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Abstract: Let (Tn)n≥0 denote the Tripell sequence, defined by the linear recurrence Tn = 2Tn−1 + Tn−2 + Tn−3 for
n ≥ 3 with T0 = 0 , T1 = 1 and T2 = 2 as initial conditions. In this paper, we study the 2 -adic and 3 -adic valuation of
the Tripell sequence and, as an application, we determine all Tripell numbers which are factorials.
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1. Introduction
Linear recurrence sequences are a subject of extensive study in number theory. For instance, the Fibonacci
sequence (Fn)n≥0 is one of the most famous and curious numerical sequences in mathematics and has been
widely studied in the literature. Another important example is the Pell sequence (Pn)n≥0 , defined by the
recurrence Pn = 2Pn−1+Pn−2 for all n ≥ 2 with P0 = 0 and P1 = 1 as initial conditions. Pell numbers can be
used to deduce important arithmetic properties for a large class of linear recurrence sequences. For the beauty
and rich applications of these numbers and their relatives one can see Koshy’s book [6].

In number theory, for a given prime number p , the p -adic valuation, or p -adic order, of a nonzero integer
n , denoted by νp(n) , is the exponent of the highest power of p which divides n . The p -adic order of certain
linear recurrence sequences has been studied by many authors. For example, the p -adic order of the Fibonacci
numbers was completely characterized by Lengyel in [8]. In 2016, Sanna [13] gave simple formulas for the p -adic
order νp(un) , in terms of νp(n) and the rank of apparition of p in (un)n≥0 , where (un)n≥0 is a nondegenerate
Lucas sequence. In particular, from the main theorems of Lengyel and Sanna we extract the following results:

Theorem 1.1 For each positive integer n and each prime number p ̸= 2, 5 , we have

ν2(Fn) =


0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

3, if n ≡ 6 (mod 12);

ν2(n) + 2, if n ≡ 0 (mod 12).
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In addition, ν5(Fn) = ν5(n) and

νp(Fn) =

{
νp(n) + νp(Fℓ(p)), if n ≡ 0 (mod ℓ(p));

0, otherwise;

where ℓ(p) is the least positive integer such that p | Fℓ(p) .

Theorem 1.2 For each positive integer n and each prime number p ̸= 2 , we have that ν2(Pn) = ν2(n) and

νp(Pn) =

{
νp(n) + νp(Pℓ(p)), if n ≡ 0 (mod ℓ(p));

0, otherwise;

where ℓ(p) is the least positive integer such that p | Pℓ(p) .

However, much less is known about the behavior of the p -adic valuation of linear recurrence sequences of
higher order. A particular case of linear recurrence sequences of order 3 was studied by Marques and Lengyel in
[9]. They catheterized the 2 -adic valuation of the Tribonacci sequence. The Tribonacci sequence (tn)n≥0 starts
with t0 = 0 , t1 = 1 , t2 = 1 and satisfies the recurrence tn = tn−1 + tn−2 + tn−3 for all n ≥ 3 . Results on the
2 -adic valuation of tetra- and pentanacci numbers can be found in [10]. See also [14, 15] for the behavior of the
2 -adic valuation of generalized Fibonacci numbers and some applications to certain Diophantine equations.

The Pell sequence and its generalizations have been studied by some authors (see [3–5]). For example,
in [4], Kiliç gave some relations involving Fibonacci and generalized Pell numbers showing that generalized Pell
numbers can be expressed as the summation of the Fibonacci numbers.

One of the generalizations of the Pell sequence is what we have called the Tripell sequence (Tn)n≥0 . This
sequence starts with T0 = 0 , T1 = 1 , T2 = 2 and each following term is given by the recurrence

Tn = 2Tn−1 + Tn−2 + Tn−3. (1.1)

Below we present the first few elements of the Tripell sequence:

0, 1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, . . .

In this paper we use the theory of constructing identities given by Zhou in [16] and several congruence results
to partially characterize the 2 -adic valuation of the Tripell sequence and fully characterize the 3-adic valuation
ν3(Tn) .

We next present our theorems in which we give simple formulas for the 2 -adic valuation ν2(Tn) (for
most of the values of n) and the 3 -adic valuation ν3(Tn) of the Tripell numbers in terms of ν2(n) and ν3(n) ,
respectively.

Theorem 1.3 The 2-adic valuation of the nth Tripell number is given by

ν2(Tn) =



0, if n ≡ 1, 3, 4, 5 (mod 7);

2, if n ≡ 9 (mod 14);

1, if n ≡ 2, 7 (mod 14);

ν2(n) + 1, if n ≡ 0 (mod 14);

ν2(n+ 1) + 1, if n ≡ 13 (mod 14).
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If n ≡ 6 (mod 14) , then ν2(Tn) = ν2(n) + 1 except when n ≡ 1280 (mod 1792) or, equivalently, when n is of
the form

n = 14(27t+ 26 + 24 + 23 + 2 + 1) + 6 = 1792t+ 1280 with t ≥ 0.

Figure 1 shows the first few values of ν2(Tn) .
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Figure 1. The 2 -adic valuation of the Tripell numbers

Theorem 1.4 The 3-adic valuation of the nth Tripell number is given by

ν3(Tn) =


0, if n ≡ 1, 2, 3, 4 (mod 6);

ν3(n), if n ≡ 0 (mod 6);

ν3(n+ 1), if n ≡ 5 (mod 6).

As a consequence, we notice that ν3(T2n+1) = ν3(T2n+2) for n ≥ 1 . Figure 2 shows the first few values of
ν3(Tn) .
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Figure 2. The 3 -adic valuation of the Tripell numbers
There are many papers in the literature dealing with Diophantine equations obtained by asking whether

members of some fixed binary recurrence sequence are factorials or belong to some other interesting sequence
of positive integers. For example, in [2], all Fibonacci numbers which are sums of three factorials were found,
while in [11], all factorials which are sums of three Fibonacci numbers were found.

In this paper we also present an application of Theorem 1.4, in which we determine all Tripell numbers
which are factorials. We have the following result.
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Theorem 1.5 The only solutions of the Diophantine equation

Tn = m! (1.2)

in positive integers n,m are
(n,m) ∈ {(1, 1), (2, 2)}.

We point out that for finding factorials belonging to some binary recurrence sequences, or related
problems, the existence of primitive divisors (see [1]) is sometimes used. However, similar divisibility properties
for linear recurrences of higher order are not known; therefore, it is necessary to tackle the problem differently.
It turns out that one can use the p -adic valuation of the terms of these sequences and use it to establish upper
bounds on the solutions of some Diophantine equations.

In this work we prove Theorem 1.5 by a simple method which makes use of the 3 -adic valuation of the
terms of the Tripell sequence.

2. Auxiliary results
In this section, we present some auxiliary results that are needed in the proofs of the main theorems. To begin
with, we give an auxiliary lemma, which is a consequence of Legendre’s formula for νp(m!) (see [7]).

Lemma 2.1 For any integer m ≥ 1 and prime p , we have

m

p− 1
−
⌊
logm

log p

⌋
− 1 ≤ νp(m!) ≤ m− 1

p− 1
,

where ⌊x⌋ denotes the largest integer less than or equal to x .

A proof of Lemma 2.1 can be found in [12].
We next mention some facts about the Tripell sequence, which will be used later. First, it is easily checked

that its characteristic polynomial f(x) = x3 − 2x2 − x− 1 is irreducible in Q[x] . In addition, f(x) has a real
root γ > 1 and two conjugate complex roots inside the unit circle. In fact,

γ =
1

3

2 +
3

√
61

2
− 9

√
29

2
+

3

√
61

2
+

9
√
29

2

 = 2.54682 . . . .

The following lemma shows the exponential growth of (Tn)n≥0 .

Lemma 2.2 For all n ≥ 1 , we have
γn−2 ≤ Tn ≤ γn−1.

Proof We prove Lemma 2.2 by using induction on n . First, note that the result is true for n = 1, 2, 3 because

γ−1 ≤ T1 = 1 ≤ γ0, γ0 ≤ T2 = 2 ≤ γ1, and γ1 ≤ T3 = 5 ≤ γ2.

Suppose now that the inequality γm−2 ≤ Tm ≤ γm−1 holds for all m such that 1 ≤ m ≤ n− 1 . It then follows
from the recurrence relation for (Tn)n≥0 (1.1) that

2γn−3 + γn−4 + γn−5 ≤ Tn ≤ 2γn−2 + γn−3 + γn−4.
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Thus,
γn−5(2γ2 + γ + 1) ≤ Tn ≤ γn−4(2γ2 + γ + 1),

which, combined with the fact that γ3 = 2γ2 + γ + 1 , gives the desired result. Thus, Lemma 2.2 holds for all
positive integers n . 2

In [16] Zhou introduced the theory of constructing identities. Basically, it shows how to use certain kinds
of polynomial congruences to prove identities for linear recurrence sequences. We apply this technique to obtain
the following identity involving Tripell numbers. This result plays a crucial role in the proofs of Theorems 1.3
and 1.4.

Lemma 2.3 For all m,n , with m ≥ 3 and n ≥ 0 , we have that

Tm+n = Tm−1Tn+2 + (Tm−2 + Tm−3)Tn+1 + Tm−2Tn

= Tm−1Tn+2 + (Tm − 2Tm−1)Tn+1 + Tm−2Tn.

Proof It is easily seen that the lemma holds for m = 3 , so we assume that m ≥ 4 . First, note that
h(x) = xm+n − 2xm+n−1 − xm+n−2 − xm+n−3 ≡ 0 (mod f(x)) , where f(x) is the characteristic polynomial of
the sequence (Tn)n≥0 . Thus

h(x)(T1 + T2x
−1 + · · ·+ Tm−3x

−m+4 + Tm−2x
−m+3)

= T1x
m+n + T2x

m+n−1 + T3x
m+n−2 + · · ·+ Tm−3x

n+4 + Tm−2x
n+3

− 2T1x
m+n−1 − 2T2x

m+n−2 − 2T3x
m+n−3 − · · · − 2Tm−3x

n+3 − 2Tm−2x
n+2

− T1x
m+n−2 − T2x

m+n−3 − T3x
m+n−4 − · · · − Tm−3x

n+2 − Tm−2x
n+1

− T1x
m+n−3 − T2x

m+n−4 − T3x
m+n−5 − · · · − Tm−3x

n+1 − Tm−2x
n

= T1x
m+n − (2Tm−2 + Tm−3 + Tm−4)x

n+2 − (Tm−2 + Tm−3)x
n+1 − Tm−2x

n

≡ 0 (mod f(x)).

By [16, Theorem 2.3] (TCI), we have

Tm+n = Tm−1Tn+2 + (Tm−2 + Tm−3)Tn+1 + Tm−2Tn.

2

3. Proof of Theorem 1.3
In order to prove Theorem 1.3, we first prove the following lemma.

Lemma 3.1 For all s, t ≥ 1 , we have

T2t7s−2 ≡ 1 (mod 2t+2) and T2t7s−i ≡

{
2t+1 (mod 2t+2), if s ≡ 1 (mod 2);

0 (mod 2t+2), if s ≡ 0 (mod 2);
(3.1)

for i = 0, 1 .
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Proof We first need to prove the congruences

T14s−2 ≡ 1 (mod 8) and T14s−i ≡

{
4 (mod 8), if s ≡ 1 (mod 2);

0 (mod 8), if s ≡ 0 (mod 2);
(3.2)

for i = 0, 1 . Indeed, suppose s is odd, so s = 2r + 1 for some integer r ≥ 0 . Since (Tn mod 8)n≥0 is periodic
with period 28, we have that

T14(2r+1)−2 = T28r+12 ≡ T12 ≡ 22929 ≡ 1 (mod 8),

T14(2r+1)−1 = T28r+13 ≡ T13 ≡ 58396 ≡ 4 (mod 8),

T14(2r+1) = T28r+14 ≡ T14 ≡ 148724 ≡ 4 (mod 8).

This proves that (3.2) holds when s is odd. A similar argument can be applied in the case where s is even.
Thus (3.2) holds for all s ≥ 1 . Now for a fixed s , we use induction on t to prove the congruences given by
(3.1). Note that, by (3.2), (3.1) holds for t = 1 . Suppose now that congruences (3.1) are true for t−1 . Suppose
further that s is odd. The case when s is even can be handled in a similar way. Thus,

T2t−17s−2 ≡ 1 (mod 2t+1) and T2t−17s−i ≡ 2t (mod 2t+1),

for i = 0, 1 , and so

T2t−17s−2 = 1 + 2t+1k1, T2t−17s−1 = 2t + 2t+1k2, and T2t−17s = 2t + 2t+1k3,

for some integers k1 , k2 , and k3 . We derive from all this and Lemma 2.3 that

T2t7s−2 = T(2t−17s)+(2t−17s−2)

= (2t + 2t+1k2)(2
t + 2t+1k3) + (2t + 2t+1k3 − 2(2t + 2t+1k2))(2

t + 2t+1k2)

+ (1 + 2t+1k1)(1 + 2t+1k1)

≡ 1 (mod 2t+2),

as desired. Similarly, we can prove that

T2t7s−1 = T(2t−17s+1)+(2t−17s−2) ≡ 2t+1 (mod 2t+2) and

T2t7s = T(2t−17s+2)+(2t−17s−2) ≡ 2t+1 (mod 2t+2).

This completes the proof of Lemma 3.1. 2

Proof of Theorem 1.3
To prove this theorem, we need to work on each case separately.

(a) Let n ≡ a (mod 7) with a ∈ {1, 3, 4, 5} . Then it is not difficult to see that n ≡ 7i+ a (mod 28) for some
i ∈ {0, 1, 2, 3} . Since (Tn mod 8)n≥0 is periodic with period 28, it follows that Tn ≡ T7i+a (mod 8) .
However, one can check by hand that T7i+a ≡ 1, 3, 5 or 7 (mod 8) , and so ν2(Tn) = 0 .
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(b) If n ≡ 9 (mod 14) , then n ≡ 9 or 23 (mod 28) . By using the periodicity of (Tn mod 8)n≥0 and taking
into account that T9 ≡ T23 ≡ 4 (mod 8) , we conclude that ν2(Tn) = 2 .

(c) Suppose now that n ≡ a (mod 14) with a ∈ {2, 7} . Then n ≡ a or 14 + a (mod 28) . Here we have that
T2 ≡ T16 ≡ T21 ≡ 2 (mod 8) and T7 ≡ 6 (mod 8) . Thus, ν2(Tn) = 1 .

(d) If n ≡ 0 (mod 14) , then n = 2t7s for some s, t ≥ 1 with s odd. Hence, ν2(n) = t . In addition, by
Lemma 3.1 we have that Tn ≡ 2t+1 (mod 2t+2) . Thus, ν2(Tn) = t+ 1 = ν2(n) + 1 .

(e) If n ≡ 13 (mod 14) , then n = 2t7s − 1 for some s, t ≥ 1 with s odd. From this ν2(n + 1) = t .
Furthermore, by Lemma 3.1 we get Tn ≡ 2t+1 (mod 2t+2) . Consequently, ν2(Tn) = t+1 = ν2(n+1)+1 .

(f) We finally deal with the special case when n ≡ 6 (mod 14) . Here we have to prove that ν2(Tn) = ν2(n)+1

except for some special case for n that will be fully characterized. In order to do this, we first write n as
n = 14s+ 6 for some s ≥ 1 . We now distinguish two cases.

Case 1. s is even. In this case n ≡ 6 (mod 28) and so ν2(n) = 1 . In addition, since (Tn mod 8)n≥0

is periodic with period 28, we can conclude that Tn ≡ T6 ≡ 84 ≡ 4 (mod 8) ; therefore, ν2(Tn) = 2 .
Consequently, ν2(Tn) = ν2(n) + 1 .

Case 2. s is odd. Here one of the following cases must hold (for some integer t ≥ 0):

(i) s = 22t+ 1, (v) s = 24t+ 2 + 1,
(ii) s = 23t+ 22 + 2 + 1, (vi) s = 25t+ 23 + 2 + 1,
(iii) s = 27t+ 24 + 23 + 2 + 1, (vii) s = 27t+ 26 + 24 + 23 + 2 + 1.
(iv) s = 26t+ 25 + 24 + 23 + 2 + 1,

(3.3)

We shall work only with the first case, when s = 22t+ 1 , in order to avoid unnecessary repetitions. The
other cases, except the last one, are handled in much the same way. We will prove that

ν2(T14(22t+1)+6) = ν2(14(2
2t+ 1) + 6) + 1 for all t ≥ 0,

by using induction on t . First, note that the base case t = 0 follows from ν2(20) = 2 and ν2(T20) =

ν2(40585304) = 3 . Suppose now that the result holds true for t − 1 . Then with m = 14(22(t − 1) + 1) ,
we have that ν2(Tm+6) = 3 and

T14(22t+1)+6 = T56+14(22(t−1)+1)+6

= T55Tm+8 + (T54 + T53)Tm+7 + T54Tm+6

= 24k1Tm+8 + 24k2Tm+7 + T542
3k3,

for some odd integers k1 , k2 and k3 . By using this and taking into account that T54 is odd, we conclude
that ν2(T14(22t+1)+6) = 3 = ν2(14(2

2t) + 20) + 1 .

Remark 3.2 As we saw before, we proved Theorem 1.3 in the special case when n ≡ 6 (mod 14) by using
mathematical induction on t and this technique worked for almost all of the forms given in (3.3). However, the
induction argument does not work when s = 27t+26 +24 +23 +2+ 1 , since the base case t = 0 does not hold.
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4. Proof of Theorem 1.4
Here we discuss the 3 -adic valuation of the Tripell numbers in a similar way as in the previous section.

Lemma 4.1 For all s, t ≥ 1 , s ̸≡ 0 (mod 3) , we have

T2·3ts−1 ≡

{
2 · 3t (mod 3t+1), if s ≡ 1 (mod 3);

3t (mod 3t+1), if s ≡ 2 (mod 3);

T2·3ts ≡

{
3t (mod 3t+1), if s ≡ 1 (mod 3);

2 · 3t (mod 3t+1), if s ≡ 2 (mod 3);

and

T2·3ts+1 ≡

{
1 + 2 · 3t (mod 3t+1), if s ≡ 1 (mod 3);

1 + 3t (mod 3t+1), if s ≡ 2 (mod 3).

Proof The proof proceeds in a similar way to that of Lemma 3.1. Indeed, using the fact that (Tn mod 9)n≥0

is periodic with period 18, one can prove that the congruences are valid for all s and t = 1 (details are left to
the reader). Thus, we shall consider the general case for any t and fixed s .

Suppose first that s ≡ 1 (mod 3) and the congruences of the lemma are true for t − 1 . Hence,
T2·3t−1s−2 ≡ 1 + 3t−1 (mod 3t) and consequently

T2·3t−1s−2 = 1 + 3t−1 + 3tk3, T2·3t−1s−1 = 2 · 3t−1 + 3tk2,

T2·3t−1s = 3t−1 + 3tk1, T2·3t−1s+1 = 1 + 2 · 3t−1 + 3tk4,
(4.1)

for some integers k1 , k2 , k3 , and k4 . We next show that congruences of the lemma are also true for t . To do
this, we first need to compute T2(2·3t−1s)+i for i ∈ {−1, 0, 1} . Indeed, by applying the summation identity from
Lemma 2.3 and (4.1) we obtain

Ta := T2(2·3t−1s)−1 = T(2·3t−1s+1)+(2·3t−1s−2)

≡ 32t−2 + 2 · 3t−1 + 3tk2 + 2 · 3t−1 + 3tk2 + 2 · 32t−2 (mod 3t+1)

≡ 3t−1 + 3t + 2 · 3tk2 (mod 3t+1),

Tb := T2(2·3t−1s) = T(2·3t−1s+2)+(2·3t−1s−2)

≡ 3t−1 + 3tk1 + 2 · 32t−2 + 3t−1 + 32t−2 + 3tk1 (mod 3t+1)

≡ 2 · 3t−1 + 2 · 3tk1 (mod 3t+1),

and

Tc := T2(2·3t−1s)+1 = T(2·3t−1s+2)+(2·3t−1s−1)

≡ 1 + 2 · 3t−1 + 2 · 3t−1 + 3tk4 + 3tk4 + 4 · 32t−2 + 2 · 32t−2 (mod 3t+1)

≡ 1 + 3t−1 + 3t + 2 · 3tk4 (mod 3t+1).
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We thus get that

T2·3ts−1 = T(2·3t−1s)+(2(2·3t−1s)−1)

= T2·3t−1s−1Tc + (T2·3t−1s − 2T2·3t−1s−1)Tb + T2·3t−1s−2Ta

≡ 2 · 3t−1 + 3tk2 + 2 · 32t−2 + 3t−1 + 32t−2 + 3t + 2 · 3tk2 (mod 3t+1)

≡ 2 · 3t (mod 3t+1),

and
T2·3ts = T(2·3t−1s+1)+(2(2·3t−1s)−1)

= T2·3t−1sTc + (T2·3t−1s−1 + T2·3t−1s−2)Tb + T2·3t−1s−1Ta

≡ 3t−1 + 3tk1 + 32t−2 + 2 · 3t−1 + 2 · 3tk1 + 2 · 32t−2 (mod 3t+1)

≡ 3t (mod 3t+1).

A similar argument (which we leave to the reader) shows that

T2·3ts+1 ≡ 1 + 2 · 3t (mod 3t+1).

We now assume that s ≡ 2 (mod 3) . Then s = 3k + 2 = (3k + 1) + 1 for some k ∈ Z . In this case, with
m = 2 · 3t(3k + 1) and using the previously proved result for the case s ≡ 1 (mod 3) , we obtain

T2·3ts−1 = T(2·3t)+(2·3t(3k+1)−1)

= T2·3t−1Tm+1 + (T2·3t − 2T2·3t−1)Tm + T2·3t−2Tm−1

≡ (2 · 3t)(1 + 2 · 3t) + (3t − 2(2 · 3t))3t + (1 + 3t)(2 · 3t) (mod 3t+1)

≡ 3t (mod 3t+1),

and
T2·3ts = T(2·3t+1)+(2·3t(3k+1)−1)

= T2·3tTm+1 + (T2·3t+1 − 2T2·3t)Tm + T2·3t−1Tm−1

≡ 3t(1 + 2 · 3t) + (1 + 2 · 3t − 2 · 3t)3t + (2 · 3t)(2 · 3t) (mod 3t+1)

≡ 2 · 3t (mod 3t+1),

as desired. Similarly, we can prove that

T2·3ts+1 ≡ 1 + 3t (mod 3t+1).

2

Proof of Theorem 1.4
Suppose first that n ≡ a (mod 6) with a ∈ {−1, 0} . Then n can be written as n = 2 · 3ts+ a for s, t ≥ 1 with
s ̸≡ 0 (mod 3) . Thus, Lemma 4.1 yields ν3(T2·3ts+a) = t , and then

ν3(Tn) = ν3(T2·3ts+a) = t = ν3(2 · 3ts) = ν3(n− a).
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Suppose now that n ≡ a (mod 6) with a ∈ {1, 2, 3, 4} . In this case, by using the fact that (Tn mod 3)n≥0

is periodic with period 6, we deduce that Tn ≡ Ta (mod 3) . However, one can easily check that Ta ≡ 1 or 2

(mod 3) for all a ∈ {1, 2, 3, 4} , and so ν3(Tn) = 0 .

5. Proof of Theorem 1.5
In this last section we apply the 3-adic order of the Tripell sequence to completely solve the Diophantine equation
(1.2). Indeed, assume first that equation (1.2) holds. If m ≤ 5 , then the only solutions of (1.2) are those shown
in Theorem 1.5, so we may assume that m ≥ 6 . Hence, the following inequality holds

m! <
(m
2

)m

. (5.1)

On the other hand, by Theorem 1.4 we get that ν3(Tn) = ν3(m!) ≤ ν3(n) + ν3(n+ 1) . From this and Lemma
2.1, for p = 3 , we get

m

2
−
⌊
logm

log 3

⌋
− 1 ≤ ν3(m!) ≤ 2max{ν3(n), ν3(n+ 1)} ≤ 2ν3(n+ δ),

where δ = 0, 1 . It then follows that

3
m
4 − log m

2 log 3−
1
2 ≤ 3ν3(n+δ) ≤ n+ δ ≤ n+ 1,

leading to

m

4
− logm

2 log 3
− 1

2
≤ log(n+ 1)

log 3
· (5.2)

Additionally, by Lemma 2.2 and (5.1) we have 2.54n−2 < Tn = m! < (m/2)m ; hence, n < 2 + 1.1m log(m/2) .
Inserting this upper bound on n into (5.2), we conclude that

m

4
− logm

2 log 3
− 1

2
<

log(3 + 1.1m log(m/2))

log 3
·

This inequality implies that m < 25 , and therefore n < 75 . Finally, a computational search with software
Mathematica revealed that the only solutions to equation (1.2) are those mentioned in Theorem 1.5. Thus,
Theorem 1.5 is proved.
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