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Abstract: In this work, we characterize the boundedness of weighted composition operators from the Bloch space and
the little Bloch space to nth weighted-type spaces. Some estimates for the essential norm of these operators are also
given. As a corollary, we obtain some characterizations for the compactness of weighted composition operators from the
Bloch space and the little Bloch space to nth weighted-type spaces.
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1. Introduction
Let D be the open unit disc in the complex plane C , H(D) the set of all analytic functions on D , and
H∞ = H∞(D) the space of bounded analytic functions on D with the norm ∥f∥∞ = supz∈D |f(z)| . The Bloch
space, denoted by B = B(D) , is the set of all f ∈ H(D) for which

∥f∥B = |f(0)|+ sup
z∈D

(1− |z|2)|f ′(z)| < ∞.

The Bloch space B is a Banach space with the above norm ∥ · ∥B . The little Bloch space B0 consists of all
f ∈ H(D) such that lim|z|→1(1− |z|2)|f ′(z)| = 0. It is well known that B0 is the closure of polynomials in B .

Let µ be a weight, which means that µ is a positive and continuous function on D . Let n ∈ N , the set
of all positive integers. The nth weighted-type space, denoted by Wn

µ = Wn
µ (D) , is the set of all f ∈ H(D)

such that

∥f∥Wn
µ
=

n−1∑
i=0

|f (i)(0)|+ sup
z∈D

µ(z)|f (n)(z)| < ∞.

It is easy to check that Wn
µ is a Banach space with the above norm. We refer the interested reader to [16–18] for

the space Wn
µ . When n = 1 , the space W1

µ is called the Bloch-type space. Let β > 0 and µ(z) = (1− |z|2)β .

The space W1
µ coincides with the Bloch-type space Bβ . In particular, B1 is the classical Bloch space B .
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The space W2
µ is also called the Zygmund-type space. For more information about Bloch-type spaces and

Zygmund-type spaces, see [2, 7, 9, 21, 22].
Let g ∈ H(D) and φ ∈ S(D) , the set of all analytic self-maps of D . The weighted composition operator,

denoted by Cg
φ , induced by φ and g is defined as follows.

(Cg
φf)(z) = g(z)f(φ(z)), f ∈ H(D), z ∈ D.

When g ≡ 1 , the operator Cg
φ is denoted by Cφ and called the composition operator. If φ(z) = z , then Cg

φ

is called the multiplication operator and denoted by Mg . Interested readers can refer to [5] for the theory of
composition operators and weighted composition operators.

For any φ ∈ S(D) , it is widely known that Cφ : B → B is bounded. The compactness of Cφ : B → B was
investigated in [12]. Wulan et al. [19] showed that Cφ : B → B is compact if and only if limk→∞ ∥φk∥B = 0.

Zhao in [20] characterized the essential norm of Cφ : B → B by using ∥φk∥B. The operator Cg
φ : B → B was

studied in [14, 15]. In [3], Colonna investigated Cg
φ : B → B by using ∥gφk∥B . See [6, 8, 10, 11, 13, 23, 24] for

more results of the operator Cg
φ : B → B .

Motivated by [10, 19], in this paper, we give some characterizations for the boundedness of Cg
φ : B → Wn

µ .
Moreover, we give some estimates for the essential norm of Cg

φ : B → Wn
µ . By applying these estimates, some

characterizations for the compactness of Cg
φ : B → Wn

µ are obtained.
Throughout this paper, we will use the notation A ⪯ B if there exists a constant C > 0 such that

A ≤ CB . In particular, if A ⪯ B and B ⪯ A , then we write A ≈ B and say that A and B are comparable.

2. Boundedness
To investigate the boundedness of Cg

φ : B → Wn
µ , we need to state some lemmas. The next lemma was proved

in [21].

Lemma 2.1 For any f ∈ B and n ∈ N ,

sup
z∈D

(1− |z|2)|f ′(z)| ≈
n∑

i=0

|f (i)(0)|+ sup
z∈D

(1− |z|2)n+1|f (n+1)(z)|.

Lemma 2.2 ([11]) Let f ∈ B . Then,

|f(z)| ≤ 1

log 2
∥f∥B log

2

1− |z|2
, z ∈ D.

For any a ∈ D and i ∈ {1, 2, ..., n} , set

fi,a(z) =

(
1− | a |2

1− az

)i

, z ∈ D. (2.1)

It is clear that fi,a ∈ B for each i ∈ {1, 2, ..., n} . From Lemma 2.3 of [1], we have the following Lemma.

Lemma 2.3 For any 0 ̸= a ∈ D and i ∈ {1, ..., n} , there exist functions vi,a ∈ B such that

v
(k)
i,a (a) =

{
āi

(1−|a|2)i , k = i,

0, k ̸= i.
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For n, k ∈ N0 , the set of all nonnegative integers, with k ≤ n , the partial Bell polynomials are defined
by

Bn,k(x1, x2, ..., xn−k+1) =
∑ n!

j1!j2!...jn−k+1!
(
x1

1!
)j1(

x2

2!
)j2 ...(

xn−k+1

(n− k + 1)!
)jn−k+1 ,

where the sum taken over all j1, j2, ..., jn−k+1 such that

j1 + j2 + ...+ jn−k+1 = k, j1 + 2j2 + ...+ (n− k + 1)jn−k+1 = n.

where j1, j2, ..., jn−k+1 ∈ N0 . For more information about Bell polynomials, see [4, p 134].

The proof of the following lemma is similar to the proof of Lemma 4 in [17], so we omit the details.

Lemma 2.4 Let f, h, g ∈ H(D) . Then for any n ∈ N0 ,

(Cg
hf)

(n)(z) =

n∑
i=0

f (i)(h(z))

n∑
l=i

(
n

l

)
g(n−l)(z)Bl,i(h

′(z), ..., h(l−i+1)(z)).

Lemma 2.5 Let n ∈ N and φ ∈ S(D) . Then for any a ∈ D , there exists a function ua ∈ B0 such that

ua(φ(a)) = log
2

1− | φ(a) |2
and u′

a(φ(a)) = u′′
a(φ(a)) = . . . = u(n)

a (φ(a)) = 0.

Proof If φ(a) = 0 , then ua(z) = log 2 . For any a ∈ D with φ(a) ̸= 0 , set

ga,k(z) = (n+ k) log
2

1− φ(a)z
−

(log 2

1−φ(a)z
)n+k

(log 2
1−|φ(a)|2 )

n+k−1
, k ∈ {1, 2, . . . , n}.

Then ga,k ∈ B and lim|z|→1(1−|z|2)|g′a,k(z)| = 0 . So, ga,k ∈ B0 . Now we calculate g
(s)
a,k(φ(a)) for s ∈ {2, . . . , n} .

Set

g(z) = 1, h(z) = log
2

1− φ(a)z
and f(z) = (n+ k)z − zn+k

γn+k−1

in Lemma 2.4 , where γ = log 2
1−|φ(a)|2 . We get

g
(s)
a,k(φ(a)) = (f(h))(s)(φ(a))

=

s∑
i=1

f (i)(h(φ(a)))Bs,i

(
h′(φ(a)), . . . , h(s−i+1)(φ(a))

)
. (2.2)

Also f ′(h(φ(a))) = g′a,k(φ(a)) = 0 and for i ∈ {2, . . . , s} ,

f (i)(h(φ(a))) = −pn+k
i × γ1−i, (2.3)

where pn+k
i = (n+k)!

(n+k−i)! . After a calculation, we have

h(i)(φ(a)) =
(i− 1)!φ(a)

i

(1− | φ(a) |2)i
= (i− 1)!

(
h′(φ(a))

)i
.

110



ABBASI et al./Turk J Math

Hence,

Bs,i

(
h′(φ(a)), . . . , h(s−i+1)(φ(a))

)
=
∑ s!

j1!j2! . . . js−i+1

(h′(φ(a))

1!

)j1(h′′(φ(a))

2!

)j2
. . .

(h(s−i+1)(φ(a))

(s− i+ 1)!

)js−i+1

=
∑ s!

j1! . . . js−i+1!1j1 . . . (s− i+ 1)js−i+1

(
h′(φ(a))

)j1+...+(s−i+1)js−i+1

=
∑ s!

j1!j2! . . . js−i+1!1j12j2 . . . (s− i+ 1)js−i+1︸ ︷︷ ︸
bsi

× φ(a)
s

(1− | φ(a) |2)s
. (2.4)

So, from (2.2)–(2.4) , for any s ∈ {2, . . . , n} , we get

g
(s)
a,k(φ(a)) = − φ(a)

s

(1− | φ(a) |2)s
s∑

i=2

γ1−ibsip
n+k
i .

Now for any a ∈ D with φ(a) ̸= 0 and coefficients c1, c2, ..., cn , we set

da,c1,c2,...,cn(z) =

n∑
k=1

ckga,k(z).

It is clear that da,c1,c2,...,cn ∈ B0 . We consider the system of linear equations

da,c1,c2,...,cn+1(φ(a)) = γ
∑n

k=1(n+ k − 1)ck = γ
d′a,c1,c2,...,cn+1

(φ(a)) =
∑n

k=1 ck × g′a,k(φ(a))︸ ︷︷ ︸
0

= 0

d′′a,c1,c2,...,cn+1
(φ(a)) = − φ(a)

2

(1−|φ(a)|2)2 γ
−1

∑n
k=1 b

2
2p

n+k
2 ck = 0

. . . = . . . = . . .

d
(s)
a,c1,c2,...,cn+1(φ(a)) = − φ(a)

s

(1−|φ(a)|2)s
∑n

k=1

(∑s
i=2 γ

1−ibsip
n+k
i

)
ck = 0

. . . = . . . = . . .

d
(n)
a,c1,c2,...,cn+1(φ(a)) = − φ(a)

n

(1−|φ(a)|2)n
∑n

k=1

(∑n
i=2 γ

1−ibni p
n+k
i

)
ck = 0.

(2.5)

Similar to the proof of Lemma 2.3 in [1], we see that the system (2.5) has a unique solution and the solution is
independent of choice a and φ(a) . If c1, c2, ..., cn is that solution, we get ua(z) = da,c1,c2,...,cn(z), as desired.
2

Let φ ∈ S(D) , i, n ∈ N0 and i ≤ n . For simplicity, we set

Ini (z) :=

n∑
l=i

(
n

l

)
g(n−l)(z)Bl,i(φ

′(z), φ′′(z), ..., φ(l−i+1)(z)). (2.6)

Theorem 2.6 Let n ∈ N , µ be a weight, g ∈ Wn
µ and φ ∈ S(D) . Then the following statements are equivalent.

(a) Cg
φ : B → Wn

µ is bounded.

(b) Cg
φ : B0 → Wn

µ is bounded.

(c) supz∈D µ(z)|g(n)(z)| log 2
1−|φ(z)|2 < ∞ and supj≥0 ∥gφj∥Wn

µ
< ∞ .
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(d) supz∈D µ(z)|g(n)(z)| log 2
1−|φ(z)|2 < ∞ and for each i ∈ {1, ..., n} ,

sup
a∈D

∥Cg
φfi,a∥Wn

µ
< ∞, sup

z∈D
µ(z)|Ini (z)| < ∞,

where fi,a are defined in (2.1) .

(e) supz∈D µ(z)|g(n)(z)| log 2
1−|φ(z)|2 < ∞ and for each i ∈ {1, ..., n} ,

sup
z∈D

µ(z)|Ini (z)|
(1− |φ(z)|2)i

< ∞.

Proof (a) ⇒ (b) It is obvious.
(b) ⇒ (c) For any w ∈ D , let uw be the function defined in Lemma 2.5 . Then L = supw∈D ∥uw∥B < ∞.

Using Lemmas 2.4 and 2.5 , we get

µ(w)|g(n)(w)| log 2

1− |φ(w) |2
= µ(w)|g(n)(w)||uw(φ(w))|

= µ(w)|(Cg
φuw)

(n)(φ(w))| ≤ ∥Cg
φuw∥Wn

µ
≤ L∥Cg

φ∥Wn
µ
< ∞.

Thus, supz∈D µ(z)|g(n)(z)| log 2
1−|φ(z)|2 < ∞. Since the sequence {zj}∞0 is bounded in B0 (see [11]), we get

supj≥0 ∥gφj∥Wn
µ
< ∞ by the boundedness of Cg

φ : B0 → Wn
µ .

(c) ⇒ (d) It follows from Theorem 3.1 in [1].
(d) ⇒ (e) It also follows from Theorem 3.1 in [1].
(e) ⇒ (a) For any f ∈ B , from Lemmas 2.1 , 2.2 and 2.4 , we get

µ(z)|(Cg
φf)

(n)(z)| ≤ 1

log 2
∥f∥B sup

z∈D
µ(z)|g(n)(z)| log 2

1− |φ(z)|2
+ C∥f∥B

n∑
i=1

sup
z∈D

µ(z)|Ini (z)|
(1− |φ(z)|2)i

and for j = 0, 1, · · ·, n− 1,

|(Cg
φf)

(j)(0)| ≤ 1

log 2
|g(0)|∥f∥B log

2

1− |φ(0)|2
+ C

∥f∥B
µ(0)

j∑
i=1

µ(0)|Iji (0)|
(1− |φ(0)|2)i

.

Thus, Cg
φ : B → Wn

µ is bounded by the assumed condition. The proof is complete. 2

3. Essential norm
In this section we give some estimates for ∥Cg

φ∥e,B→Wn
µ

, the essential norm of Cg
φ : B → Wn

µ . Recall that

∥Cg
φ∥e,B→Wn

µ
= inf{∥Cg

φ −K∥B→Wn
µ
: K is compact}.

We begin with the following lemma.

Lemma 3.1 Let n ∈ N , φ ∈ S(D) and {ai} be a sequence in D such that |φ(ai)| → 1 as i → ∞ . Then there
exists a bounded sequence {hi} in B0 such that, {hi} converge to 0 uniformly on compact subsets of D and

hi(φ(ai)) = log
2

1− |φ(ai)|2
, h′

i(φ(ai)) = h′′
i (φ(ai)) = . . . = h

(n)
i (φ(ai)) = 0.
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Proof The proof is similar to the proof of Lemma 2.5. Hence, we omit the details. 2

Theorem 3.2 Let n ∈ N , µ be a weight, g ∈ H(D) and φ ∈ S(D) such that Cg
φ : B → Wn

µ is bounded. Then

∥Cg
φ∥e,B→Wn

µ
≈ max{Ai}ni=0 ≈ max{Bi}ni=0 ≈ ∥Cg

φ∥e,B0→Wn
µ
≈ max

{
lim sup
j→∞

∥gφj∥Wn
µ
, A0

}
,

where

A0 = B0 = lim sup
|φ(z)|→1

µ(z)|g(n)(z)| log 2

1− |φ(z)|2
,

Ai = lim sup
|a|→1

∥Cg
φfi,a∥Wn

µ
, Bi = lim sup

|φ(z)|→1

µ(z)|Ini (z)|
(1− |φ(z)|2)i

, i ∈ {1, . . . , n},

and fi,a are defined in (2.1) .

Proof First we show that

∥Cg
φ∥e,B0→Wn

µ
⪰ A0 = B0. (3.1)

Let {zi} be a sequence in D such that |φ(zi)| → 1 as i → ∞ . We assume that for any i , φ(zi) ̸= 0 . Let {hi}
be the sequence defined in Lemma 4.1. Then for any compact operator K : B0 → Wn

µ , limi→∞ ∥Khi∥Wn
µ
= 0.

Thus,

∥(Cg
φ −K)hi∥B0→Wn

µ
≥ lim sup

i→∞
∥Cg

φhi∥Wn
µ
− lim sup

i→∞
∥Khi∥Wn

µ
≥ lim sup

i→∞
µ(zi)|g(n)(zi)| log

2

1− |φ(zi)|2
,

which implies the desired result.
From Theorem 4.2 in [1], we have

∥Cg
φ∥e,H∞→Wn

µ
⪰ max{Ai}ni=1 and ∥Cg

φ∥e,H∞→Wn
µ
⪰ max{Bi}ni=1.

So,
∥Cg

φ∥e,B→Wn
µ
⪰ max{Ai}ni=1 and ∥Cg

φ∥e,B→Wn
µ
⪰ max{Bi}ni=1.

From the last inequality and (3.1) we obtain

∥Cg
φ∥e,B→Wn

µ
⪰ max{Ai}ni=0 and ∥Cg

φ∥e,B→Wn
µ
⪰ max{Bi}ni=0. (3.2)

Next, we show that

∥Cg
φ∥e,B→Wn

µ
⪯ max{Ai}ni=0 and ∥Cg

φ∥e,B→Wn
µ
⪯ max{Bi}ni=0.

For r ∈ [0, 1) , let Krf(z) = fr(z) = f(rz) . Then Kr : B → B is compact with ∥Kr∥ ≤ 1 . It is obvious that
fr uniformly converge to f on compact subsets of D as r → 1 . Let {rj} ⊂ (0, 1) such that rj → 1 as j → ∞ .
Then for any j ∈ N , Cg

φKrj : B → Wn
µ is compact. Thus,

∥Cg
φ∥e,B→Wn

µ
≤ lim sup

j→∞
∥Cg

φ − Cg
φKrj∥. (3.3)
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Hence, we only need to show that

lim sup
j→∞

∥Cg
φ − Cg

φKrj∥B→Wn
µ
⪯ min{max{Ai}ni=0,max{Bi}ni=0}.

For any f ∈ B such that ∥f∥B ≤ 1 ,

∥(Cg
φ − Cg

φKrj )f∥Wn
µ
=

n−1∑
t=0

∣∣∣∣ t∑
k=0

(f − frj )
(k)(φ(0))Itk(0)

∣∣∣∣+ sup
z∈D

µ(z)

∣∣∣∣ n∑
k=0

(f − frj )
(k)(φ(z))Ink (z)

∣∣∣∣
≤

n−1∑
t=0

∣∣∣∣ t∑
k=0

(f − frj )
(k)(φ(0))Itk(0)

∣∣∣∣︸ ︷︷ ︸
H1

+ sup
|φ(z)|≤rN

µ(z)

∣∣∣∣ n∑
k=0

(f − frj )
(k)(φ(z))Ink (z)

∣∣∣∣︸ ︷︷ ︸
H2

+ sup
|φ(z)|>rN

µ(z)

∣∣∣∣ n∑
k=0

(f − frj )
(k)(φ(z))Ink (z)

∣∣∣∣︸ ︷︷ ︸
H3

, (3.4)

where N ∈ N such that rj ≥ 2
3 for all j ≥ N . Since for any s ∈ N0 , (f − frj )

(s) converges to zero uniformly
on compact subsets of D as j → ∞ , by using Theorem 2.6 (d) , we obtain

lim sup
j→∞

H1 = 0 and lim sup
j→∞

H2 = 0. (3.5)

In addition,

H3 ≤
n∑

k=0

[
sup

|φ(z)|>rN

µ(z)|f (k)(φ(z))||Ink (z)|︸ ︷︷ ︸
Mk

+ sup
|φ(z)|>rN

µ(z)|rkj f (k)(rjφ(z))||Ink (z)|︸ ︷︷ ︸
Nk

]
. (3.6)

First we estimate M0 and N0 . From Lemma 2.2 ,

M0 = sup
|φ(z)|>rN

µ(z)|f(φ(z))||g(n)(z)| ≤ sup
|φ(z)|>rN

µ(z)|g(n)(z)| 1

log 2
∥f∥B log

2

1− |φ(z)|2
⪯ A0 = B0. (3.7)

Similarly,

N0 ⪯ A0 = B0. (3.8)

For k ∈ {1, . . . , n} , by (2.6) and Lemmas 2.1 , 2.3 and 2.4 ,

Mk = sup
|φ(z)|>rN

µ(z)
(1− |φ(z)|2)k|f (k)(φ(z))|

|φ(z)|k
|φ(z)|k|Ink (z)|
(1− |φ(z)|2)k

⪯ ∥f∥B sup
|φ(z)|>rN

∥Cg
φvk,φ(z)∥Wn

µ
⪯

n∑
j=1

|ckj | sup
|a|>rN

∥Cg
φfj,a∥Wn

µ
. (3.9)

Taking the above limit as N → ∞ , we obtain

lim sup
j→∞

Mk ⪯
n∑

i=1

lim sup
|a|→1

∥Cg
φfi,a∥Wn

µ︸ ︷︷ ︸
Ai

⪯ max{Ai}ni=1 and lim sup
j→∞

Mk ⪯ Bk. (3.10)
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Similarly,

lim sup
j→∞

Nk ⪯ max{Ai}ni=1 and lim sup
j→∞

Nk ⪯ Bk. (3.11)

Thus, from (3.4)–(3.8) , (3.10), and (3.11) , we obtain

lim sup
j→∞

∥Cg
φ − Cg

φKrj∥B→Wn
µ
⪯ min

{
max{Ai}ni=0,max{Bi}ni=0

}
.

Hence, from (3.3) ,

∥Cg
φ∥e,B→Wn

µ
⪯ min

{
max{Ai}ni=0,max{Bi}ni=0

}
.

Therefore,

∥Cg
φ∥e,B→Wn

µ
≈ max{Ai}ni=0 ≈ max{Bi}ni=0.

Finally, we show that

∥Cg
φ∥e,B→Wn

µ
≈ ∥Cg

φ∥e,B0→Wn
µ
≈ max

{
lim sup
j→∞

∥gφj∥Wn
µ
, A0

}
. (3.12)

Let j be any positive integer and hj(z) = zj . Then hj ∈ B0 , ∥hj∥B ≈ 1 and {hj}j∈N converges to
0 weakly (see [11]). Hence, for any compact operator K from B0 into Wn

µ , we have limj→∞ ∥Khj∥Wn
µ
= 0.

Thus,

∥Cg
φ −K∥B0→Wn

µ
⪰ lim sup

j→∞
∥(Cg

φ −K)hj∥Wn
µ
≥ lim sup

j→∞
∥Cg

φhj∥Wn
µ
− lim sup

j→∞
∥Khj∥Wn

µ
= lim sup

j→∞
∥gφj∥Wn

µ
.

Hence, ∥Cg
φ∥e,B0→Wn

µ
⪰ lim supj→∞ ∥gφj∥Wn

µ
, which together with (3.1) imply

∥Cg
φ∥e,B0→Wn

µ
⪰ max

{
lim sup
j→∞

∥gφj∥Wn
µ
, A0

}
. (3.13)

From the proof of Theorem 4.3 in [1], we have that max{Ai}ni=1 ⪯ lim supj→∞ ∥gφj∥Wn
µ

; hence,

max{Ai}ni=0 ⪯ max
{
lim sup
j→∞

∥gφj∥Wn
µ
, A0

}
.

Since ∥Cg
φ∥e,B→Wn

µ
≈ max{Ai}ni=0, we obtain

∥Cg
φ∥e,B→Wn

µ
⪯ max

{
lim sup
j→∞

∥gφj∥Wn
µ
, A0

}
. (3.14)

Since ∥Cg
φ∥e,B0→Wn

µ
≤ ∥Cg

φ∥e,B→Wn
µ

, from (3.13) and (3.14) , we get (3.12) . The proof is complete. 2

It is well known that ∥Cg
φ∥e,B→Wn

µ
= 0 if and only if Cg

φ : B → Wn
µ is a compact operator. Hence, we

have the following result.

Corollary 3.3 Let n ∈ N , µ be a weight, g ∈ H(D) and φ ∈ S(D) such that Cg
φ : B → Wn

µ is bounded. Then
the following statements are equivalent.
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(a) Cg
φ : B → Wn

µ is compact.

(b) Cg
φ : B0 → Wn

µ is compact.

(c) lim supj→∞ ∥gφj∥Wn
µ
= 0 and lim sup|φ(z)|→1 µ(z)|g(n)(z)| log 2

1−|φ(z)|2 = 0.

(d) For i ∈ {1, . . . , n} , lim sup|a|→1 ∥Cg
φfi,a∥Wn

µ
= 0 and lim sup|φ(z)|→1 µ(z)|g(n)(z)| log 2

1−|φ(z)|2 = 0.

(e) For i ∈ {1, . . . , n} , lim sup|φ(z)|→1
µ(z)|In

i (z)|
(1−|φ(z)|2)i = 0 and lim sup|φ(z)|→1 µ(z)|g(n)(z)| log 2

1−|φ(z)|2 = 0.

Remark 3.4 Putting n = 1 and µ(z) = (1 − |z|2)β in Theorem 2.6 and Corollary 3.3 , we get some
characterizations for the boundedness and compactness of Cg

φ : B → Bβ (see Theorems 2.1 and 3.1 in [15]).

Moreover, we obtain some estimates for the essential norm of Cg
φ : B → Bβ (see [8, 10, 11]).
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