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Abstract: In this paper, we present a weighted residual Galerkin method to solve linear functional differential equations.
We consider the problem with variable coefficients under initial conditions. Assuming the exact solution of the problem
has a Taylor series expansion convergent in the relevant domain, we seek a solution of the given problem in the form of a
polynomial having degree N of our choice. Substituting this polynomial with unknown coefficients in the given equation
yields an expression linear in these coefficients. We then proceed as in the weighted residual method and take inner
product of this expression with monomials up to degree N , resulting in N +1 linear algebraic equations. Appropriately
incorporating the initial conditions and solving the resulting linear system, we obtain the approximate solution to the
given problem. Additionally, we present a way of estimating the absolute error of the obtained approximation, which is
then used to improve the original approximation through a method called residual correction. We also show that the
upper bound for the error of the proposed method depends on the Taylor truncation error of the exact solution. The
proposed scheme and the residual correction technique are illustrated in several example problems.

Key words: Functional differential equations, generalized pantograph equation, weighted residual method, method of
moments, numerical solutions, residual error correction

1. Introduction
The first order delay differential equation (DDE) with constant coefficients and proportional delay

u′(x) = au(x) + bu(qx), x ∈ I = [0, T ], 0 < q < 1 (1.1)

is called the pantograph equation and first appeared in the mathematical modelling of the wave motion in the
current line between an electric locomotive and its overhead catenary wire [1, 2]. For any u0 ∈ R , it has a
unique (continuously differentiable) solution u(x) over I satisfying the condition u(0) = u0 . More generally, if
the coefficients a and b in equation (1.1) are replaced with functions from Cm(I) , then a unique solution u(x)

from Cm+1(I) can be found which also satisfies the same initial condition [3]. interested reader is referred to
[4, 5] for analytical and approximate solutions of the pantograph equation and for DDEs in general.

The pantograph equation plays a role in a wide range of applications. This has brought about an
increasing interest on the numerical solution of DDEs of pantograph type and researchers have made use of
numerous methods. To name a few, Adomian decomposition method was used for this purpose by Dehghan
et al. in [6], where the convergence of the approach was also established. Another popular method, homotopy
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perturbation method, was used by Feng [7], where the multipantograph equation was considered with variable
coefficients. The authors of this paper used a weighted residual Galerkin approach [8] to obtain approximate
solutions of the same problem. Ishiwata and Muroya used two kinds of collocation methods based on special
mesh distributions in [9]. Other collocation methods were presented in conjunction with Bernstein [10] and
Bessel [11] polynomials for the same purpose. In [12], pantograph type DDEs were solved by shifted Chebyshev
polynomials and an applicable error analysis was presented. Another collocation method that is based on
exponential functions rather than polynomials can be found in [13].

In this paper, we consider the linear nonhomogeneous m -th order generalized pantograph equation with
variable coefficients, given by

y(m)(x) +

J∑
j=0

m−1∑
k=0

Pjk(x)y
(k)(λjkx+ µjk) = f(x), 0 ≤ x ≤ b, (1.2)

under the initial conditions
m−1∑
k=0

aiky
(k)(0) = αi, i = 0, 1, . . . ,m− 1. (1.3)

Here, the given functions Pjk(x) and f(x) in equation (1.2) are defined on the interval [0, b] and the coefficients
λjk, µjk, aik, αi are real numbers, where the discrete delay elements µjk are typically negative. Theoretically,
in equation (1.2), any number of combinations of proportional and discrete delays of x may correspond to
derivatives of y(x) of any order k . This means that no upper bound can be specified for the parameter J ,
although it does not usually exceed 1 in the problems considered in the literature. Contrary to the pantograph
equation, the order of generalized pantograph equations can be greater than 1, and its terms contain both simple
and proportional delay elements. Generalized pantograph equations are encountered in the applications that
model various physical phenomena and a large variety of numerical models have been used to find approximate
solutions of equations of this type. To name a few, these methods include a collocation algorithm based on
Bernoulli polynomials [14], a Taylor polynomial approach [15], a collocation method involving Lucas polynomials
[16], variational iteration method [17], and an operational matrix method using polynomials in the standard
basis [18]. In addition to these, pantograph equations have been solved using shifted orthonormal Bernstein
polynomials [19]. There are also studies interested in solving a nonlinear version of equation (1.2); the reader
can see [20], for example, where Lucas polynomials are employed in conjunction with collocation points to solve
nonlinear delay differential equations of this type.

The organization of the paper is as follows: The proposed solution method for equation (1.2) is explained
in Section 2. In Section 3, firstly the technique of residual correction is described, which exploits the linearity of
equation (1.2) in order to estimate the absolute error and thus obtain a more accurate approximation from the
original one. Secondly, assuming the exact solution of equation (1.2) is analytic, an upper bound for the absolute
error of the approximate solution is given in terms of the Taylor truncation error of the exact solution. Section
4 contains numerical examples, where approximate solutions corresponding to various N values are obtained
using the proposed method. In addition, residual correction technique described in Section 3.1 is applied to
two example problems and comparisons with other methods are made whenever possible. Finally, conclusions
of the paper are summarized in Section 5.
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2. Solution method

In this section, we outline the Galerkin-like procedure we will use in order to solve equation (1.2). The method,
which relies on taking inner product of an expression with monomials, also called the method of moments,
was employed to obtain approximate solutions of high-order Fredholm integro-differential equations [21] and
high-order integro-differential equations with weakly singular kernel [22]. In this study, we develop the method
to compute the approximate solutions of generalized pantograph-type functional differential equations.

To begin with, we assume that the unique solution y(x) of equation (1.2) can be expressed as a power
series of the form

y(x) =

∞∑
k=0

akx
k.

We then truncate this power series after the (N + 1)st term so that

yN (x) =

N∑
k=0

akx
k = X(x) ·A (2.1)

where

X(x) = [ 1 x x2 . . . xN ], A = [ a0 a1 a2 . . . aN ]T .

Here, the coefficients ai will be obtained as the output of the procedure. The derivative y
′

N (x) of the
approximate solution can also be expressed as a product of matrices. Namely, if B is the (N + 1) × (N + 1)

matrix

B =


0 1 0 . . . 0
0 0 2 . . . 0
...

...
... . . . ...

0 0 0 . . . N
0 0 0 . . . 0


defined by Bi,i+1 = i for i = 1, 2, . . . , N and Bi,j = 0 elsewhere, then the equality

y
(k)
N (x) = X(x)BkA (2.2)

holds for any nonnegative integer k , where y
(0)
n denotes the function yn itself. In order to express the delayed

terms in equation (1.2), equation (2.2) can be utilized in a straightforward manner. For this purpose, given two
constants λ and µ , we replace the variable x in X(x) with λx+ µ and write equation (2.2) as

y
(k)
N (λx+ µ) = X(λx+ µ)BkA. (2.3)

It is worth noting that the vector X(λx+ µ) can be expressed in a form that is more convenient for computer
implementations. Namely, if we define the (N + 1) -dimensional square matrix B(λ, µ) by Bi,j(λ, µ) =
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(
j − 1

i− 1

)
λi−1µj−i where we use the conventions

(
i

j

)
= 0 whenever j > i and

(
0

0

)
= 1 , or more explicitly by

B(λ, µ) =


1 µ µ2 . . . µN

0 λ 2λµ . . . NλµN−1

0 0 λ2 . . . N(N−1)
2 λ2µN−2

...
...

... . . . ...
0 0 0 . . . λN

 ,

then the equality X(λx+ µ) = X(x)B(λ, µ) holds.

After that, substituting the matrix expressions for y
(m)
N (x) and y

(k)
N (λjkx+µjk) given by equation (2.2)

and (2.3) for j = 0, 1, . . . , J and k = 0, 1, . . . ,m− 1 into equation (1.2) and rearranging yieldsXBm +

J∑
j=0

m−1∑
k=0

Pjk(x)X(x)B(λjk, µjk)B
k

A = f(x). (2.4)

Now, since we are basically trying to calculate the approximate solution yN (x) in terms of the elements of the
basis set is Φ = {1, x, x2, . . . , xN} of the set of all polynomials having degree at most N , the coefficients ai can
be determined by taking inner product of the elements of Φ with the vector of length N + 1 on the left-hand
side of equation (2.4). More precisely, if we define G(x) by

G(x) := XBm +

J∑
j=0

m−1∑
k=0

Pjk(x)X(x)B(λjk, µjk)B
k,

taking the inner product of each element of Φ with both sides of equation (2.4) results in a linear system WA =

F of N + 1 equations in the unknowns a0, a1, . . . , aN . Explicitly, the coefficient matrix W and the column
vector F on the right-hand side of this system is given by Wi,j =< xi−1,G(x)1,j >, Fi,1 =< xi−1, f(x) > , or
more explicitly by

W =


< 1,G(x)1,1 > < 1,G(x)1,2 > . . . < 1,G(x)1,N+1 >
< x,G(x)1,1 > < x,G(x)1,2 > . . . < x,G(x)1,N+1 >
< x2,G(x)1,1 > < x2,G(x)1,2 > . . . < x2,G(x)1,N+1 >

...
...

...
...

< xN ,G(x)1,1 > < xN ,G(x)1,2 > . . . < xN ,G(x)1,N+1 >

 , (2.5)

F =
[
< 1, f(x) > < x, f(x) > < x2, f(x) > . . . < xN , f(x) >

]T
,

where the inner product is defined by < f, g >=

∫ b

0

f(x)g(x)dx. Here, f and g are functions from the Hilbert

space L2[0, b] . Since the initial conditions in equation (1.3) should also be satisfied, m rows of W and the
corresponding m entries of F should be modified accordingly. For the sake of being deterministic, let us fix the
modified entries to be the last m rows of W and the last m entries of F . Determining the matrix equivalents
of the initial conditions is easy in view of equation (2.2). Namely, (i+ 1)-st initial condition is given by

m−1∑
k=0

aiky
(k)(0) =

m−1∑
k=0

[aikX(0)]BkA = αi
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for i = 0, 1, . . . ,m− 1 , where X(0) = [ 1 0 · · · 0 ] . Thus, feeding the m initial conditions into the system
WA = F amounts to substituting the m× (N + 1) matrix


∑m−1

k=0 [a0kX(0)]Bk∑m−1
k=0 [a1kX(0)]Bk

...∑m−1
k=0 [am−1,kX(0)]Bk


for the last m rows of W and the length-m vector [ α0 α1 . . . αm−1 ]T for the last m entries of F . After

performing this step, we are left with the modified system W̃A = F̃ explicitly given by

W̃ =



< 1,G(x)1,1 > < 1,G(x)1,2 > . . . < 1,G(x)1,N+1 >
< x,G(x)1,1 > < x,G(x)1,2 > . . . < x,G(x)1,N+1 >
< x2,G(x)1,1 > < x2,G(x)1,2 > . . . < x2,G(x)1,N+1 >

...
...

...
...

< xN−m,G(x)1,1 > < xN−m,G(x)1,2 > . . . < xN−m,G(x)1,N+1 >∑m−1
k=0 [a0kX(0)]Bk∑m−1
k=0 [a1kX(0)]Bk

...∑m−1
k=0 [am−1,kX(0)]Bk


,

F̃ =
[
< 1, f(x) > < x, f(x) > . . . < xN−m, f(x) > α0 α1 · · · αm−1

]T
,

from which we obtain the matrix of unknown coefficients A = W̃−1F̃ and the approximate solution

yN (x) = a0 + a1x+ . . .+ aNxN .

3. Error analysis and residual correction
In this section, we first present a way of improving the accuracy of an already obtained approximate solution.
Then, we give an upper bound for the absolute error in terms of the Taylor truncation error of the exact solution.

3.1. Error estimation and residual correction
In situations where it is not possible to measure the accuracy of an approximate solution, the residual function
is useful since it gives an idea about the efficiency of this approximation. Furthermore, when the equation
is linear in the unknown function, it is possible to exploit the residual function of the approximate solution
in order to obtain a more accurate solution. In our case, since the generalized pantograph equation given by
equations (1.2) is linear in the unknown function y(x) , the method of residual correction can be applied in a
rather straightforward manner. This section is about how the residual function gives rise to an error estimation
of an approximate solution to equations (1.2) obtained as the output of our method. We also exhibit how this
estimation is used to obtain better approximate solutions.

To this end, let us consider the residual function

R(x) = y(m)(x) +

J∑
j=0

m−1∑
k=0

Pjk(x)y
(k)(λjkx+ µjk)− f(x) = 0 (3.1)
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of equation (1.2). We now replace y(x) by the approximate solution yN (x) to obtain

RN (x) = y
(m)
N (x) +

J∑
j=0

m−1∑
k=0

Pjk(x)y
(k)
N (λjkx+ µjk)− f(x) (3.2)

as the residual function of yN (x) . Subtracting equation (3.1) from equation (3.2) and rearranging yields

e
(m)
N (x) +

J∑
j=0

m−1∑
k=0

Pjk(x)e
(k)
N (λjkx+ µjk) = −RN (x), (3.3)

which is just equation (1.2) with y(x) replaced by eN (x) = y(x)− yN (x) and with the nonhomogeneous term
RN (x) instead of f(x) . Furthermore, since the approximate solution yN (x) also satisfies the initial conditions
in equation (1.3), a simple manipulation gives

m−1∑
k=0

aike
(k)
N (0) = 0, i = 0, 1, . . . ,m− 1 (3.4)

as the initial conditions of equation (3.3). Next step is to simply employ the method described in Section 2 to
find an approximate solution to equation (3.3) for some choice of positive integer M . This approximate solution,
which we will denote by eN,M (x) , is our estimation of the error function eN (x) for the approximate solution
yN (x) to equation (1.2). Thus, our new approximate solution, called the corrected solution, to equation (1.2)
is given by

yN,M (x) = yN (x) + eN,M (x). (3.5)

In what follows, we will denote by EN,M (x) the actual error of the corrected solution, which is equal to
EN,M (x) = y(x) − yN,M (x) . Note that the relation EN,M (x) = eN (x) − eN,M (x) also holds between the
estimated error eN,M (x) of yN (x) and its actual error eN (x) . This means that we can measure the success of
the residual correction process by the accuracy of our estimation of the error function eN (x) corresponding to
yN (x) . This will be made clear in the examples of the succeeding section.

3.2. Error bound for the solution
In this part, we relate the error bound for the approximate solution yN (x) to the truncation error of the Taylor
polynomial corresponding to the exact solution.

Theorem 3.1 Let yN (x) and y(x) denote the approximate and the exact solutions of problem (1.2), respectively.
If y(x) ∈ CN+1[0, b] , then

|y(x)− yN (x)| ≤ |RT
N (x)|+ |yTN (x)− yN (x)| (3.6)

where yTN (x) denotes the N th degree Taylor polynomial of y around the point x = q ∈ [0, b] and RT
N represents

its remainder term.

Proof Since y is (N + 1) -times continuously differentiable, it can be represented by its Taylor series as

y(x) =

N∑
n=0

(x− q)n

n!
yn(q) +RT

N (x),
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where

RT
N (x) =

(x− q)N+1

(N + 1)!
y(N+1)(cx), 0 < cx < x ≤ b

is the reminder term of the Taylor expansion of y . Thus, y(x)−yTN (x) = RT
N (x) . By using this and the triangle

inequality, we obtain

|y(x)− yN (x)| = |y(x)− yN (x) + yTN (x)− yTN (x)|

≤ |y(x)− yTN (x)|+ |yTN (x)− yN (x)|

= |RT
N (x, q)|+ |yTN (x)− yN (x)|.

2

As a result, we have found an upper bound of the absolute error in terms of the Taylor truncation error
of the exact solution. Note that this is not an a priori error bound; it only serves as a means to compare the
actual error to this Taylor truncation error.

4. Illustrative examples
In this section, we apply the method explained in Section 2 to several generalized pantograph equations and
compare the resulting approximate solutions with some other methods present in the literature. We also apply
residual correction to obtain better approximate solutions using the existing ones. All the calculations have
been performed using MATLAB.

Example 4.1 Let us first consider the third-order generalized pantograph equation studied in [23] and then in
[14, 24, 25]:

y
′′′
(t) + y(t) + y(t− 0.3) = e−t+0.3, 0 ≤ t ≤ 1 (4.1)

y(0) = 1, y
′
(0) = −1, y

′′
(0) = 1.

The exact solution of this problem is y(t) = e−t . Table 1 compares the absolute errors of the solutions obtained
by the present method, the Taylor series method [23], the Hermite method [24], the Chebyshev-Gauss grid
method [25], and the collocation method based on Bernoulli operational matrix [14] for N = 5 and N = 8 . It
can be concluded that for each choice of the parameter N , the present method outperforms the aforementioned
ones for most, if not all, of the sample points taken from [0, 1] . The values in the table also imply that the
absolute error functions resulting from the present method is more evenly distributed over the interval [0, 1]

compared to the other methods. Furthermore, the last column indicates that increasing N decreases the
absolute error by a significant amount. The data in the table can be seen in a visual setting in Figure 1.

We have also applied residual correction to the approximate solution y8(x) as explained in Section 3.1 in
this problem. For this purpose, firstly we have choosen M = 10 and M = 13 in order to obtain the estimates for
the actual error e8(x) using these M values. These estimates have then been used to construct the corrected
solutions y8,10(x) and y8,13(x) . In Table 2, the error estimations corresponding to M = 10 and M = 13

are given along with the actual errors of the corrected solutions y8,10(x) and y8,13(x) for several values of x .
Table 2 makes it clear that the accuracy of the improved solutions is a direct consequence of the accuracy of
error estimations, which is in parallel with the remark made at the end of Section 3.1. It is also seen that the
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Table 1. Comparison of the absolute errors of the approximate solutions of Example 1 obtained by the present method,
the Taylor method [24], Hermite method [23], Chebyshev method [25] and CMBOM method [14] for various values of
N .

t Taylor method CMBOM method Present method Present method
with N = 5 with N = 5 with N = 5 with N = 11

0.2 0.854E − 7 0.369E − 6 0.368E − 5 0.103E − 13

0.4 0.536E − 5 0.237E − 5 0.121E − 4 0.617E − 13

0.6 0.595E − 4 0.596E − 5 0.120E − 4 0.140E − 12

0.8 0.326E − 3 0.348E − 4 0.397E − 5 0.260E − 12

1 0.121E − 2 0.203E − 3 0.575E − 6 0.411E − 12

t Chebyshev method CMBOM method Hermite method Present method
with N = 8 with N = 8 with N = 8 with N = 8

0.2 0.370E − 6 0.511E − 10 0.620E − 8 0.774E − 10

0.4 0.238E − 5 0.250E − 9 0.576E − 7 0.313E − 10

0.6 0.597E − 5 0.594E − 9 0.179E − 6 0.537E − 9

0.8 0.348E − 4 0.711E − 9 0.373E − 6 0.693E − 9

1 0.203E − 3 0.268E − 7 0.636E − 6 0.117E − 8

0.2 0.4 0.6 0.8 1
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 
Hermite method with N=8

Taylor method with N=5

Chebyshev method with N=8

CMBOM method with N=8

Present method with N=5

Present method with N=8

Figure 1. Graphics of the absolute errors of Hermite polynomial method, Taylor method, Chebyshev method, CMBOM
method, and the present method for different values of N in Example 1.

estimates corresponding to M = 13 are more accurate than those corresponding to M = 10 , which is because
the proposed method is more accurate when implemented using higher-degree polynomials. These remarks can
also be confirmed from Figure 2, where the data in Table 2 are depicted graphically.
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Actual error |e
12

(x)|

Actual corrected error |E
12,4

(x)|

Actual corrected error |E
12,7

(x)|

Figure 2. Comparison of the actual error e8(x) with the estimated errors e8,10(x) and e8,13(x) and with the corrected
errors E8,10(x) and E8,13(x) of its two improvements in Example 1.

As an illustration of the meaning of the error bound (3.6) proved in Section 3.2, let us consider the
approximate solutions of equation (4.1) obtained with N = 5, N = 8 and N = 11 . The error bound (3.6)
consists of two parts, which are the Taylor truncation error of the exact solution e−x and the maximum
distance of the approximate solution to the Taylor polynomial having the same degree. The N -th degree
Taylor polynomial of the exact solution e−x around x = 0 is given by

yTN (x) = 1− x+
x2

2
− x3

6
+ . . .+ (−1)N

xN

N !

and its absolute truncation error is given by

|RT
N (x)| = xN+1

(N + 1)!

∣∣∣∣dN+1(e−x)

dxN+1

∣∣∣∣
x=cx

=
xN+1

(N + 1)!
e−cx <

1

(N + 1)!

since we have 0 < cx < x < 1 and dN+1

dxN+1
e−x = (−1)N+1e−x . As for the second part of the error bound (3.6),

we first compute the maximum distance between the fifth degree Taylor polynomial

yTN (x) = 1− x+
x2

2
− x3

6
+

x4

24
− x5

120

of e−x around x = 0 and the approximate solution

y5(x) = 1− x+ 0.5x2 − 0.1657425668x3 + 0.0387656280x4 − 0.0051430446x5.
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Table 2. Comparison of the actual absolute errors for y8(x) and its two improvements for M = 10 and M = 13 in
Example 1.

x Actual error for Estimated error for Estimated error for Actual error for Actual error for
y8(x) N = 8 y8,10(x) N = 8,M = 10 y8,13(x) N = 8,M = 13 y8,10(x) N = 8,M = 10 y8,13(x) N = 8,M = 13

0 0 0 0 0 0

0.2 0.774E − 10 0.773E − 10 0.774E − 10 0.107E − 12 0

0.4 0.313E − 10 0.305E − 10 0.313E − 10 0.790E − 12 0

0.6 0.537E − 9 0.535E − 9 0.537E − 9 0.166E − 11 0.333E − 15

0.8 0.693E − 9 0.690E − 9 0.693E − 9 0.321E − 11 0.666E − 15

1 0.117E − 8 0.116E − 8 0.117E − 8 0.502E − 11 0.777E − 15

Table 3. Comparison of the actual maximum absolute errors and the error bounds computed using (3.6) corresponding
to N = 5, 8 and 11 in Example 1.

Max. error for N = 5 Err. bound for N = 5 Max. error for N = 8 Err. bound for N = 8 Max. error for N = 11 Err. bound for N = 11

0.136× 10−4 0.0026 0.117× 10−8 0.525× 10−5 0.286× 10−10 0.402× 10−8

This maximum distance occurs at the point x = 1 , which is equal to 0.0012. Since the absolute value |RT
N (x)|

of the Taylor truncation error is known to be bounded by 1

6!
< 0.0014 , the error bound formula for N = 5

gives |y(x)− y5(x)| < 0.0026 . This procedure has also been carried out for the values N = 8 and N = 11 . The
obtained bounds are shown in Table 3 together with the maximum actual errors |eN (x)| corresponding to these
N values. It is understood that the error bounds for this problem are rather loose since the actual maximum
error values are much smaller in reality. It should be stressed once more that the error bound (3.6) is not an a
priori error bound; it only shows that the actual error is bounded in part by the Taylor truncation error of the
actual solution.

Example 4.2 Our second example is the following third order generalized pantograph equation from [13], whose
exact solution is y(x) = e−x.

y(3)(x)− xy′′(
x

3
− 1) + xy′(

x

4
+ 1) + y(x) = −x(e−

x
3+1 + e−

x
4−1), 0 ≤ x ≤ 3 (4.2)

y(0) = 1, y′(0) = −1, y′′(0) = 1.

We applied residual correction to y12(x) for the values M = 4 and M = 7 . Table 4 and Figure 3
illustrate the absolute error values of the original approximation y12(x) and of the improvements y12,4(x) and
y12,7(x) for several values of x . It can be commented looking at the table that residual correction greatly
reduces the absolute error also for this problem. When we examine the two graphs in the figure, just like as in
the first example problem, we see that the estimated absolute errors |e12,4(x)| and |e12,7(x)| are very close to
the actual error |e12(x)| , which explains the significant decrease in the actual corrected errors |E12,4(x)| and
|E12,7(x)| .
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Table 4. Comparison of the actual absolute errors for y12(x) and its two improvements for M = 4 and M = 7 in
Example 2.

x Actual error for Estimated error for Estimated error for Actual error for Actual error for
y12(x) N = 12 y12,4(x) N = 12,M = 4 y12,7(x) N = 12,M = 7 y12,4(x) N = 12,M = 4 y12,7(x) N = 12,M = 7

0 0 0 0 0 0

0.4 0.554E − 6 0.596E − 6 0.561E − 6 0.427E − 7 0.745E − 8

0.8 0.733E − 5 0.775E − 5 0.742E − 5 0.425E − 6 0.957E − 7

1.2 0.302E − 4 0.339E − 4 0.311E − 4 0.364E − 5 0.888E − 6

1.6 0.763E − 4 0.813E − 4 0.775E − 4 0.506E − 5 0.120E − 5

2.0 0.143E − 3 0.156E − 3 0.147E − 3 0.122E − 4 0.304E − 5

2.4 0.219E − 3 0.248E − 3 0.225E − 3 0.291E − 4 0.592E − 5

2.8 0.276E − 3 0.309E − 3 0.283E − 3 0.336E − 4 0.675E − 5

3.0 0.285E − 3 0.323E − 3 0.292E − 3 0.377E − 4 0.718E − 5
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Figure 3. Comparison of the actual absolute error |e12(x)| with the estimated errors |e12,4(x)| and |e12,7(x)| and with
the corrected errors |E12,4(x)| and |E12,7(x)| of its two improvements in Example 2.

Example 4.3 Next, we consider the following second-order generalized pantograph equation studied in [14]:

y′′(x) = 0.75y(x) + y(0.5x)− x2 + 2, 0 ≤ x ≤ 1 (4.3)

y(0) = 0, y′(0) = 0.

Implementing the present method with N = 2 yields the solution y2(x) = x2 , which is the exact solution. In
fact, for any choice of N > 2 we get ak = 0 for 2 < k ≤ N as a result of the algorithm, which means any
N ≥ 2 yields the exact solution y(x) = x2 . This is not a surprise since the scheme described in Section 2 makes
it clear that the unknown coefficients of the approximate solution yN (x) obtained as a result are equal to the
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actual coefficients of the exact solution. Therefore, this example application shows that the present method
yields the exact solution in case this solution is a polynomial.

5. Conclusions
In this paper, we have presented a Galerkin-like approach for the approximate solution of linear functional
differential equations. The method includes taking inner product of an expression derived from equation (1.2)
with a set of monomials. The results of this approach are compared with some popular methods present in
the literature and it is revealed that the present method performs slightly better than the others in terms of
absolute error. Residual error correction technique to improve the accuracy of approximate solutions has also
been discussed. Simulation results show that significant improvements in the approximate solutions can be
achieved as a result of employing this technique. It is stressed that this fact can be attributed to the accuracy
of our error estimation related to the approximate solution. Lastly, the presented method implemented with
parameter N gives rise to the exact solution in case the exact solution is a polynomial of degree at most N .
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