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Abstract: The aim in this note is to provide a generalization of an interesting entry in Ramanujan’s notebooks that
relate sums involving the derivatives of a function φ(t) evaluated at 0 and 1. The generalization obtained is derived
with the help of expressions for the sum of terminating 3F2 hypergeometric functions of argument equal to 2, recently
obtained by Kim et. al. [Two results for the terminating 3F2(2) with applications, Bulletin of the Korean Mathematical
Society 2012; 49: 621-633]. Several special cases are given. In addition we generalize a summation formula to include
integral parameter differences.
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1. Introduction

Two of the many interesting results stated by Ramanujan in his notebooks are the following theorems, which
appear as Entry 8 [1, p. 51] and Entry 20 [1, p. 36], expressing an infinite sum of derivatives of a function φ(t)

at the origin to another infinite sum of its derivatives evaluated at t = 1 .

Entry 8. Let φ(t) be analytic for |t − 1| < R , where R > 1 . Suppose that a and φ(t) are such that
the order of summation in

∞∑
k=0

2k(a)k
(2a)k k!

∞∑
n=k

(−1)n

n!
(−n)kφ(n)(1)

may be inverted. Then

∞∑
k=0

2k(a)kφ
(k)(0)

(2a)k k!
=

∞∑
k=0

φ(2k)(1)

22k(a+ 1
2 )k k!

. (1.1)
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Entry 20. Let φ(t) =
∑∞

k=0 φ
(k)(1)(t− 1)k/k! be analytic for |t− 1| < R , where R > 1 . Suppose that

a and b are complex parameters such that the order of summation in

∞∑
k=0

(a)k
(b)kk!

∞∑
n=k

(−1)n

n!
(−n)kφ(n)(1)

may be inverted. Then
∞∑
k=0

(a)k φ
(k)(0)

(b)kk!
=

∞∑
k=0

(−1)k(b− a)k
(b)kk!

φ(k)(1). (1.2)

Berndt [1] pointed out that Entry 8 can be established with the help of the results

2F1

[
−2n, a
2a

; 2

]
=

( 12 )n

(a+ 1
2 )n

, 2F1

[
−2n− 1, a

2a
; 2

]
= 0,

for nonnegative integer n , where (a)n = Γ(a+ n)/Γ(a) denotes the Pochhammer symbol.

In [4], each of the above theorems was generalized. The result in (1.1) was extended by replacing the
denominatorial parameter 2a by 2a+ j , where j = 0,±1, . . . ,±5 . The second result in (1.2) was extended by
the inclusion of an additional pair of numeratorial and denominatorial parameters differing by unity to produce
the following theorem.

Theorem 1.1 . Let φ(t) be analytic for |t− 1| < R , where R > 1 . Suppose that a , b , d , and φ(t) are such
that the order of summation in

∞∑
k=0

(a)k(d+ 1)k
(b)k(d)kk!

∞∑
n=k

(−1)n

n!
(−n)kφ(n)(1)

may be inverted. Then

∞∑
k=0

(a)k(d+ 1)k
(b)k(d)k

φ(k)(0)

k!
=

∞∑
k=0

(−1)k(b− a− 1)k(f + 1)k
(b)k(f)k

φ(k)(1)

k!
, (1.3)

where f = d(b− a− 1)/(d− a) .

This result was extended to the case where a pair of numeratorial and denominatorial parameters differs by a
positive integer m to produce

∞∑
k=0

(a)k(d+m)k
(b)k(d)k

φ(k)(0)

k!
=

∞∑
k=0

(−1)k(b− a−m)k
(b)k

((ξm + 1))k
((ξm))k

φ(k)(1)

k!
,

where the ξ1, . . . , ξm are the zeros of a certain polynomial of degree m .

In this note we shall similarly extend the result in (1.1) (when the parameter 2a is replaced by 2a+ 1)
by the inclusion of a pair of numeratorial and denominatorial parameters differing by unity. For this we shall
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require the summations of a 3F2 hypergeometric function of argument equal to 2 obtained∗ in [3, Theorem 2]

3F2

[
−2n, a, d+ 1
2a+ 1, d

; 2

]
=

( 12 )n

(a+ 1
2 )n

, (1.4)

and

3F2

[
−2n− 1, a, d+ 1

2a+ 1, d
; 2

]
=

(1− 2a/d)

2a+ 1

( 3
2 )n

(a+ 3
2 )n

, (1.5)

for nonnegative integer n . Several applications are presented in Section 3.
In the final section we generalize the result given in [1, p. 25] as Entry 9:

Entry 9. If Re (c− a) > 0 , then

∞∑
k=1

(a)k
k(c)k

= ψ(c)− ψ(c− a), (1.6)

where ψ(x) denotes the logarithmic derivative of Γ(x) .

We extend this summation to include additional numeratorial and denominatorial parameters differing
by positive integers. To achieve this we make use of the generalized Karlsson–Minton summation formula for a
r+2Fr+1 hypergeometric function of unit argument.

2. Generalization of Ramanujan’s result (1.1)

The result to be established in this section is given by the following theorem.

Theorem 2.1 . Let φ(t) be analytic for |t− 1| < R , where R > 1 . Suppose that a , d , and φ(t) are such that
the order of summation in

∞∑
k=0

2k(a)k(d+ 1)k
(2a+ 1)k(d)k k!

∞∑
n=k

(−1)n

n!
(−n)kφ(n)(1)

may be inverted. Then

∞∑
k=0

2k(a)k(d+ 1)kφ
(k)(0)

(2a+ 1)k(d)k k!
=

∞∑
k=0

φ(2k)(1)

22k(a+ 1
2 )k k!

− (1− 2a/d)

2a+ 1

∞∑
k=0

φ(2k+1)(1)

22k(a+ 3
2 )k k!

. (2.1)

Proof. Since φ(t) is analytic for |t− 1| < R , we have

φ(k)(0) =

∞∑
n=k

(−1)n(−n)k
n!

φ(n)(1)

∗It should be noted that the right-hand side of (1.4) is independent of the parameter d .
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by suitable differentiation of the associated Taylor series. Then

S :=

∞∑
k=0

2k(a)k(d+ 1)k
(2a+ 1)k(d)k

φ(k)(0)

k!
=

∞∑
k=0

2k(a)k(d+ 1)k
(2a+ 1)k(d)kk!

∞∑
n=k

(−1)n(−n)k
n!

φ(n)(1)

=

∞∑
n=0

(−1)nφ(n)(1)

n!

n∑
k=0

2k(a)k(d+ 1)k(−n)k
(2a+ 1)k(d)kk!

=

∞∑
n=0

(−1)nφ(n)(1)

n!
3F2

[
−n, a, d+ 1
2a+ 1, d

; 2

]
upon inversion of the order of summation by hypothesis.

If we now separate the above sum into terms involving even and odd n , we obtain

S =

∞∑
n=0

φ(2n)(1)

(2n)!
3F2

[
−2n, a, d+ 1
2a+ 1, d

; 2

]
−

∞∑
n=0

φ(2n+1)(1)

(2n+ 1)!
3F2

[
−2n− 1, a, d+ 1

2a+ 1, d
; 2

]
.

Finally, using the summations in (1.4) and (1.5) and noting that (2n)! = 22n( 12 )nn! , (2n+1)! = 22n( 3
2 )nn! , we

easily arrive at the right-hand side of (2.1). This completes the proof of the theorem. 2

When d = 2a it is seen that (2.1) reduces to Ramanujan’s result in (1.1).

3. Examples of Theorem 2.1

In this section, we provide some examples of different choices for the function φ(t) appearing in (2.1). Through-
out this section we let k denote a nonnegative integer.

(a) First we consider the simplest choice with φ(t) = exp (xt) , where x is an arbitrary variable
(independent of t). Then φ(k)(t) = xk φ(t) , which satisfies the conditions for the validity of (2.1). Substitution
of the derivatives into (2.1) and identification of the resulting series as hypergeometric functions immediately
yields

e−x
2F2

[
a, d+ 1
2a+ 1, d

; 2x

]
= 0F1

[
−

a+ 1
2

; 1
4 x

2

]
− (1− 2a/d)x

2a+ 1
0F1

[
−

a+ 3
2

; 1
4 x

2

]
, (3.1)

which is a result established by a different method in [9, Theorem 2]. In addition, it is interesting to observe
that, since

0F1

[
−

a+ 1
2

; 1
4 x

2

]
= Γ(a+

1

2
)(
1

2
x)

1
2−a Ia− 1

2
(x),

where Iν is the modified Bessel function of the first kind, the result (3.1) can also be written in terms of Iν .

(b) If we let φ(t) = cosh (xt) , we have φ(2k)(t) = x2k cosh (xt) and φ(2k+1)(t) = x2k+1 sinh (xt) . Then
(2.1), after a little simplification making use of the identity

(a)2k = (
1

2
a)k(

1

2
a+

1

2
)k 2

2k,

and letting d→ 2d , reduces to

3F4

[
1
2a,

1
2a+

1
2 , d+ 1

1
2 , a+

1
2 , a+ 1, d

;x2

]
= coshx 0F1

[
−

a+ 1
2

; 1
4 x

2

]
− (1− a/d)

2a+ 1
x sinhx 0F1

[
−

a+ 3
2

; 1
4 x

2

]
. (3.2)
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(c) If φ(t) = (x− t)−b , where b is an arbitrary parameter and x > 2 , then

φ(k)(t) =
(b)k

(x− t)b+k
.

From (2.1), we therefore find(
x

x− 1

)−b ∞∑
k=0

2k(a)k(b)k(d+ 1)k
(2a+ 1)k(d)kk!

x−k =

∞∑
k=0

2−2k(b)2k

(a+ 1
2 )kk!

(x− 1)−2k

− (1− 2a/d)

2a+ 1

∞∑
k=0

2−2k(b)2k+1

(a+ 3
2 )kk!

(x− 1)−2k−1,

which yields(
x

x− 1

)−b

3F2

[
a, b, d+ 1
2a+ 1, d

;
2

x

]
= 2F1

[
1
2b,

1
2b+

1
2

a+ 1
2

;
1

(x− 1)2

]

− (1− 2a/d)b

2a+ 1
(x− 1)−1

2F1

[
1
2b+

1
2 ,

1
2b+ 1

a+ 3
2

;
1

(x− 1)2

]
.

If we put z = x/(1 + x) , this last result becomes

(1 + z)−b
3F2

[
a, b, d+ 1
2a+ 1, d

;
2z

1 + z

]

= 2F1

[
1
2b,

1
2b+

1
2

a+ 1
2

; z2
]
− (1− 2a/d)b

2a+ 1
z 2F1

[
1
2b+

1
2 ,

1
2b+ 1

a+ 3
2

; z2
]
, (3.3)

which has been obtained by different methods in [3, Theorem 3].
(d) Finally, with φ(t) = exp (−x2t2/4) , we have [8, p. 442]

φ(k)(t) = (−1)k(x/2)ke−x2t2/4Hk(xt/2),

where Hk is the Hermite polynomial of order k . Since H2k(0) = (−1)k(2k)!/k! and H2k+1(0) = 0 , it follows
from (2.1) that

ex
2/4

3F3

[
1
2a,

1
2a+

1
2 , d+ 1

a+ 1
2 , a+ 1, d

;−x2
]

=

∞∑
k=0

(x/4)2k

(a+ 1
2 )kk!

H2k(x/2) +
(1− a/d)

a+ 1
2

∞∑
k=0

(x/4)2k+1

(a+ 3
2 )kk!

H2k+1(x/2) (3.4)

provided a ̸= − 1
2 ,−

3
2 , . . . , where we have put d→ 2d .

The above series involving the Hermite polynomials can be expressed in terms of 2F2 functions since [4,
Eqs. (36), (37)]

∞∑
k=0

(x/4)2k

(a+ 1
2 )kk!

H2k(x/2) = ex
2/4

2F2

[
1
2a,

1
2a+

1
2

a, a+ 1
2

;−x2
]
,
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∞∑
k=0

(x/4)2k

(a+ 3
2 )kk!

H2k+1(x/2) = xex
2/4

2F2

[
1
2a+ 1, 12a+

3
2

a+ 3
2 , a+ 2

;−x2
]
,

to yield

3F3

[
1
2a,

1
2a+

1
2 , d+ 1

a+ 1
2 , a+ 1, d

;−x2
]
= 2F2

[
1
2a,

1
2a+

1
2

a, a+ 1
2

;−x2
]
+
x2(1− a/d)

4a+ 2
2F2

[
1
2a+ 1, 12a+

3
2

a+ 3
2 , a+ 2

;−x2
]
.

We remark that this last result can be derived alternatively by writing (d + 1)k/(d)k = 1 + k/d in the series
expansion of the 3F3 function combined with use of the result for contiguous 2F2 functions [4]:

2F2

[
α, β
γ, δ

; z

]
− 2F2

[
α, β

γ, δ + 1
; z

]
=

αβz

γδ(δ + 1)
2F2

[
α+ 1, β + 1
γ + 1, δ + 2

; z

]
.

Finally, the representation (3.4) may be contrasted with the more general result obtained from Theorem
1 with φ(t) = exp(−x2t2/4) given in [4, Eq. (40)] (with x→ 2x and d→ 2d):

ex
2

3F3

[
1
2a,

1
2a+

1
2 , d+ 1

1
2b,

1
2b+

1
2 , d

;−x2
]
=

∞∑
k=0

(b− a− 1)k(f + 1)k
(b)k(f)k

xkHk(x),

where f = 2d(b− a− 1)/(2d− a) .

4. Extension of the summation (1.6)

We employ the usual convention of writing the finite sequence of parameters (a1, . . . , ap) simply by (ap) and the
product of p Pochhammer symbols by ((ap))k ≡ (a1)k . . . (ap)k . In order to derive our extension of Ramanujan’s
sum (1.6) we make use of the generalized Karlsson–Minton summation theorem given below.

Theorem 4.1 Let (mr) be a sequence of positive integers and m := m1+ · · ·+mr . The generalized Karlsson–
Minton summation theorem is given by [6, 7]

r+2Fr+1

[
a, b,
c,

(dr +mr)
(dr)

; 1

]
=

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

m∑
k=0

(−1)k(a)k(b)kCk,r

(1 + a+ b− c)k
(4.1)

provided ℜ (c− a− b) > m .

The coefficients Ck,r appearing in (4.1) are defined for 0 ≤ k ≤ m by

Ck,r =
1

Λ

m∑
j=k

σjS(k)
j , Λ = (d1)m1 . . . (dr)mr , (4.2)

with C0,r = 1 , Cm,r = 1/Λ . S(k)
j denotes the Stirling numbers of the second kind and the σj (0 ≤ j ≤ m) are

generated by the relation

(d1 + x)m1
· · · (dr + x)mr

=

m∑
j=0

σjx
j . (4.3)
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In [5], an alternative representation for the coefficients Ck,r is given as the terminating hypergeometric
series of unit argument

Ck,r =
(−1)k

k!
r+1Fr

[
−k, (dr +mr)

(dr)
; 1

]
. (4.4)

When r = 1 , with d1 = d , m1 = m , Vandermonde’s summation theorem [10, p. 243] can be used to show that

Ck,1 =

(
m
k

)
1

(d)k
. (4.5)

Our extension of Ramanujan’s summation in (1.6) is given by the following theorem.

Theorem 4.2 Let (mr) be a sequence of positive integers and m := m1+ · · ·+mr . Then, provided Re (c−a) >
m , we have

∞∑
k=1

(a)k ((dr +mr))k
(c)k ((dr))k k

= ψ(c)− ψ(c− a) +

m∑
k=1

(−1)k(a)kΓ(k)Ck,r

(1 + a− c)k
, (4.6)

where Ck,r are the coefficients defined in (4.3) and (4.4).

Proof. We follow the method of proof given in [1, p. 25]. If we differentiate logarithmically the left-hand
side of (4.1) with respect to b and then set b = 0 , making use of the simple fact that

d

dx
(x)k

∣∣∣∣
x=0

= (k − 1)!, k ≥ 1,

we immediately obtain
∞∑
k=1

(a)k ((dr +mr))k
(c)k ((dr))k k

when Re (c− a) > m . Proceeding in a similar manner for the right-hand side of (4.1), we obtain

ψ(c)− ψ(c− a) +

m∑
k=1

(−1)k(a)kΓ(k)Ck,r

(1 + a− c)k
.

This completes the proof of the theorem. 2

When r = 1 , the coefficients Ck,1 are given by (4.5) and we obtain the summation

∞∑
k=1

(a)k(d+m)k
(c)k(d)kk

= ψ(c)− ψ(c− a) +m!

m∑
k=1

(−1)k(a)k
k(m− k)!(1 + a− c)k(d)k

(4.7)

provided Re (c− a) > m .
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