645352
B = 101835 55 Hoy © Moy © Hoys, 18Gs,5 .65
Hs, @ Hsy © Hs, © Hs, Gs3.54 @1H Hsy © Hsys,6,
— UJ}-5251153754
Gos,6,D1LD1 1@%%> ’}-[5453 fan ’}-[5251 G5y 5408 G(656961,64)
Hsso5 © Moy © Mo, | Fov.52.5055 H 54656201 -
Gsy,6463 D1 Hs,656, D Hs, G61,646362)

5. Proof of Theorem 3.2

The strategy of the proof is as follows. For each n = 2,3,4, we first construct a simplicial (n — 1)-category
K(47,n), whose simplicial set of objects is K(&/,n). These K(&/,n) determine reduced simplicial spaces
BK(47,n). In Proposition 5.2 we show a group completion map |K(</,1)] — Q|BK(</,2)|, and homotopy
equivalences |K(«7,2)| ~ Q|BK(«,3)| and |K(«,3)| ~ Q|BK(&,4)|. Next, in Proposition 5.3 we prove that
the inclusion maps K(&/,n) — K(«/,n) induce homotopy equivalences |K (<7, n)| ~ |BK(<7,n)|. Hence, the
claimed group completion map and homotopy equivalences in Theorem 3.2 follow, since they are, respectively,

the compositions

|K(/,1)] = QIBK(+,2)| ~ QK (7, 2)],
|K(o,2)] ~ QIBK(<,3)| ~ QK (<, 3)],

|K(o7,3)| ~ Q|BK(«,4)| ~ Q|K (<, 4)|.

In the proof, we use that n-categories, for n < 3, are closely related to spaces by means of a well-
understood classifying space construction on them. By [3, Theorem 6.1] and [5, Theorem 5.4], the classifying
space BX of an n-category X can be realized as BX = |AX], the geometric realization of its geometric nerve
AX, that is, the simplicial set

AX : A — Set, [p] = wFunc([p], X),
whose p-simplices are the unitary lax functors from [p] to X. For instance, A¥X"o/ = K(%/,n+ 1) and
BY'o = |K(«,n+1)|. (5.1)
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The assignments C +— Z"(C, /), for 1 < n < 4, are strictly functorial on the small category C (in the

sense of Gurski, see [12, Remark 4.15], when n = 4). Then, we have a simplicial (n — 1)-categories
K(e,n): A°? = (n—1)-Cat, [q) = Z"(lq], &),
and replacing each Z™([q], &) by its classifying space, we obtain simplicial spaces

BK(47,n) : A°? — Top, [q] = BZ"([q], @) = |[p] = wiFunc([p], Z"([q], &), (5.2)

one for each n = 1,2,3,4, whose geometric realization [22] is denoted by |BK(</,n)|; that is,
|BK(,n)| = |la] = |[p] = wFunc([p], 2" ([a], /)|
For n =1, we have K(«7,1) = K(«/,1). Hence, BK(%/,1) = K(</,1) and
|BK(7,1)| = |K(</,1)| = B«

Next, we analyze these simplicial spaces BK (7, n) for n =2,3,4.

4 For n =4 and at degree 0, we have the classifying space of Z4([0],.27), which is the final 3-category;
that is, it has only one object, the zero 4-cocycle 0, only one 1-cell, the identity 1y : 0 — 0, only one 2-cell,
the identity 14, : 19 = 1o, and only one 3-cell, the identity 1y, : 1i, = 1i,. Hence, its geometric nerve
AZ4([0], «7) = AJ0] is the simplicial set with only one simplex in every dimension; therefore, its geometric
realization

BZ*([0], ) = pt (5.3)

is the one point space. Since Z*([0], /) = Endza(o)x)(0) and, Z%([0],«/) = Endzs(o}.»)(0), by (4.2)
and (4.1), we see that Z3([0],«7) is the final 2-category and Z2([0],«/) is the final category. Hence, both
AZ3([0], «7) and AZ2([0], ) are the final simplicial set and we also have

BZ23([0],4) =pt, BZ*([0],) = pt. (5.4)

¢ For n = 4 and at degree 1, we have the classifying space of the 3-category Z*([1], /). This has
only one object, the zero 4-cocycle 0, and only one 1-cell, the identity 1p : 0 — 0. Furthermore, a 2-cell
G = (G,g): 1o = 1o in Z%([1], o) is entirely equivalent to giving the object g(0,1) of <, and giving a 3-cell
F : G = G is equivalent to giving the morphism F(0,1) : g(0,1) — ¢’(0,1) of &/. This way, we have the

identification of 3-categories

1o

\") \ /

whence, by (5.1),
BZ*([1],4) = BX*o/ = |K(,3)|. (5.5)
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Furthermore, since

Zg([]‘]V’Q{) = Endz4([1])g{)(0) = End22ﬂ{(0) = Zd’
Z*([1], @) = End zs(1],67)(0) = Ends o (0) = o7,

we also have

BZ3([1], /) = BY« = |K(,2)|, (5.6)
BZ*([1],#) = B/ = |K(7,1)|. (5.7)

¢ For n =4 and at any degree ¢ > 2, we have the strict functor
U=(uj,...,u): Z4([q), &) — Z*([1], o)1 = L2/ (5.8)

where, for each 1 <k <gq,
uj : Z4(q), ) = (1], ) = B2/

is the the strict functor induced by the map uy : [1] — [g] in A given by uk(0) = k — 1 and ug(1) = k; that
is, each u} acts on cells of Z%([q], /) by

H

T@T’ a(k— 1k><> "(k=1,)

H'

The functor U restricts to the corresponding 2-categories of endomorphisms of the zero 4-cocycles,
Endz4(jq,)(0) and Endza (), (0)?, to the strict functor

U= (ui,...,ut): 2%(lq), o) — 23([1], &)? = B9 (5.9)
which acts on cells of Z3([g], &) by

G g(k—1,k)

H v H % (0 e g )
pa— S~ 7 1<k<q
el g’ (k—1,k)

and likewise this U restricts to the corresponding categories of endomorphisms of the zero 3-cocycles, End zs (4, o) (0)

and Endzs(j1),.7)(0)7, to the functor
U= (... uz): Z((g), ) —= ZX([1], )1 = 5, (5.10)

which acts by G —> G’ - ( glk—1, k)Mig(kfl,k)LK ~
1<k<q
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Lemma 5.1 For every q > 2, the functors U in (5.8), (5.9), and (5.10) induce respective homotopy equivalences

on classifying spaces
BZ"(lq), o) ~ |[K(«/,n —1)|7 (n=2,3,4).

Proof We first prove the case when n = 4. To do that, we show below a normal lax functor (actually, a

pseudo-functor)

V221 — Z4(q], &), (5.11)

such that UV = idx2 4, together with a lax transformation

O: id24([q]7‘9{) = VU. (5.12)

Then, since BU BY = id|g(.3)« and © induces a homotopy equivalence idpzs((q,o) =~ BV BU, as in [5,
Proposition 5.6, it follows that the induced map BU : BZ*([q], /) — |K(/,3)|? is actually a homotopy

equivalence.

4 The lax functor V in (5.11) is as follows. On the unique 0- and 1-cells of X279, V acts by
V(O,,O) =0 and V(lo,...,lo) = ].0. If a= (al,...,aq) : (10,...,10) = (10,...710) is a 2-cell in Zqu{q,
then V(a) = (Va,g,,) : 1o = 1o is the 2-cell of Z4(C, o) defined by

o 0 if o =141,
0. (ioi1) = { if io=11

[T —+ - +ai0+1 Zf io < il,
for each 0 < iy <1 < g, and, for any 0 <1ig<1i; <iy <g,
Val(io, i1,12) = 1y (ig,is) * va(i0:72) — gy (i1, 42) + 9y, (d0, 71)

is the identity morphism. If u = (uq,...,u,) : a = a’ is a 3-cell in X277, then V(u) : V(a) = V(a') is defined
by

19 if ip =14,

Uiy + 0+ Uig41 if g < 7.

V(w(io,in) = {

For any other 3-cell u’ : a’ = a” in 2479, the equality V(u’) V(u) = V(u'u) is clear. Furthermore, for
any two 2-cells a and b of $2.479, the structure constraint of V), for both compositions + and @ on 2-cells in
ZY0, ),

x:Va@Vb=Va+Vb—=—=V(a+b),

is given by the isomorphisms X (70, 71) : (9ya + 9ys)(i0, 1) = Gyyasn (f0, 1), recursively defined, for any integers

0 <ip<iy <gq,by x(ig,i1) = 1o if i1 =1, and, for iy < i1, by the commutative diagrams

.. . X (%0,%1) .
@iy + Gya(G0y it — 1) + by, + gy (G i1 — 1) oo 00y 4 by, F Gy, (0,01 — 1)

M) ml_l)

ail + bil + g\}a(i07i1 - 1) + ng <i07i1 - 1)
The structure constraints 2, J, and Gamma as in [11, Definition 3.2] for V are identities.
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¢ The equality UV = ids2 4 is clear.

4 The lax transformation © : idz1((g),.) = VU in (5.12) is as follows.

e Its component at a T = (T,t) € Z*([q], o) is Or = (O7,07) : T — VU(T) = 0, where the objects
Or(ig,i1,12) of &, for 0 <ig <iy <iy < g, are recursively defined by
O Zf Z.1 = i?a
t(io,i1,i2 — 1,42) + Or(io,i1,32 — 1) if i1 <z,

07 (i, i1,12) = {

and, for 0 < iy < i1 <i9 < ¢, the morphisms

O (i0,i1,72,13)

t(do, %1, %2,13) + O (i0, i1, i2) + Or(io, i2,13) Or(i1,42,43) + 07 (0, %1,143) ,

are also defined recursively by the equalities O (io,%1,42,73) = Lo, (ig,iy,is) if i3 = i2, and, for iy < i3, by the

commutative diagrams below.

O (i0,i1,i2,13)

A e A
1+C+1\L T1+C+1
T(io,il,iQ,ig—l,ig)—‘rl 1+®T(ig7i1,i2,i3—1)

Az A Ay

Ay = t(io,i1,12,13) + O (i, i1,12) + t(io, 2,13 — 1,i3) + Op(io,i2,i3 — 1), As = t(ig,i1,%2,13) + t(io, 2,13 —
1,i3) 4 07 (i1, i9,93 — 1) + O (io, 2,43 — 1), Az = t(i1, 42,43 — 1,i3) + t(io, 41,43 — 1,i3) + t(io, 41,172,753 — 1) +
Or (o, i1,12) + O (i0, i2,i3 — 1), Ay = t(i1, 42,43 — 1,43) +t(io, 91,43 — 1,43) + Op (i1, 42,93 — 1) + 07 (ig, i1,43 — 1),
As = t(i1,19,13 — 1,43) + Op(i1,d2,i3 — 1) + t(ig, 41,13 — 1,43) + O7(ip, 41,43 — 1).

e The naturality component of © at a 1-cell H = (H,h) : T — T' of Z*([q], o)

H
_—

T T

@Tl/ 6; i@T/

0———0
VU(H)=14

/

is the 2-cell given by the objects 0 (ig,41) of o, for 0 < iy < iy < g, recursively defined by

Ora(ioin) = 0 if ip = i1,
HUOM =\ hig, i1 — 1,i1) + 0 (i, i1 — 1) if g < i1,
and the morphisms

O m (i0,i1,i2)

07 (30,91, 92) + O (io, i2) Or(i1,42) + O0p (G0, 91) + 07 (0,91, 92) + h(io,1,1i2) ,

for 0 <ip < iy <o < g, are also defined recursively by ©p (ig,i1,i2) = 1o, (i,ir) if 42 = i1, and, for io > iy by

the commutative diagrams below.

1+C+1 1404 (i0,i1,i2—1) 1+C

4, 4, 4q 44
O (i0,i1,72) lH(i07i17i2—1,i2)+1
\
1+C 1+C+1
A7 Ag As
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Ay = t(io, 41,12 —1,12) +0r(io, i1, 42— 1) +h(io, ia—1,i2) +0x (i0,i2— 1), Ag = t(ig, i1,92—1,i2)+h(io, i2—1,42)+
Or(io,i1,i2—1)+0m (i0,i2—1), Az = t(io, 41,92 —1,42) +h(io, 92— 1,42) +0m (i1, 72— 1) + 0 (io, i1) + 07 (0, i1, 12 —
1) + hlio, i1y is — 1), Aa = t(io,i1,is — 1,i2) + hlio,ir,ia — 1) + h(io,ia — 1,is) + O (i1, is — 1) + Osr(io, i1) +
07+ (ig,i1,12—1), As = h(i1,i2—1,i2)+h(io, i1, 12)+t (0, i1, 12— 1, i2) +0p (i1, i2—1)+0x (i, i1 ) +07 (ig,i1,92—1),
Ag = h(i1, 2 — 1,i2) + h(io, 01,12) + Om (i1, 12 — 1) + O (i, i1) + t'(do, 01,12 — 1,12) + O7/(ig, 1,92 — 1), A7 =
h(il,ig — 1,i2) + 9H(i1,i2 — 1) + QH(io,il) + t/(io,il,ig — 1,i2) + 01 (ig,il,ig — 1) + h(io,il,ig).
H
e
o The structure invertible 3-cell of © at a 2-cell T~ va T’
S

H’

VU(G) ® 1
®T:10@@T%10@®T:@T

@Hﬂ % ﬂ@H/

, _ , /
Or ®H TYe Or @& H',

is given by the isomorphisms
Oc (i, i1) : glio,i1) + Ou(io,i1) — Omr (0, 1) + Gyy (e (905 01),

recursively defined, for 0 < ig < 41 < ¢, by O¢(ig,i1) = 1o if 49 = i1, and, for iy < i1, by the commutative

diagrams below, where we use that U(G) = (9(0,1),...,9(¢ — 1,q)), so that g, (70,71) = g(i1 — 1,i1) +

gvu(G) (io, il - 1) .

C+1 G(io,i1—1,41)+1
A Ay As
O¢ (i0,%1) \LC+1
v o
14+C+1 14+0¢ (ip.i1—1)
Ag As Ay

Ay = g(io,i1) + h(io, i1 — 1,41) + Om (io, i1 — 1),

Ay = h(io,i1 — 1,41) + g(io, 1) + O (G0, i1 — 1),

Az = g(i1 — L,41) + glio, i1 — 1) + W' (o, i1 — 1,41) + Op (io, i1 — 1),

Ay =W (ig i1 — 1,41) + g(i1 — 1,41) + g(io, i1 — 1) + O (G0, 41 — 1),

As = h'(io, i1 — 1,01) + g(in — 1,01) + Op (o, i1 — 1) + gy (0,11 — 1),
Ag = W (ig,i1 — 1,41) + 0 (d0,91 — 1) + g(i1 — 1,4q) + Gvue (0,91 — 1),

e At any two composable 1-cells T o Hopr iy Z4([q], &), the structure invertible 3-cell

©
O ——= 0 ¢ H
O gt
= H@H/@lhr

Or ®H ©H

@H’EBH

is given is given by the isomorphisms Oy g (i0,%1) : Ourem (i0,91) — O (io, 1) +0m (io,i1), for 0 <ig <i; <gq,
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recursively defined by ©g g (io,41) = 1¢ if 49 = i1 and, for 49 < i1, by the commutative diagrams below.

@H H/(Zl)vll)

>A3

1+@H H’ lo,lk\ %CJ,*I

Ay = W (ig,i1 — 1,41) + h(io,i1 — 1,41) + Omrem (i, 41 — 1),

Ag = W (19,41 — 1,41) + h(ig, 41 — 1,41) + O (30,41 — 1) + O (G0, 41 — 1),

As = W (ig,i1 — 1,41) + 05 (i0,71 — 1) + h(io, 91 — 1,41) + 0 (39,41 — 1).

We now prove the homotopy equivalence when n = 3, that is, the strict functor U : Z3([q], &) — L&/
in (5.9) induces a homotopy equivalence on classifying spaces: The lax functor V : Y277 — Z4([¢q], &) in
(5.11), restricts to the corresponding 2-categories of endomorphisms of the zero 4-cocycles, Endsz . (0)? and

Endz4((q),)(0). Hence, it defines a lax functor

VN — Z3(q], o). (5.13)

Since UV = ids.q, we have BU BY = id k(.7 2)a- On the other hand, the lax transformation © in (5.12)

verifies that ©¢ = 1g, so that its restriction to the 2-categories of endomorphisms of the zero 4-cocycles gives a

lax transformation

0: VU = idzs([q]7£¢). (514)

This, by [3, Proposition 7.1], induces a homotopy equivalence BY BU ~ idg 23(|q],) » and the result follows.
The proof that the restricted functor U : Z2([q], /) — /% induces a homotopy equivalence on classifying

spaces is entirely similar: The homomorphism V in (5.13) restricts to the corresponding 2-categories of

endomorphisms of the zero 3-cocycles, Ends/(0)? and Endzs((q,)(0), by giving a functor V : &1 —
Z%(lq], o). From the equality UV = idya, it follows that BU BY = id| K (or,1)|a - Furthermore, the lax
transformation © in (5.14) restricts to the categories of endomorphisms of the zero 3-cocycles and gives
a transformation © : VU = idz>(q,) which, by [22, Proposition 2.1], induces a homotopy equivalence
BVBUEidez([q]vd). O
Proposition 5.2 There is a natural group completion map
K (<, 1)] = QBK(<, 2)|
and natural homotopy equivalences
|K(,2) = QIBK(,3)|, |K(/,3)| = QIBK(, ).
Proof The simplicial spaces BI(7,n) : [q] — BZ"™([q], &), satisty
- BZ"([0], &) is the one-point space, see (5.3), (5.4),

- BZ"([1], &) = |[K(«/,n — 1), see (5.5), (5.6), (5.7),
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- for any ¢ > 2, the Segal projection maps BU : BZ"™(|q|, &) — |K(&/,n—1)|9 are homotopy equivalences,

by Lemma 5.1,

- wo|K(,3)| =0 = mo| K (,2)|, since K(47,3) and K(«7,2) have only one vertex.

Hence, by Segal’s criterium [23, Proposition 1,5], the induced maps |K (<7, 2)| — Q|BK(</,3)| and |K (<, 3)| —
Q|BK(47,4)| are both homotopy equivalences, while the induced map |K(</,1)] — Q|BK(4,2)| is a group
completion map by MacDuff-Segal [20, Proposition 1]. O

Since K(47,n) is the simplicial set of objects of K(&/,n), we have an evident simplicial functor of

inclusion
v: K(d,n) — K(«,n),

where K (o7, n) is regarded as a simplicial discrete (i.e. with only identities) (n — 1)-category.

Proposition 5.3 The induced maps
e K ()] = | BK(/ )|
are homotopy equivalences.

Proof This is clear for n = 1. For n =2,3,4, by [21, Lemma in page 86|, there is a natural homeomorphism
|BK(o7,n)| = |diagAK (7, n)| between the geometric realization of the simplicial space BK(7,n), see (5.2),
and the geometric realization of the simplicial set diagonal of the bisimplicial set

AK(e/,n) : A% x A — Set,  ([p], [q]) — wFunc([p], 2" ([g], )).
In this bisimplicial set we shall interpret the p- (resp. ¢-) direction as the horizontal (resp. vertical) one, so

that the horizontal face and degeneracy operators in AK (2, n)

h h

wiFunce([p + 1], Z2™(|q], &)) <m wiFunc([p], 2" ([q], &)) A wFunc([p — 1], Z7([q], &)

are the induced by the codegeneracy and coface maps s™ : [p+ 1] — [p] and d™ : [p— 1] — [p] of the simplicial
category, while the vertical face and degeneracy operators in AK (e, n)

wiFunc([p], Z"([q + 1], &)) S wFunc([p], 2" ([q], &)) _f wFunc([p], Z2"([q — 1], &))

are induced by codegeneracy and coface maps s* : [¢ + 1] — [q] and d* : [ — 1] — [g], respectively. For each
p >0, let
wFunc([p], K(«7, n)) : A? — Set,  [g] — wFunc([p], 2" ([q], 7))

denote the vertical simplicial set of AK(<7,n) at degree p.
Note that when one restricts the above constructions to K(«/,n) C K(«7,n), the resulting bisimplicial
subset AK(</,n) C AK(«/,n) is just the bisimplicial set, constant in the horizonal direction, defined by
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the simplicial set K(&,n) = wFunc([0], K(«/,n)). Thus, the induced bisimplicial inclusion AK(</,n) <
AK(</,n) is, at each horizontal degree p > 0, the composite

(s8)P : K(«/,n) = wFunc([0], (<7, n)) — uFunc([p], K(+,n)) (5.15)

of the degeneracy simplicial maps s{ : wFunc([r — 1], K(«/,n)) — wFunc([r], K(</,n)). Since every point-
wise weak homotopy equivalence between bisimplicial sets is a diagonal weak homotopy equivalence [10, IV,

Proposition 1.7], to prove that the induced map on diagonals
K(o/,n) = diagAK («/,n) — diagAK (<7, 4)

is a weak homotopy equivalence, it suffices to prove that every one of these simplicial maps (5.15) is a weak
homotopy equivalence. We now distinguish the cases where n is 2, 3, or 4.

The case n = 2. Here, we have established the theorem if we prove that every horizontal degeneracy map
s¢ + wFunc([p — 1], K(#7,2)) < wFunc([p], K(<, 2)) (p>1)

is a simplicial homotopy equivalence, with d? as a simplicial homotopy inverse. Since dlsl = id, it is enough
to exhibit a simplicial homotopy ® : id = stdl. Such a homotopy is given by the maps
P9

wFunc ([p], 2%([q], &) ; wFunc([p], 22([q + 1], &) (g >0)

which carry a unitary lax functor G = (G, F) : [p] — 2%([q], /) (see Subsection 4.1 for the notation) to the

unitary lax functors
O (G) = (@™, F™) : [p] — Z*([g + 1], &) (0<m<yq)

defined as follows:

¢ For each integer 0 < j < p, the 2-cocycle G* = (G7",g]") € Z%([qg+1],.97) consists of the objects
g5 (io,i1) of &, for 0 <ig <4y < g+1, defined to be

o g;s™(lp,41), if j>1,

o g15™(ig,i1), if j=0,i3 <m,,

e gos™(ig,i1), if j=0,m <iy,

where s™ : [g+1] — [¢] is the m-th codegeneracy map, and, for 0 < iy <1y < iy < ¢+1, of the morphisms
G (o, i1,12) : 97" (i0, 1) — g7 (i1,42) + g} (G0, 41) defined as

o G;sM(ig ir,in), if j>1,

o Gis™(ig,ir,iz), if j=0,is <m,

e the dotted arrow in the commutative diagram below, if j =0 and i3 < m < iy,

. . g"n’(i 7Z‘ 7i ) . . . .
8™ (ig, i) -+ A e go8™ (i1, i) + g18™ (o, 1)

Qosm(im m?m(io-h)

gos™ (i1,12) + gos™ (io, 1)
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o Gos™(io,in,ia), if j=0,m <ii.

¢ For each 0 < jo < j1 < p, the morphism FJ; : G — G* in Z%([g+1], /) consists of the morphisms
F o (iosin) = gj(io, 1) — gt (io,i1), for 0 <idg <4y < g+ 1, which are defined to be

o Fins"(io i), if jo > 1,

o Fui;s"(io,i1), if jo=0,i1 <m,

o JFojs"(io,i1), if jo=0,m <ip.

The case n = 3. The simplicial map (s)? in (5.15) is the same as the composite

sost -+ sh_ o K(o7,3) = uFunc([0], K(«7,3)) —— wFunc([p], (<, 3)).

p—1

of the horizontal degeneracy simplicial maps s_; : wiFunc([r — 1], K(«,n)) — wFunc([r], K(</,n)). Then, in

this case, we prove that every simplicial map

sh_, twFunc([p — 1], K(«7, 3)) < wFunc([p], K(<,3)) (p=>1)

p
is a simplicial homotopy equivalence, with d’; as a simplicial homotopy inverse. It suffices to show a simplicial
homotopy @ : id = SZ_le, which is given by the maps

)

wFunc([p], Z23([q], &)) ; wiFunc([p], 23([q + 1], &)) (g >0)

which carry a unitary lax functor H = (H,G,F) : [p] = Z3([q], &) to the unitary lax functors
b(H) = (H™, G F™) i [ — 2%(q + 1) (0<m<q)

defined as follows:

¢ For each 0 <j <p, H}" = (H]",hT") € Z3([q + 1], o) consists of the objects hi(io, i1, 42) of <, for
0 <ig<i; <iy < g+1, defined to be

o h;s™(ig,i1,12), if j<p,

o hp_18™(ig,01,12), if j=p,i2 <m,,

o gp_1p5"(l0,01) + hps™(lo,41,92), if j=p, i1 <m <ig,

o hps™(ig,i1,12), if j=p, m<iq,

and, for 0 < ig < iy < iy <i3 < g+1, of the morphisms

Hi" (G0, 11, 42,13) : W' (G0, 11,02) + BT (o, d2,93) — R (i1, 42,43) + R} (i0, 11, 13)

which are defined to be
o H;s™(ig,i1,12,13), if j<p,
o Hy 18M(io,i1,i2,i3), if j=p, iz <m,
e the dotted arrow in the commutative diagram below, if j =p, io < m < i3,

Hy' (10,91,12,i3)

A1 """""""""""""" > A4

gpl,psm(i07i17i2)+1l T1+C+1

14+Hp (i0,81,82,13)
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Ay = hp_15™ (10,1, %2) + gp—1,ps™ (G0, 12) + hps™ (l0, 12, 13),

As = gp—1,p8™(11,12) + gp—1,p5" (G0, 1) + hps™ (o, 41, %2) + hps™ (io, i2,13),

As = gp—1,p8"(11,12) + gp—1,ps" (G0, 1) + hps™ (i1, 42,13) + hps™ (io, 1, 13),

Ay = gp—1,p8™ (i1, 02) + hps™ (i1, i2,i3) + gp—1,p8™ (i0, 1) + hps™ (io, i1, 3).

e the dotted arrow in the commutative diagram below, if j =p, i1 <m < s,

o ..y Hy'(Gosinyiasis) L o .
Ip—1,p8" (G0, 1) +hps™ (Gg,51,02) > hyps™ (11, G2, 13) F gp—1,p8™ (10, 1) +hps™ (lo, 11, i3)

1+HPSm (iO )01 ,izﬂé)\ /

Ip—1,p8™ (G0, 71) + hps™ (i1, 42,13) + hps™ (i, 1, 13)

i Hpsm(i07i1ai27i3)a if .7 =p m< il .

¢ For each integers 0 < jo < ji < p, the I-cell GI" . = (GI" ; , g7 ;) : H]» — H consists of the objects
g ;. (io,i1) of o, for 0 <ig <iy < g+1, defined to be

® gj07j18m(i0’i1)7 if J1 <p,

b gjovp—lsm(imil): if j1 =p, i1 <m,

b gjoypsm(iovil)v if Jj1=p,m<i,

and the morphisms, for 0 < ig <i; < iy < g+1,

g Geai)
hjo (i0; i1, 72) + Gio .1 (ig, ig) —————— 9io .51 (i1,42) + 9io .51 (i0,01) + hj1 (i0, 11, 12),

defined to be

b gjo,j13m(i037;1=i2)7 if jl <p,

o Gip-18"(i0,i1,02), if j1 =p, iz <m,

e the dotted arrow in the commutative diagram below, if j, =0, i; <m < ia,

Giv 4. (G0,i1,02)

JosJ1
Al """"""""""""""""" > A4
Gio.ps™ (i0a ﬂé)l T1+C+1
1+Fjy,p—1,p(f0,i1,42)+1
2 3

Ay = hjys™ (G0, 91, 92)+Gj0,p8™ (10, 32) , A2 = Gjo.ps" (11, 12)+ Gy ps™ (G0, 1) +hps™ (G0, 01, 12) , Az = gj,ps™ (41,192)+
gp—1,p8" (05 11) + Gjo,p—15™ (10, 1) + hps™ (0, 11, 82) s As = gjops™ (i1, 12) + jo.p—15™ (d0, 1) + gp—1,p8™ (10, 1) +
hps™ (i, 41, 42) -

o G, ps"(lo,i1,02), if j1=p, m <.

¢ For each integers 0 < jy < j1 < jo < p, the 2-cell

ar

Jjosi2

m m

Hjo Hjé

m
‘U’]:JOvjl‘j/
m m
gjowjl 91'11]'2

m
J1
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consists of the morphisms Fj' . . (io,i1) : g} 5, (G0,i1) — g} 5, (G0, 01) + gfn ;, (G0,41), 0 < dg < iy < g+ 1,
defined to be

o FipijaS" (0, 11), if jo <p,

o Figip—18"(i0, 1), if ja=p, i1 <m,

o FinpS"lio i), if jo=p, m<iy.

The case n=4. As in the case n = 2, we prove here that that every horizontal degeneracy map
sh wiFunc([p — 1], K(«/,4)) < uiFunc([p], K(7,4)) (p>1)

is a simplicial homotopy equivalence, with df as a simplicial homotopy inverse, by exhibiting the homotopy

® :id = sPdl given by the maps

)

wFune([p], Z%([q], &) = wRunc(pl. 24(g + 1, @) (g2 0)
@‘I

which carry a unitary lax functor 7 = (T,H,G, F) : [p] = Z%(lq], &) to the unitary lax functors
On(T) = (T 1" G F™) (o) —= Z4((g + 1) (0<m<q)

defined as follows:

¢ For each integer 0 < j < p, the 4-cocycle T;™ = (T;™,t7") € Z*([g+1],/) consists of the objects
7 (40, 41,12, 13) of &, for 0 <ip <4y <y < iz < g+1, defined to be

o t;s™(ig,11,102,13), if j>1,

o t15™(ig,d1,12,13), if j=0,i3 <m,,

o t9s™(lo,41,%2,13)+ ho18™ (G0,%1,12), if j =01 <m <iz,

o tps™(ig,i1,12,13), if j=0,m <is,

and, for 0 <ig < i1 <19 <i3 <iy < g+ 1, of the morphisms of .o/

o TPoisis)
tj (7’072137'217’4)+tj (Z057’27Z337’4) %t] (7’171237'377’4)+tj (Z077’1713a24)+tj (1077’1722313)

defined as
o Tis™(ig,i1,i2,13,14), if j>1,
° ﬂsm(io,il,ig,’ig,i4), 1f]:0’ i4§m,

e the dotted arrow in the commutative diagram below, if j =0 and iz < m < iy4,

To" (i0,%1,02,13,14)

A s Ag
1+C+1l Tl—‘rc-‘rl
Tos™ (10,i1,42,i3,14)+1 1+Ho,15™ (i0,%1,02,i3)

Ay As Ay

Ay = tos™ (g, 1, %2,%4) + ho,18™ (lo, i1, 42) + tos™ (40, 92, 93, 94) + ho18™ (0, 92, 13),

Ao = tos™ (g, 11, %2,14) + tos™ (io, i2, 13, 1a) + ho,18™ (G0, 91, 92) + ho18™ (0, 92, 13),
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Ag = tosm(io, il, iz, i4) —+ tosm(io, il, ig, i4) + tosm(io, il, iz, ig) + h071$m(i0, il, iz) + hoylsm(io, ig, ig),
A4 = tosm(io, il, ig, 7,4) + toSm(io, il, ig, 24) + h0715m(7:1, ig, ’Lg) + h0715m(i0, il, 7,3) + tlsm(io, il, ig, ig),
A5 = tosm(il, ig, i3, 14) + h0715m(7;1, ig, 23) + tosm(io, il, ig, ’L4) + h0718m(i0, il, 7,3) =+ tlsm(io, il, ig, 23) .
e the dotted arrow in the commutative diagram below, if j =0, io < m < i3,

To" (10,%1,12,13,94)

pTp—— s As

+C /Mﬂr(io,il,izyis,id

Az

Ay = tos™ (o, 91,12, 94) + ho,15™ (i0, i1, 92) + tos™ (io, i2, i3, %4),

Ag = tos™ (o, 91,12, 14) + tos™ (40, G2, i3, %4) + ho,15™ (t0, 41, 92),

As = tos™ (i1, 02,13, 44) + tos™ (io, 41,43, 14) + ho,18™ (i0, i1, 42) -

o Tos™(ig,i1,12,03,14), if j=0,m <is.

¢ For each 0 < jo < ji <p, the 1-cell H ; = (H7 ;b ): T — T;™ in Z2%([g+ 1], 47) consists of
the objects hj ;. (0,41,12) of &, for 0 < ip < iy < iy < g+1, defined to be

oy, 48" (0, 01,42), if jo>1,

° h1,j18m(io,i1,i2), if jo =0, iy <m,,

o g, 8" (i0,1,102) + go,1,5, 8" (G0, 91), if jo =0, i1 < m <ig,

o Ny, 8" (o, i1,02), if jo =0, m <ip,

and, for 0 < iy < iy <i9 <i3 < g+1, of the morphisms

Hy 51 (t0,i1,42,i3)

th(io, i1,42,43) + Ry, 5 (io, i1, 72) R g (i1, 2, 43) + B S (o, i1, 3)

+h§};7j1 (0,2, 13) -‘rt;?(’io,il,ig,ig,)

which are defined to be
d Hjo,j1sm(i0ailvi27i3), if Jo=>1,
® lejlsm(iovilai%il%)a if jO - 0; 13 < m,

e the dotted arrow in the commutative diagram below, if jo =0, ix < m < i3,

1+C+C 14+Go,1,5; 8™ (i0,1,i2)+1 C+1
Ay Ay As Ay
H gy (F0,i152,23) llJFHO,J‘lSm(io,il,iz,iz)
Y
1+C+1 Cc+1
A7 Ag As
Ay = tos™(lo, 1,42,%3) + ho,18™ (i0,%1,42) + hi1 8™ (0, 41,%2) + hoj, s (G0, 12,13) + go,1,5,8™ (G0,92), Az =

tos™ (io, 1,12, i3)+h1,jlsm(io, i1,12)+ho,15™ (lo, 11, i2)+go’1’j18m(i0, iz)—l—ho)jlsm(io, i9,13), As = tos™ (io, i1, 2,13)+
90,1,5:, 8™ (i1,72) +90,1,5, 8™ (P0, i1) +ho,j, 8™ (10, 11, 72) + o j, 8™ (G0, 92, 93) , As = go,1,5,5™ (i1, 92) +go0,1,5, 5™ (0, 71) +
tos™ (10,1, 92, %3)+ho,5, 8™ (%0, 01, 42)+ho j, s™ (G0, 92, 93) , A5 = g0.1,5, 8™ (%1, %2)+G0,1,5, 8™ (%0, i1)+ho j, s™ (41, 92,93)+
ho,j, 8™ (i0, i1, 3)+t5, 8™ (i0, 41,02, 13) , Ae = ho,j, 8™ (11,12, 13)+9go0,1,5, 5™ (41, 12)+G0,1,5, 8™ (10, 91)+ho j, 8™ (G0, i1,93)+

t;, 8™ (t0, 11,12, 13), A7y = ho j, 8™ (i1, 42, 13)+g0.1,5, 8™ (41, 92)+ho,j, " (t0, 11, 13)+g0,1,5, 8™ (G0, 1)+, s (G0, @1, 82), i3) .
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e the dotted arrow in the commutative diagram below, if jo =0, i1 < m < iq,

Ho g, (f0yi1yi2,13)

Al """""""""""""""" > A4
1+Cl TC+1
Ho, j; 8" (0,01,12,i3)+1
Ao ! As
Ay = tos™(io, t1,12,13) + hoj, 8™ (G0, %1,92) + ho,j, s (G0, 1) + ho s 8™ (G0, 42,43), Az = tos™(do,%1,%2,%4) +

ho,jy 8™ (i0, i1, 92)+ho j, 8™ (i0, i2, i3)+ho,j, 8™ (G0, 1) s Az = ho,j, 8™ (i1, 42, 13)+ho,j,8™ (G0, i1, 3) +t;, 8™ (0, 1, i2, i3)+
hojy 8™ (10, 41), Aa = hoj, 8™ (i1,%2,43) + ho j, 8™ (G0, 1,13) + hoj, 8™ (l0, 1) + tj,8™ (d0, 11, 2, i3).

s Ho’lem(io,il,i%i?,), if Jo=0,m <.

¢ For each integers 0 < jo < ji < j2 < p, the 2-cell Git;, ;. = (G325, ja» 9jtir g2
m
m tjl m
Hio i1 Hil o
Ugjm(),th
tm
0 ,Hjo«jz J27

consists of the objects g7t ;, ;, (i0,11) of &, for 0 <ip <i3 < g+ 1, defined to be
®  GjojijnS " (l0,01), if jo =1,
® 911,58 (G0,11), if jo =0, <m,
®  g0.j1.j»8"(i0,01), if jo=0, m <iy,

and of the morphisms, for 0 <ig <11 <ig < g+1,

m S
Gl i .do (10,11,12)

R g (los i1, 32) + B 5, (G, 11, 12) 9o (11582) + 935 5, 4, (10, 1)

+gﬂ7j17j2(i0’i2) +h;‘z,j2(i07i177;2)7

defined to be
*  Gipgngns™ (0, i,02), if jo > 1,
° gljl,jQSm(i07ilai2), if jo=0,1i2 <m,

e the dotted arrow in the commutative diagram below, if jo =0, i1 < m < is,

1+C Go,j1.4o8" " (0,41,42)+1
A Ay As
G055, .o (0,71,2) \L1+C+1
Y 14 Fo 1 o i (i0d
1+C +70.1,41 .42 (10,1)
Ag As L Ay

Ay = hjlyjzsm(i()’ i1, i2) + h07j1 Sm(io, i1, 7;2) + 90,1, Sm(iOa Z.1) + gO»jl;]ésm(Z.O? i2)v
Ag = hy, j,8™ (10, 71,12) + ho j, 8™ (G0, 1, 92) + 90,5155 (90, 92) + go,1,5, 8™ (f0,71),
A3 = 90,4125 (11,92) + G0,j1,52. 5™ (G0, 41) + ho 5, 8™ (G0, 91, %92) + go,1,5, 5™ (10, 11)

As = 90,5158 (01, 92) + ho,j, 8™ (10,11, 12) + 90,51.525" (20, 41) + Go,1,5: 5™ (%0, 1),
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As = g0,4,,25" (11,92) + hoj, 8™ (10,91, 12) + G0,1,5, 5™ (G0, 91) + g1,51,j25™" (10, 71) 5
A = 90,5158 (i1, 42) + 91,5132 8™ (G0, 41) + ho,j,8™ (G0, i1, 42) + 90,1,528™ (40, 41) -
* gO,lezsm(iO?ihiZ)a if Jo=0,m< 1.

¢ For each 0 < jy < j1 < j2 < j3 <p, the 3-cell

Wy o e HD, 2B g g

2,73 J1,J2 Jo,J1 J1,J3 Jo,J1
Fmo m
l@g;’ndvjlvh J10,71,72:73 Gio.91.93
EN
m m m
Hjmjs @ Hjon g ,Hjo,jia’
1032533
consists of the morphisms in .o/
F™ o (igyi1)
m . . m . . J0:31:72,73 m . B m . .
G, (105 11) + 950 5, 5, (F0, 1) G jn,is (105 11) + 95 5, (B0, in),
for 0 <ip <i; < g+ 1, defined to be
d ‘Fjoyjl,jmjssm(iO?il)v if Jo =1,
mie e
®  Fijijess" (l0,i1), if jo=0,41 <m,
(] .F()}jl,j%jgsm(io,il), if j():o7 m<i1. O
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