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Abstract: In this paper, using the Calkin-Gorbachuk method, the general form of all maximally dissipative extensions
of the minimal operator generated by the first order linear symmetric canonical type quasi-differential expression in
the weighted Hilbert space of vector functions has been found. Also, the spectrum set of these extensions has been
investigated.
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1. Introduction
In the development of the studies on the spectral properties of an operator related with a boundary value
problem acting on a Hilbert space, operator theory has a big importance. A linear closed operator T ⊂ H → H

in a Hilbert space H with a dense domain is called to be dissipative iff

Im(T ψ,ψ)H ≥ 0, ψ ∈ D(T ),

where Im( . , . ) and D(T ) denote the imaginary part of the inner product and the domain of the operator
T , respectively (see [6]). A dissipative operator which does not have any proper dissipative extension is called
maximally dissipative [6]. It is well-known that their spectrum lies in the closed upper half-plane. Hence the
open lower half-plane does not belong to the spectrum of T . In mathematics and physics, maximally dissipative
operators have important roles. In physics, they have many applications in hydrodynamic, laser and nuclear
scattering theories.

It is noteworthy to mention that the theory of self-adjoint extensions of symmetric operators in any
Hilbert space has been given by Neumann [12].

The further investigations of Vishik and Birman have dealt with the characterization of all nonnegative
selfadjoint extensions of a symmetric operator (see [5]). In addition, the general information can be found in
[5]. A fundamental technique to study the spectral properties of dissipative operators is the functional model
theory which is given by Nagy and Foias [9].

Gorbachuk and Gorbachuk [6] and Rofe-Beketov and Kholkin [11] have researched the maximal dissipative
extensions and analyzed the spectral properties of the minimal operator. The minimal operator is generated by
formally symmetric differential-operator expression in the Hilbert space of vector-functions defined in one finite
or infinite interval case. Also, it has equal deficiency indices.
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In [1–4, 8], some spectral analysis of a closed extensions based on Weyl function has been researched.
In the present study, we obtain the representation of all maximally dissipative extensions of the minimal

operator. This minimal operator is generated by the first order linear symmetric canonical type quasi-differential
expression with operator coefficient in the weighted Hilbert spaces of vector-functions defined on right semi-axis.
Later on, we investigate the structure of the spectrum of such extensions.

2. Statement of the problem

Let H be a separable Hilbert space and a ∈ R . In the Hilbert space L2
κ(H, (a,∞)) of vector functions on

(a,∞), consider the following linear canonical type quasi-differential operator expression for first order in the
form

l(ν) = iJ(κν)
′
(ς) + Sν(ς),

where:
(1) κ : (a,∞) → (0,∞);

(2) κ ∈ C(a,∞);

(3) 1

κ
∈ L1(a,∞) ;

(4) S : D(S) ⊂ H → H is a linear bounded selfadjoint operator with condition S ≥ 0 , J ∈ L(H) , J∗ = J ,
J2 = I , JS = SJ . Here the operator I will denote the identity operator in corresponding space.

The minimal operator L0 corresponding to quasi-differential expression l( . ) in L2
κ(H, (a,∞)) can be

constructed by using same technique in [7]. The operator L = (L0)
∗ is called maximal operator corresponding

to l( . ) in L2
κ(H, (a,∞)) .

It will be shown that the minimal operator is symmetric and it has nonzero equal deficiency indices in
L2
κ(H, (a,∞)) .

3. Description of maximally dissipative extensions

In this section, with the use of Calkin-Gorbachuk method, the general form of all maximally dissipative
extensions of the operator L0 in L2

κ(H, (a,∞)) in terms of boundary values has been obtained.
In a Hilbert space, the deficiency indices of any symmetric operator are defined as follows:

Definition 3.1 [10] Let T be a symmetric operator, λ be an arbitrary nonreal number and H be a Hilbert
space. We denote by Rλ and Rλ the ranges of the operator

(
T − λI

)
and (T − λI) , respectively, where I is

identity operator on H . Clearly, Rλ and Rλ are subspaces of H , which need not necessarily be closed. We
call

(
H −Rλ

)
and (H −Rλ) , which are their orthogonal complements, the deficiency spaces of the operator T

and we denote them by Nλ and Nλ respectively: thus

Nλ = H −Rλ, Nλ = H −Rλ.

The numbers
nλ = dimNλ, nλ = dimNλ

are called deficiency indices of the operator T.
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Let us prove the following important result which we will need:

Lemma 3.2 The deficiency indices of the operator L0 in L2
κ(H, (a,∞)) are of the form

(n+(L0), n−(L0)) = (dimH, dimH).

Proof Let us take S = 0 for the simplicity of calculations. The general solutions of the differential equations

iJ(κν±)
′
(ς)± iν±(ς) = 0, ς > a

in L2
κ(H, (a,∞)) are of the forms

ν±(ς) =
1

κ(ς)
exp

∓J
ς∫

a

1

κ(ξ)
dξ

 f, f ∈ H, ς > a.

From these representations we have

∥ν+∥2L2
κ(H,(a,∞)) =

∞∫
a

κ(ς)∥ν+(ς)∥2Hdς

=

∞∫
a

κ(ς)∥ 1

κ(ς)
exp

−J
ς∫

a

1

κ(ξ)
dξ

 f∥2Hdς

≤
∞∫
a

1

κ(ς)
∥exp

−J
ς∫

a

1

κ(ξ)
dξ

 ∥2Hdς∥f∥2H

≤
∞∫
a

1

κ(ς)

exp
∥J∥

ς∫
a

1

κ(ξ)
dξ

2

dς∥f∥2H

≤
∞∫
a

1

κ(ς)
dς

exp
 ∞∫

a

1

κ(ξ)
dξ

2

∥f∥2H <∞.

Hence,
n+(L0) = dimker(L+ iI) = dimH.

Similarly,
n−(L0) = dimker(L− iI) = dimH.

This completes the proof. 2

As a consequence of this result, the minimal operator has a maximally dissipative extension (see [6]). For
the description of these extensions, we need to obtain the space of boundary values.

Definition 3.3 [6] Let H be any Hilbert space and S : D(S) ⊂ H → H be a closed densely defined symmetric
operator on the Hilbert space having equal finite or infinite deficiency indices. A triplet (H, β1, β2), where H
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is a Hilbert space, β1 and β2 are linear mappings from D(S∗) into H , is called a space of boundary values for
the operator S , if for any ν, ϑ ∈ D(S∗)

(S∗ν, ϑ)H − (ν, S∗ϑ)H = (β1(ν), β2(ϑ))H − (β2(ν), β1(ϑ))H

while for any G1,G2 ∈ H, there exists an element ν ∈ D(S∗) such that β1(ν) = G1 and β2(ν) = G2 .

It is known that for any symmetric operator with equal deficiency indices, we have at least one space of
boundary values (see [6]).

Lemma 3.4 The triplet (H,β1, β2), where

β1 : D(L) → H, β1(ν) =
1√
2
(J(κν)(∞)− J(κν)(a)) ,

β2 : D(L) → H, β2(ν) =
1

i
√
2
((κν)(∞) + (κν)(a)) , ν ∈ D(L)

is a space of boundary values of the operator L0 in L2
κ(H, (a,∞)) .

Proof For any ν, ϑ ∈ D(L), one can easily check that

(Lν, ϑ)L2
κ(H,(a,∞)) − (ν, Lϑ)L2

κ(H,(a,∞))

= (iJ(κν)′ + Sν, ϑ)L2
κ(H,(a,∞)) − (ν, iJ(κϑ)′ + Sϑ)L2

κ(H,(a,∞))

= (iJ(κν)′, ϑ)L2
κ(H,(a,∞)) − (ν, iJ(κϑ)′)L2

κ(H,(a,∞))

=

∞∫
a

(iJ(κν)′(ς), ϑ(ς))H κ(ς)dς −
∞∫
a

(ν(ς), iJ(κϑ)′(ς))H κ(ς)dς

= i

 ∞∫
a

(J(κν)′(ς), (κϑ)(ς))Hdς +

∞∫
a

(J(κν)(ς), (κϑ)′(ς))Hdς


= i

∞∫
a

(J(κν)(ς), (κϑ)(ς))′Hdς

= i [(J(κν)(∞), (κϑ)(∞))H − (J(κν)(a), (κϑ)(a))H ]

= (β1(ν), β2(ϑ))H − (β2(ν), β1(ϑ))H .

Now let f, g ∈ H. Then one can find the function ν ∈ D(L) such that

β1(ν) =
1√
2
(J(κν)(∞)− J(κν)(a)) = f,

β2(ν) =
1

i
√
2
((κν)(∞) + (κν)(a)) = g.

By the above observations, we have

(κν)(∞) = (Jf + ig)/
√
2 and (κν)(a) = (−Jf + ig)/

√
2.
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If we choose the function ν( . ) as

ν(ς) =
1

κ(ς)
(1− ea−ς)(Jf + ig)/

√
2 +

1

κ(ς)
ea−ς(−Jf + ig)/

√
2,

it is obvious that ν ∈ D(L) and β1(ν) = f, β2(ν) = g. 2

By using Calkin-Gorbachuk method [6], one can immediately have the following:

Theorem 3.5 If L̃ is a maximally dissipative extension of the operator L0 in L2
κ(H, (a,∞)) , it is generated

by the differential operator expression l( . ) and the boundary condition

(Γ− I) (J(κν)(∞)− J(κν)(a)) + (Γ + I) ((κν)(∞) + (κν)(a)) = 0,

where Γ : H → H is a contraction operator. Moreover, the contraction operator Γ in H is uniquely determined
by the extension L̃ , i.e. L̃ = LΓ , and vice versa.

Proof Each maximally dissipative extension L̃ of the operator L0 is described by the differential operator
expression l( . ) with the boundary condition

(Γ− I)β1(ν) + i(Γ + I)β2(ν) = 0,

where Γ : H → H is a contraction operator. Therefore, by Lemma 3.4, we obtain that

(Γ− I) (J(κν)(∞)− J(κν)(a)) + (Γ + I) ((κν)(∞) + (κν)(a)) = 0, ν ∈ D(L̃).

This completes the proof. 2

Corollary 3.6 In case that

J =

(
0 −iI
iI 0

)
: H ⊕H → H ⊕H,

S =

(
S0 0
0 S0

)
: H ⊕H → H ⊕H,

S0 ∈ L(H), S∗
0 = S0 ≥ 0, all maximally dissipative extensions of the operator L0 in L2

κ (H ⊕H, (a,∞)) are
generated by the corresponding differential operator expression l( . ) and the boundary condition

(Γ− I)

(
−i(κν2)(∞) + i(κν2)(a)
i(κν1)(∞)− i(κν1)(a)

)
+ (Γ + I)

(
(κν1)(∞) + (κν1)(a)
(κν2)(∞) + (κν2)(a)

)
= 0,

where Γ : H ⊕ H → H ⊕ H is a contraction operator. Moreover, the contraction operator Γ in H ⊕ H is
uniquely determined by the extension L̃ , i.e. L̃ = LΓ , and vice versa.

On the other hand, when Γ = Γ1 ⊕ Γ2, where Γ1 : H1 → H1, Γ2 : H2 → H2 two contraction operators,
the boundary condition can be rewritten in the form

i(Γ1 − I1) (−(κν2)(∞) + (κν2)(a)) + (Γ1 + I1) ((κν1)(∞) + (κν1)(a)) = 0,

i(Γ2 − I2) ((κν1)(∞)− (κν1)(a)) + (Γ2 + I2) ((κν2)(∞) + (κν2)(a)) = 0.
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Hence,

i(Γ1 − I1)(κν2)(∞)− (Γ1 + I1)(κν1)(∞) = i(Γ1 − I1)(κν2)(a) + (Γ1 + I1)(κν1)(a),

i(Γ2 − I2)(κν1)(∞) + (Γ2 + I2)(κν2)(∞) = i(Γ2 − I2)(κν1)(a)− (Γ2 + I2)(κν2)(a),

where Ik : Hk → Hk, k = 1, 2 are identity operators.

4. The spectrum of the maximally dissipative extensions

In this section, the structure of the spectrum set of the maximally dissipative extensions LΓ of the operator L0

in L2
κ(H, (a,∞)) has been examined.

Theorem 4.1 In order to λ ∈ σ(LΓ) the necessary and sufficient condition is

0 ∈ σ(∆(λ)),

where,

∆(λ) = (Γ− I)J

exp
iJ(S − λI)

∞∫
a

1

κ(ξ)
dξ

− I

+ (Γ + I)

exp
iJ(S − λI)

∞∫
a

1

κ(ξ)
dξ

+ I

 .

Proof Consider the following spectrum problem for the operator LΓ in L2
κ(H, (a,∞)), i.e.

LΓ(ν) = λν + f, f ∈ L2
κ(H, (a,∞)), λ ∈ C, λi = Imλ ≥ 0.

Then, we have

iJ(κν)′(ς) + Sν(ς) = λν(ς) + f(ς), ς > a,

(Γ− I) (J(κν)(∞)− J(κν)(a)) + (Γ + I) ((κν)(∞) + (κν)(a)) = 0.

It is easily to find the general solution of the above differential equation as follows:

ν(ς;λ) =
1

κ(ς)
exp

iJ(S − λI)

ς∫
a

1

κ(ξ)
dξ

 fλ

+
i

κ(ς)
J

∞∫
ς

exp

iJ(S − λI)

ς∫
ξ

1

κ(τ)
dτ

 f(ξ)dξ, fλ ∈ H, ς > a.
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In this case

∥ 1

κ(ς)
exp

iJ(S − λI)

ς∫
a

1

κ(ξ)
dξ

 fλ∥2L2
κ(H,(a,∞))

=

∞∫
a

∥ 1

κ(ς)
exp

iJ(S − λI)

ς∫
a

1

κ(ξ)
dξ

 fλ∥2Hκ(ς)dς

=

∞∫
a

1

κ(ς)
exp

2λiJ

ς∫
a

1

κ(ξ)
dξ

 dς∥fλ∥2H

≤ exp

2λiJ

∞∫
a

1

κ(ξ)
dξ

 ∞∫
a

1

κ(ς)
dς

 ∥fλ∥2H <∞

and

∥ i

κ(ς)
J

∞∫
ς

exp

iJ(S − λI)

ς∫
ξ

1

κ(τ)
dτ

 f(ξ)dξ∥2L2
κ(H,(a,∞))

=

∞∫
a

∥ 1

κ(ς)
J

∞∫
ς

exp

iJ(S − λI)

ς∫
ξ

1

κ(τ)
dτ

 f(ξ)dξ∥2Hκ(ς)dς

≤
∞∫
a

1

κ(ς)

 ∞∫
ς

√
κ(ξ)

κ(ξ)
exp

λiJ ς∫
ξ

1

κ(τ)
dτ

 ∥
√
κ(ξ)f(ξ)∥Hdξ


2

dς∥J∥

≤
∞∫
a

1

κ(ς)

 ∞∫
ς

1

κ(ξ)
exp

2λiJ

ς∫
ξ

1

κ(τ)
dτ


 dξ

 ∞∫
a

κ(ξ)∥f(ξ)∥2Hdξ

 dς∥J∥

=

∞∫
a

1

κ(ς)

 ∞∫
ς

1

κ(ξ)
exp

2λiJ

ς∫
ξ

1

κ(τ)
dτ

 dξ

 dς∥J∥∥f∥2L2
κ(H,(a,∞))

= exp

2λiJ

∞∫
a

1

κ(τ)
dτ

 ∞∫
a

1

κ(ς)
dς

2

∥J∥∥f∥2L2
κ(H,(a,∞)) <∞.

Hence for λ ∈ C, λi = Imλ ≥ 0 we have ν( . , λ) ∈ L2
κ(H, (a,∞)) .
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Using the corresponding boundary condition it is obtained that

(Γ− I)J

exp
iJ(S − λI)

∞∫
a

1

κ(ξ)
dξ

− I

+ (Γ + I)

exp
iJ(S − λI)

∞∫
a

1

κ(ξ)
dξ

+ I

 fλ
= i[(Γ− I)− J(Γ + I)]

∞∫
a

exp

iJ(A− λI)

a∫
ξ

1

κ(τ)
dτ

 f(ξ)dξ.

Therefore, the proof of the theorem is completed.
2

Now, we give an example as an application of the above theorem.

Example 4.2 In the Hilbert space L2
ςα(1,∞) ⊕ L2

ςα(1,∞) , consider the following first order canonical type
linear symmetric singular differential expression

l(ν) = i

(
0 i
−i 0

)(
(ςαν1)

′
(ς)

(ςαν2)
′
(ς)

)
+

(
s 0
0 s

)(
ν1(ς)
ν2(ς)

)
, α > 1, s > 0.

Let L0 be the minimal operator generated by the differential expression l( . ) . Then, each maximally dissipative
extension of the operator L0 is generated by the differential operator expression l( . ) and the boundary condition

i

(
r1 − 1 r2
r3 r4 − 1

)(
(ςαν2)(∞)− (ςαν2)(1)
−(ςαν1)(∞) + (ςαν1)(1)

)
+

(
r1 + 1 r2
r3 r4 + 1

)(
(ςαν1)(∞) + (ςαν1)(1)
(ςαν2)(∞) + (ςαν2)(1)

)
= 0,

where r1, r2, r3, r4 ∈ C and max
1≤k≤4

|rk| ≤ 1.

The boundary condition can be written as follows

(ir1 − i+ r2)(ς
αν2)(∞) + (r1 + 1− ir2)(ς

αν1)(∞) = (−ir1 + i− r2)(ς
αν2)(1)− (r1 + 1 + ir2)(ς

αν1)(1),

(ir3 + r4 + 1)(ςαν2)(∞) + (r3 − (r4 − 1))(ςαν1)(∞) = (r4 + 1− ir3)(ς
αν2)(1)− (r3 + r4 − 1)(ςαν1)(1).

In order to λ ∈ σ(LK) the necessary and sufficient condition is

0 ∈ σ(∆(λ)),

where K =

(
r1 r2
r3 r4

)
and

∆(λ) = i

(
−r2 r1 − 1
1− r4 r3

)[
exp

((
0 λ− s

s− λ 0

)
1

α− 1

)
− 1

]
+

(
r1 + 1 r2
r3 r4 + 1

)[
exp

((
0 λ− s

s− λ 0

)
1

α− 1

)
+ 1

]
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= i

(
−r2 r1 − 1
1− r4 r3

)[
exp

((
0 λ
−λ 0

))
exp

((
0 −s
s 0

)
1

α− 1

)
− 1

]
+

(
r1 + 1 r2
r3 r4 + 1

)[
exp

((
0 λ
−λ 0

))
exp

((
0 −s
s 0

)
1

α− 1

)
+ 1

]

= i

(
−r2 r1 − 1
1− r4 r3

)


1− λ2

2!
+
λ4

4!
− λ6

6!
+
λ8

8!
+ ..., λ− λ3

3!
+
λ5

5!
− λ7

7!
+
λ9

9!
+ ...

−λ+
λ3

3!
− λ5

5!
+
λ7

7!
− λ9

9!
+ ..., 1− λ2

2!
+
λ4

4!
− λ6

6!
+
λ8

8!
+ ...



×


1− s2

2!
+
s4

4!
− s6

6!
+
s8

8!
+ ..., −s+ s3

3!
− s5

5!
+
s7

7!
− s9

9!
+ ...

s− s3

3!
+
s5

5!
− s7

7!
+
s9

9!
+ ..., 1− s2

2!
+
s4

4!
− s6

6!
+
s8

8!
+ ...

 1

α− 1
− 1



+

(
r1 + 1 r2
r3 r4 + 1

)


1− λ2

2!
+
λ4

4!
− λ6

6!
+
λ8

8!
+ ..., λ− λ3

3!
+
λ5

5!
− λ7

7!
+
λ9

9!
+ ...

−λ+
λ3

3!
− λ5

5!
+
λ7

7!
− λ9

9!
+ ..., 1− λ2

2!
+
λ4

4!
− λ6

6!
+
λ8

8!
+ ...



×


1− s2

2!
+
s4

4!
− s6

6!
+
s8

8!
+ ..., −s+ s3

3!
− s5

5!
+
s7

7!
− s9

9!
+ ...

s− s3

3!
+
s5

5!
− s7

7!
+
s9

9!
+ ..., 1− s2

2!
+
s4

4!
− s6

6!
+
s8

8!
+ ...

 1

α− 1
+ 1



= i

(
−r2 r1 − 1
1− r4 r3

)


1

2

(
eiλ + e−iλ

) 1

2i

(
eiλ − e−iλ

)
1

2i

(
−eiλ + e−iλ

) 1

2

(
eiλ + e−iλ

)


×


1

2

(
eis + e−is

) 1

2i

(
−eis + e−is

)
1

2i

(
eis − e−is

) 1

2

(
eis + e−is

)
 1

α− 1
− 1



+

(
r1 + 1 r2
r3 r4 + 1

)


1

2

(
eiλ + e−iλ

) 1

2i

(
eiλ − e−iλ

)
1

2i

(
−eiλ + e−iλ

) 1

2

(
eiλ + e−iλ

)


×


1

2

(
eis + e−is

) 1

2i

(
−eis + e−is

)
1

2i

(
eis − eis

) 1

2

(
eis + e−is

)
 1

α− 1
+ 1



= i

(
−r2 r1 − 1
1− r4 r3

)
1

2

(
eiλ−is + e−iλ+is

) 1

α− 1
− 1

1

2i

(
eiλ−is − e−iλ+is

) 1

α− 1

1

2i

(
−eiλ−is + e−iλ+is

) 1

α− 1

1

2

(
eiλ−is + e−iλ+is

) 1

α− 1
− 1


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+

(
r1 + 1 r2
r3 r4 + 1

)
1

2

(
eiλ−is + e−iλ+is

) 1

α− 1
+ 1

1

2i

(
eiλ−is − e−iλ+is

) 1

α− 1

1

2i

(
−eiλ−is + e−iλ+is

) 1

α− 1

1

2

(
eiλ−is + e−iλ+is

) 1

α− 1
+ 1

 .

Furthermore, using Mathematica and by the condition det∆(λ) = 0 , we have

λ1 = −iln
[

1

4(1− α)

(
eis((2 + (α− 2)α)r1 + 2r4 + (α− 2)α(i(r2 − r3) + r4))

+
√
e2is(16(α− 1)2(r2r3 − r1r4) + ((2 + (α− 2)α)r1 + 2r4 + (α− 2)α(i(r2 − r3) + r4)2)

)]
,

λ2 = −iln
[

1

4(α− 1)

(
−eis((2 + (α− 2)α)r1 + 2r4 + (α− 2)α(i(r2 − r3) + r4))

+
√
e2is(16(α− 1)2(r2r3 − r1r4) + ((2 + (α− 2)α)r1 + 2r4 + (α− 2)α(i(r2 − r3) + r4)2)

)]
.
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