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Abstract: Having a finite number of topological spaces Xi and functions fi : Xi → Xi , and considering one of the
following classes of functions: exact, transitive, strongly transitive, totally transitive, orbit-transitive, strictly orbit-
transitive, ω -transitive, mixing, weakly mixing, mild mixing, chaotic, exactly Devaney chaotic, minimal, backward
minimal, totally minimal, TT++ , scattering, Touhey or an F -system, in this paper, we study dynamical behaviors of
the systems (Xi, fi) , (

∏
Xi,

∏
fi) , (Fn(

∏
Xi),Fn(

∏
fi)) , and (Fn(Xi),Fn(fi)) .
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1. Introduction
Given a topological space X and a positive integer n , we consider the n -fold symmetric product of X , Fn(X) ,
consisting of all nonempty subsets of X with at most n points [7]. A function f : X → X induces a map
on Fn(X) denoted by Fn(f) : Fn(X) → Fn(X) and defined by Fn(f)(A) = f(A) , for each A ∈ Fn(X) [3].
Thereby, the discrete dynamical system (X, f) induces the discrete dynamical system (Fn(X),Fn(f)) .

Let X1, . . . , Xm be topological spaces, with m ≥ 2 and for each i ∈ {1, . . . ,m} let fi : Xi → Xi be a func-
tion. We define the function

∏m
i=1 fi :

∏m
i=1 Xi →

∏m
i=1 Xi by

∏m
i=1 fi((x1, . . . , xm)) = (f1(x1), . . . , fm(xm)) ,

for each (x1, . . . , xm) ∈
∏m

i=1 Xi . This function is called product function. In this way, we can analyze the
relationships between the dynamical of the systems (1) (Fn(

∏m
i=1 Xi),Fn(

∏m
i=1 fi)) ; (2) (Fn(Xi),Fn(fi)) , for

each i ∈ {1, . . . ,m} ; (3) (
∏m

i=1 Xi,
∏m

i=1 fi) and (4) (Xi, fi) , for each i ∈ {1, . . . , ,m} . Hou et al. [11] consid-
ered two compact metric spaces without isolated points X and Y , and two continuous functions f : X → X

and g : Y → Y , and they showed the following result: if f and g are sensitive functions, then the function
2f×g : 2X×Y → 2X×Y is sensitive. Later, Degirmenci and Kocak [8] considered two metric spaces, X and Y ,
and two functions f : X → X and g : Y → Y (not necessarily continuous) and they analyzed the relationship
between f , g and f × g when any of them is a chaotic function. In particular, they proved the following result:
if f is continuous and chaotic, and g is chaotic and mixing (not necessarily continuous), then f × g is chaotic.
Later, Wu and Zhu [21] proved that for each integer m ≥ 2 , if

∏m
i=1 fi is chaotic in the sense of Devaney, then

for each i ∈ {1, . . . ,m} , fi is also chaotic in the sense of Devaney. Moreover, they proved that if
∏m

i=1 fi is
transitive, then, for each i ∈ {1, . . . ,m} , fi is transitive. The converse problem is not true in general. In [21],
Wu and Zhu considered metric spaces without isolated points and continuous functions. Moreover, Li and Zhou
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[13] analyzed the relationships between f , g and f ×g when any of these are: topologically transitive, topolog-
ically weakly mixing, syndetically transitive, cofinitely sensitive, multisensitive and ergodically sensitive, always
considering metric spaces and functions not necessarily continuous. Wu et al. [20] studied the F -sensitivity and
the multisensitivity of the dynamical system (2X×Y , 2f×g) , when X and Y are both compact metric spaces.
Recently, Mangang [6] studied the Li-Yorke chaos of the product dynamical system (

∏m
i=1 Xi,

∏m
i=1 fi) when

each dynamical system (Xi, fi) has the property. In particular, he proved that (X, f) and (Y, g) are two exact
dynamical systems if and only if the product dynamical system (X×Y, f×g) is exact. In this last paper, X and
Y are compact metric spaces and f and g are continuous functions. In order to make a contribution to this line
of investigation, let M be one of the following classes of functions: exact, mixing, transitive, weakly mixing,
totally transitive, strongly transitive, chaotic, minimal, orbit-transitive, strictly orbit-transitive, ω -transitive,
TT++ , mild mixing, exactly Devaney chaotic, backward minimal, totally minimal, scattering, Touhey or an
F -system, in this paper we study the relationships between the following four statements:

1. For each i ∈ {1, . . . ,m} , fi ∈ M .

2.
∏m

i=1 fi ∈ M .

3. Fn(
∏m

i=1 fi) ∈ M .

4. For each i ∈ {1, . . . ,m} , Fn(fi) ∈ M .

It is important to emphasize that in the aforementioned articles, the authors work with compact metric
spaces or without isolated points metric spaces and continuous function. In this paper, we are going to answer
similar questions that we can find in [6, 8, 11, 13, 20, 21], considering topological spaces and functions not
necessarily continuous.

2. Definitions and notations
Throughout this paper, m is an integer greater than one. A set is said to be nondegenerate if it has more
than one point. A (discrete) dynamical system is a pair (X, f) , where X is a nondegenerate topological
space and f : X → X is a function, X is called the phase space. Let X be a topological space and let
A be a subset of X , clX(A) denotes the closure of the set A in X . The symbols Z , Z+ and N denote
the set of integers, the set of nonnegative integers and the set of positive integers, respectively. Given a
finite collection of topological spaces X1, . . . , Xm , the Cartesian product of these topological spaces is denoted
by

∏m
i=1 Xi . This space is considered with the product topology [16, p. 86]. On the other hand, given a

finite collection of functions, f1 : X1 → X1, . . . , fm : Xm → Xm (not necessarily continuous), we define the
product function

∏m
i=1 fi :

∏m
i=1 Xi →

∏m
i=1 Xi by

∏m
i=1 fi((x1, . . . , xm)) = (f1(x1), . . . , fm(xm)) , for each

(x1, . . . , xm) ∈
∏m

i=1 Xi . Particularly, if X is a topological space and f : X → X is a function, the Cartesian
product of X with itself m times is denoted by Xm and the Cartesian product of f with itself m times is
denoted by f×m .

Given a dynamical system (X, f) , for each k ∈ N , the k th iteration of f is defined as repeated
composition of f with itself k times and is denoted by fk . This is, fk = f ◦ fk−1 , where f1 = f and
f0 = idX , the identity function on X . For a subset A of X and k ∈ Z , we denote by fk(A) the image of A

under fk , when k ≥ 0 , and the preimage under f |k| when k < 0 . If z ∈ X , f−k(z) denotes the set f−k({z}) ,
for each k > 0 .
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Let (X, f) be a dynamical system and let x ∈ X . The orbit of x under f is the set O(x, f) =

{fk(x) | k ∈ Z+} . A point x of X is a transitive point of the function f if the set O(x, f) is dense in X . The
set of transitive points of f is denoted by trans(f) . The point x is a fixed point of f if f(x) = x . The point
x is a periodic point of f if there exists k ∈ N such that fk(x) = x . The set of periodic points of f is denoted
by Per(f) . If k = min{l ∈ N | f l(x) = x} , we say that k is the period of x under f . A point y in X is an
ω -limit point of x under f if for any k ∈ N and for any open subset U of X such that y ∈ U , there exists
a positive integer l ≥ k such that f l(x) ∈ U . The set of ω -limit points of x under f , is denoted by ω(x, f)

and is called ω -limit set of x . Given a subset A of X , we say that A is + invariant under f if f(A) ⊆ A ,
A is − invariant under f if f−1(A) ⊆ A and A is invariant under f if f(A) = A . A topological space X is
+ invariant over open subsets under f , if for each open subset U of X , U is + invariant under f . For subsets
A and B of X , it is defined the following subset of Z , nf (A,B) = {k ∈ Z+ | A ∩ f−k(B) ̸= ∅} . A topological
space X is pseudoregular if for any nonempty open subset U of X , there exists a nonempty open subset V

of X such that clX(V ) ⊆ U [15]. Let X be a topological space, let B be a subset of X and let b ∈ B . We
say that b is an isolated point of B if there exists an open subset U of X such that U ∩B = {b} . Denote by
IP (B) the set of isolated points in B . A point x of X is a quasiisolated point of X if there exists a dense
subset B of X such that x ∈ B and x is an isolated point of B [15]. A topological space is perfect if it does
not have isolated points. The following definitions can be found in [1, 8, 15].

Let X be a topological space and let f : X → X be a function. Then f is:

• Exact, if for each nonempty open subset U of X , there exists k ∈ N such that fk(U) = X .

• Mixing, if for each pair of nonempty open subsets U and V of X , there exists N ∈ N such that fk(U)∩V ̸= ∅ ,
for all k ≥ N .

• Transitive, if for every pair of nonempty open subsets U and V of X , there exists k ∈ N such that
fk(U) ∩ V ̸= ∅ (equivalently, for each pair of nonempty open subsets U and V of X , nf (U, V ) \ {0} ̸= ∅).

• Weakly mixing, if f×2 is transitive.

• Totally transitive, if fs is transitive, for all s ∈ N .

• Strongly transitive, if for each nonempty open subset U of X , there exists s ∈ N such that X =
∪s

k=0 f
k(U) .

• Chaotic, if it is transitive and Per(f) is dense in X .

• Minimal, if for each nonempty closed subset A of X which is + invariant under f , we have A = X .

• Orbit-transitive, if there exists x ∈ X such that clX(O(x, f)) = X .

• Strictly orbit-transitive, if there exists a point x in X such that clX(O(f(x), f)) = X .

• ω -transitive, if there exists x ∈ X such that ω(x, f) = X .

• TT++ , if for any pair of nonempty open subsets U and V of X , the set nf (U, V ) is infinite.

• Mild mixing, if for any transitive function, f1 : X1 → X1 , the function f × f1 is transitive.
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• Exactly Devaney chaotic, if f is exact and Per(f) is dense in X .

• Backward minimal, if the subset {y ∈ X : fn(y) = x, for some n ∈ N} is dense in X , for every x ∈ X .

• Totally minimal, if fs is minimal for all s ∈ N .

• Scattering, if for any minimal function, f1 : X1 → X1 , the function f × f1 is transitive.

• Touhey, if for every pair of nonempty open subsets U and V of X , there exist a periodic point x ∈ U and
k ∈ Z+ such that fk(x) ∈ V .

• An F -system, if f is totally transitive and Per(f) is dense in X .

In the diagram of Figure, we put the inclusions between some of these classes of functions for the general
case, that is to say, when X is a topological space and f : X → X is a function. For the proofs of these
inclusions see, for instance, [1, 5, 15].

Figure : Inclusions between some classes of functions.

When we add properties to the phase space or to the function in Figure, we obtain other relationships,
namely: Let X be a topological space and let f : X → X be a function. If X is a Hausdorff and compact
topological space, and f is a surjective continuous function, we have that if f is scattering, then f is totally
transitive [2, Theorem 2.9]. Moreover, if f is a continuous function, it follows that if f is chaotic, then f is
Touhey [18, Proposition 2.6].

Hyperspace theory started in early 1900, with the work of Hausdorff [9] and Vietoris [19]. Nowadays
hyperspaces are widely studied, mainly in continuum theory, see [12, 14, 17].

Given a topological space (X, τ) and a positive integer n , we define the n -fold symmetric product of X

by:
Fn(X) = {A ⊆ X | A ̸= ∅ and A has at most n elements}.
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This set, equipped with the Vietoris topology [17], is called a hyperspace. Next we describe this topology.
Let (X, τ) be a topological space. Given a finite collection of nonempty subsets U1, . . . , Uk of X , we

denote by ⟨U1, . . . , Uk⟩ the subset of Fn(X) :{
A ∈ Fn(X) | A ⊆

k∪
i=1

Ui and A ∩ Ui ̸= ∅, for each i ∈ {1, . . . , k}

}
.

The family:
B = {⟨U1, . . . , Uk⟩ | Ui ∈ τ, for each i ∈ {1, . . . , k} and k ∈ N}

forms a basis for a topology on Fn(X) which is denoted by τV and called the Vietoris topology.

3. Preliminary results

Let X1, . . . , Xm be topological spaces and for each i ∈ {1, . . . ,m} let fi : Xi → Xi be a function. In this
section, we present some topological and dynamical properties of the space

∏m
i=1 Xi . Moreover, we review the

basic results that we need to know about the function
∏m

i=1 fi .

Remark 3.1 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let Ui , Vi be nonempty subsets of
Xi , for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function and let k ∈ N . Then the following hold:

1. (
∏m

i=1 fi)
k =

∏m
i=1 f

k
i .

2. [Fn(
∏m

i=1 fi)]
k = Fn(

∏m
i=1 f

k
i ) .

3. If (
∏m

i=1 fi)
k(
∏m

i=1 Ui) =
∏m

i=1 Vi , then, for each i ∈ {1, . . . ,m} , fk
i (Ui) = Vi .

Lemma 3.2 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let Ui be a nonempty subset of
Xi , let xi ∈ Xi and let fi : Xi → Xi be a function. If for each i ∈ {1, . . . ,m} , Xi is + invariant over
open subsets under fi and, for each i ∈ {1, . . . ,m} , there exists ki ∈ N such that fki

i (xi) ∈ Ui , then, for
k = max{k1, . . . , km} , it follows that, for each i ∈ {1, . . . ,m} , fk

i (xi) ∈ Ui .

Proof Suppose that, for each i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi and that there
exists ki ∈ N such that fki

i (xi) ∈ Ui . Let k = max{k1, . . . , km} . It follows that, for each i ∈ {1, . . . ,m} ,
there exists li ∈ Z+ such that k = ki + li . Thus, for each i ∈ {1, . . . ,m} , fk

i (xi) = fki+li
i (xi) = f li

i (fki
i (xi)) .

Consequently, for each i ∈ {1, . . . ,m} , fk
i (xi) ∈ f li

i (Ui) . By hypothesis, since, for each i ∈ {1, . . . ,m} , Ui is
+ invariant under fi , we have that, for each i ∈ {1, . . . ,m} , fk

i (xi) ∈ Ui . 2

Theorem 3.3 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
and let (x1, . . . , xm) ∈

∏m
i=1 Xi . Then the following hold:

1. If (x1, . . . , xm) is a transitive point of
∏m

i=1 fi , then, for each i ∈ {1, . . . ,m} , xi is a transitive point of
fi .

2. If ω((x1, . . . , xm),
∏m

i=1 fi) =
∏m

i=1 Xi , then, for each i ∈ {1, . . . ,m} , ω(xi, fi) = Xi .
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3. For each i ∈ {1, . . . ,m} , xi is an isolated point in Xi if and only if (x1, . . . , xm) is an isolated point in∏m
i=1 Xi .

4. For each i ∈ {1, . . . ,m} , xi is a periodic point of fi if and only if (x1, . . . , xm) is a periodic point of∏m
i=1 fi .

Proof Suppose that cl∏m
i=1 Xi

(O((x1, . . . , xm),
∏m

i=1 fi)) =
∏m

i=1 Xi . Let i0 ∈ {1, . . . ,m} and let Ui0 be
a nonempty open subset of Xi0 . For each i ∈ {1, . . . ,m}\{i0} , let Vi = Xi and Vi0 = Ui0 . It follows
that

∏m
i=1 Vi is a nonempty open subset of

∏m
i=1 Xi . By hypothesis, O((x1, . . . , xm),

∏m
i=1 fi) ∩ (

∏m
i=1 Vi) ̸=

∅ . Then, there exists k ∈ N such that (
∏m

i=1 fi)
k((x1, . . . , xm)) ∈

∏m
i=1 Vi . By Remark 3.1, part (1),

(
∏m

i=1 fi)
k((x1, . . . , xm)) = (fk

1 (x1), . . . , f
k
m(xm)) , fk

i0
(xi0) ∈ Ui0 . Therefore, Ui0 ∩ O(xi0 , fi0) ̸= ∅ and

clXi0
(O(xi0 , fi0)) = Xi0 .

Suppose that ω((x1, . . . , xm),
∏m

i=1 fi) =
∏m

i=1 Xi . Let i0 ∈ {1, . . . ,m} , let yi0 ∈ Xi0 , let k ∈ N , let
Ui0 be an open subset of Xi0 such that yi0 ∈ Ui0 and for each j ∈ {1, . . . ,m}\{i0} , let yj ∈ Xj . Moreover,
for each i ∈ {1, . . . ,m}\{i0} , we put Vi = Xi and Vi0 = Ui0 . It follows that

∏m
i=1 Vi is a nonempty open

subset of
∏m

i=1 Xi such that (y1, . . . , ym) ∈
∏m

i=1 Vi . Thus, by hypothesis, there exists l ∈ N with l ≥ k such
that (

∏m
i=1 fi)

l((x1, . . . , xm)) ∈
∏m

i=1 Vi . By Remark 3.1, part (1), we have that f l
i0
(xi0) ∈ Ui0 . Therefore,

yi0 ∈ ω(xi0 , fi0) . Consequently, Xi0 = ω(xi0 , fi0) .
Suppose that (x1, . . . , xm) is an isolated point in

∏m
i=1 Xi . Then there exists an open subset U of∏m

i=1 Xi such that (
∏m

i=1 Xi) ∩ U = {(x1, . . . , xm)} . Even more, for each i ∈ {1, . . . ,m} , there exists a
nonempty open subset Ui ⊆ Xi such that (

∏m
i=1 Ui) ∩ (

∏m
i=1 Xi) = {(x1, . . . , xm)} . Observe that, for each

i ∈ {1, . . . ,m} , Ui ∩Xi = {xi} . Consequently, for each i ∈ {1, . . . ,m} , xi is an isolated point in Xi .
Now suppose that, for each i ∈ {1, . . . ,m} , xi is an isolated point in Xi . Then, for each i ∈ {1, . . . ,m} ,

there exists an open subset Ui ⊆ Xi such that Ui ∩ Xi = {xi} . Note that, (x1, . . . , xn) ∈
∏m

i=1 Ui and
(
∏m

i=1 Ui) ∩ (
∏m

i=1 Xi) = {(x1, . . . , xm)} . Thus, (x1, . . . , xm) is an isolated point in
∏m

i=1 Xi .
Suppose that, for each i ∈ {1, . . . ,m} , xi is a periodic point of fi . Thus, for each i ∈ {1, . . . ,m} , there

exists ki ∈ N such that fki
i (xi) = xi . Let k = k1 · · · km . It follows that, for each i ∈ {1, . . . ,m} , fk

i (xi) =

xi . Hence, (fk
1 (x1), . . . , f

k
m(xm)) = (x1, . . . , xm) . By Remark 3.1, part (1), (

∏m
i=1 fi)

k((x1, . . . , xm)) =

(x1, . . . , xm) . Therefore, (x1, . . . , xm) is a periodic point of
∏m

i=1 fi .
Now, suppose that (x1, . . . , xm) is a periodic point of

∏m
i=1 fi . Then, there exists k ∈ N such that

(
∏m

i=1 fi)
k((x1, . . . , xm)) = (x1, . . . , xm) . Thus, by Remark 3.1, part (1), for each i ∈ {1, . . . ,m} , fk

i (xi) = xi .
Therefore, for each i ∈ {1, . . . ,m} , xi is a periodic point of fi . 2

As a consequence of Theorem 3.3, we have the following:

Remark 3.4 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function.
Then the following hold:

1. trans(
∏m

i=1 fi) ⊆
∏m

i=1 trans(fi) .

2. ω((x1, . . . , xm),
∏m

i=1 fi) ⊆
∏m

i=1 ω(xi, fi) .
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3. IP (
∏m

i=1 Xi) =
∏m

i=1 IP (Xi) .

4. Per(
∏m

i=1 fi) =
∏m

i=1 Per(fi) .

Corollary 3.5 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Then the following hold:

1. cl∏m
i=1 Xi

(trans(
∏m

i=1 fi)) ⊆
∏m

i=1 clXi
(trans(fi)) .

2. cl∏m
i=1 Xi

(
∏m

i=1 Per(fi)) =
∏m

i=1 clXi(Per(fi)) .

In Example 3.6 we show that the converse of Theorem 3.3, parts (1) and (2), are not true in general.

Example 3.6 Let X = {1, 2} topologized with τ = {∅, X, {1}} and let f : X → X be a function given by
f(1) = 2 and f(2) = 1 . Note that

1. clX(O(1, f)) = X and clX(O(2, f)) = X . However, O((1, 2), f × f) ∩ ({1} × {1}) = ∅ . Consequently,
clX×X(O((1, 2), f × f)) ̸= X ×X .

2. ω(1, f) = X and ω(2, f) = X . However, ω((1, 2), f × f) ̸= X ×X .

There exist conditions that make the converse of Theorem 3.3, parts (1) and (2) true. One of these
conditions is given in Theorem 3.7.

Theorem 3.7 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let xi ∈ Xi , and let fi : Xi → Xi

be a function. Then the following hold:

1. If, for each i ∈ {1, . . . ,m} , ω(xi, fi) = Xi and Xi is + invariant over open subsets under fi , then
ω((x1, . . . , xm),

∏m
i=1 fi) =

∏m
i=1 Xi .

2. If, for each i ∈ {1, . . . ,m} , clXi
(O(xi, fi)) = Xi and Xi is + invariant over open subsets under fi , then:

cl∏m
i=1 Xi

(
O

(
(x1, . . . , xm),

m∏
i=1

fi

))
=

m∏
i=1

Xi.

Proof Suppose that, for each i ∈ {1, . . . ,m} , ω(xi, fi) = Xi and that Xi is + invariant over open subsets
under fi . Let (y1, . . . , ym) ∈

∏m
i=1 Xi , let k ∈ N and let U be an open subset of

∏m
i=1 Xi such that

(y1, . . . , ym) ∈ U . Then, for each i ∈ {1, . . . ,m} , there exists a nonempty open subset Ui of Xi , such
that (y1, . . . , ym) ∈

∏m
i=1 Ui ⊆ U . By hypothesis, for each i ∈ {1, . . . ,m} , there exists li ∈ N such that

li ≥ k and f li
i (xi) ∈ Ui . For each i ∈ {1, . . . ,m} , let l = max{l1, . . . , lm} . By Lemma 3.2, for each

i ∈ {1, . . . ,m} , we have that f l
i (xi) ∈ Ui . Thus, (

∏m
i=1 fi)

l((x1, . . . , xm)) ∈ U . Also note that l ≥ k .
Therefore, (x1, . . . , xm) ∈ ω((x1, . . . , xm),

∏m
i=1 fi) and ω((x1, . . . , xm),

∏m
i=1 fi) =

∏m
i=1 Xi .

Now suppose that, for each i ∈ {1, . . . ,m} , clXi
(O(xi, fi)) = Xi and that Xi is + invariant over

open subsets under fi . Let U be a nonempty open subset of
∏m

i=1 Xi . Then, for each i ∈ {1, . . . ,m} ,
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there exists a nonempty open subset Ui of Xi such that
∏m

i=1 Ui ⊆ U . By hypothesis, for each i ∈
{1, . . . ,m} , O(xi, fi) ∩ Ui ̸= ∅ . It follows that, for each i ∈ {1, . . . ,m} , there exists ki ∈ N such that
fki
i (xi) ∈ Ui . Let k = max{k1, . . . , km} . By Lemma 3.2, for each i ∈ {1, . . . ,m} , we have that fk

i (xi) ∈ Ui .
Consequently, (

∏m
i=1 fi)

k((x1, . . . , xm)) = (fk
1 (x1), . . . , f

k
m(xm)) ∈

∏m
i=1 Ui . Hence, O((x1, . . . , xm),

∏m
i=1 fi) ∩

U ̸= ∅ . Therefore, cl∏m
i=1 Xi

(O ((x1, . . . , xm),
∏m

i=1 fi)) =
∏m

i=1 Xi. 2

As a consequence of Theorem 3.3, part (3), we have:

Corollary 3.8 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Then

∏m
i=1 Xi is perfect if and only if, for each i ∈ {1, . . . ,m} , Xi is perfect.

Theorem 3.9 Let X1, . . . , Xm be topological spaces. Then
∏m

i=1 Xi is pseudoregular if and only if, for each
i ∈ {1, . . . ,m} , Xi is pseudoregular.

Proof Suppose that
∏m

i=1 Xi is pseudoregular. Let i0 ∈ {1, . . . ,m} and let Ui0 be a nonempty open subset
of Xi0 . For each i ∈ {1, . . . ,m}\{i0} , let Vi = Xi and let Vi0 = Ui0 . Thus,

∏m
i=1 Vi is a nonempty open subset

of
∏m

i=1 Xi . Since
∏m

i=1 Xi is pseudoregular, there exists a nonempty open subset V of
∏m

i=1 Xi such that

cl∏m
i=1 Xi

(V) ⊆
∏m

i=1 Vi . Moreover, for each i ∈ {1, . . . ,m} , there exists a nonempty open subset V
′

i ⊆ Xi such

that
∏m

i=1 V
′

i ⊆ V . Consequently, cl∏m
i=1 Xi

(
∏m

i=1 V
′

i ) ⊆
∏m

i=1 Vi . Then clXi0
(V ′

i0
) ⊆ Ui0 . Therefore, Xi0 is

pseudoregular. Because i0 ∈ {1, . . . ,m} is arbitrary, we have that, for each i ∈ {1, . . . ,m} , Xi is pseudoregular.
Now suppose that, for each i ∈ {1, . . . ,m} , Xi is pseudoregular. Let U be a nonempty open subset of∏m

i=1 Xi . Then, for each i ∈ {1, . . . ,m} , there exists a nonempty open subset Ui of Xi such that
∏m

i=1 Ui ⊆ U .
Since, for each i ∈ {1, . . . ,m} , Xi is pseudoregular, we have that, for each i ∈ {1, . . . ,m} , there exists a
nonempty open subset Vi of Xi such that clXi

(Vi) ⊆ Ui . Hence,
∏m

i=1 clXi
(Vi) ⊆

∏m
i=1 Ui . On the other

hand, since cl∏m
i=1 Xi

(
∏m

i=1 Vi) ⊆
∏m

i=1 clXi
(Vi) , we have that cl∏m

i=1 Xi
(
∏m

i=1 Vi) ⊆ U . Therefore,
∏m

i=1 Xi is
pseudoregular. 2

Proposition 3.10 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let Ui be an open subset of
Xi , and let fi : Xi → Xi be a function. Then, for each i ∈ {1, . . . ,m} , Ui is + invariant under fi if and only
if
∏m

i=1 Ui is + invariant under
∏m

i=1 fi .

Proof Suppose that, for each i ∈ {1, . . . ,m} , Ui is + invariant under fi . Let (a1, . . . , am) ∈
∏m

i=1 fi(
∏m

i=1 Ui) .
Then there exists (x1, . . . , xm) ∈

∏m
i=1 Ui such that

∏m
i=1 fi((x1, . . . , xm)) = (a1, . . . , am). It follows that, for

each i ∈ {1, . . . ,m} , fi(xi) = ai . Then, for each i ∈ {1, . . . ,m} , ai ∈ fi(Ui) . Since, for each i ∈ {1, . . . ,m} ,
Ui is +invariant under fi , we have that, for each i ∈ {1, . . . ,m} , ai ∈ Ui . Therefore, (a1, . . . , am) ∈

∏m
i=1 Ui .

Consequently,
∏m

i=1 Ui is + invariant under
∏m

i=1 fi .
Now suppose that

∏m
i=1 Ui is + invariant under

∏m
i=1 fi . Let i0 ∈ {1, . . . ,m} and let xi0 ∈ fi0(Ui0) .

Then there exists ui0 ∈ Ui0 such that fi0(ui0) = xi0 . For each j ∈ {1, . . . ,m}\{i0} , let uj ∈ Uj . Next,
(u1, . . . , um) ∈

∏m
i=1 Ui . Since

∏m
i=1 Ui is + invariant under

∏m
i=1 fi , we have that

∏m
i=1 fi((u1, . . . , um)) =

(f1(u1), . . . , fm(um)) ∈
∏m

i=1 Ui . Thus, xi0 = fi0(ui0) ∈ Ui0 . Therefore, fi0(Ui0) ⊆ Ui0 . 2
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Proposition 3.11 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. If, for each i ∈ {1, . . . ,m} , Ui ⊆ Xi is − invariant under fi , then

∏m
i=1 Ui is − invariant under∏m

i=1 fi .

Proof Suppose that, for each i ∈ {1, . . . ,m} , Ui is − invariant under fi . We show that (
∏m

i=1 fi)
−1(
∏m

i=1 Ui) ⊆∏m
i=1 Ui . Let (a1, . . . , am) ∈ (

∏m
i=1 fi)

−1(
∏m

i=1 Ui) . We have that
∏m

i=1 fi((a1, . . . , am)) ∈
∏m

i=1 Ui. It follows
that, for each i ∈ {1, . . . ,m} , fi(ai) ∈ Ui . Thus, for each i ∈ {1, . . . ,m} , ai ∈ f−1

i (Ui) . Since, for each
i ∈ {1, . . . ,m} , Ui is − invariant under fi , we obtain that, for each i ∈ {1, . . . ,m} , ai ∈ Ui . Consequently,
(a1, . . . , am) ∈

∏m
i=1 Ui . Therefore,

∏m
i=1 Ui is − invariant under

∏m
i=1 fi . 2

The converse of Proposition 3.11 is not true in general.

Example 3.12 Let X = {1, 2, 3, 4} be a set topologized with {X, ∅, {1, 2}} , and let f : X → X be a function
given by f(x) = 1 , for each x ∈ X . Let A = {1} × {2, 3, 4} . Note that (f × f)−1(A) = ∅ . Thus,
(f × f)−1(A) ⊆ A . Then A is − invariant under f × f . On the other hand, f−1({1}) = X . It follows
that, f−1({1}) ⊈ {1} . Consequently, {1} it is not − invariant under f .

Theorem 3.13 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let Ui be an open subset of Xi ,
and let fi : Xi → Xi be a surjective function. Then

∏m
i=1 Ui is − invariant under

∏m
i=1 fi if and only if, for

each i ∈ {1, . . . ,m} , Ui is − invariant under fi .

Proof Suppose that
∏m

i=1 Ui is − invariant under
∏m

i=1 fi . Let i0 ∈ {1, . . . ,m} and let ai0 ∈ f−1
i0

(Ui0) .
Thus, fi0(ai0) ∈ Ui0 . On the other hand, since, for each j ∈ {1, . . . ,m} , fj is surjective, we have that,
for each j ∈ {1, . . . ,m} , f−1

j (Uj) ̸= ∅ . Then, for each j ∈ {1, . . . ,m}\{i0} , we can take aj ∈ f−1
j (Uj) .

Hence, for each j ∈ {1, . . . ,m} , fj(aj) ∈ Uj . It follows that (f1(a1), . . . , fm(am)) ∈
∏m

i=1 Ui . Thus,∏m
i=1 fi((a1, . . . , am)) ∈

∏m
i=1 Ui . Then (a1, . . . , am) ∈ (

∏m
i=1 fi)

−1(
∏m

i=1 Ui) . By hypothesis, since
∏m

i=1 Ui is
− invariant, (a1, . . . , am) ∈

∏m
i=1 Ui . Hence, ai0 ∈ Ui0 . Therefore, Ui0 is − invariant.

The converse implication follows from Proposition 3.11. 2

Theorem 3.14 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Then, for each i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi if and only if

∏m
i=1 Xi

is + invariant over open subsets under
∏m

i=1 fi .

Proof Suppose that, for each i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi . Let U be a
nonempty open subset of

∏m
i=1 Xi and let (x1, . . . , xm) ∈

∏m
i=1 fi(U) . Then there exists (a1, . . . , am) ∈ U

such that
∏m

i=1 fi((a1, . . . , am)) = (x1, . . . , xm). It follows that, for each i ∈ {1, . . . ,m} , there exists a
nonempty open subset Ui of Xi such that (a1, . . . , am) ∈

∏m
i=1 Ui ⊆ U . By hypothesis and Proposition

3.10,
∏m

i=1 fi(
∏m

i=1 Ui) ⊆
∏m

i=1 Ui . Thus, (x1, . . . , xm) ∈
∏m

i=1 Ui ⊆ U . Therefore, U is + invariant under∏m
i=1 fi . Because U is arbitrary, we have that

∏m
i=1 Xi is + invariant over open subsets under

∏m
i=1 fi .

Now, suppose that
∏m

i=1 Xi is + invariant over open subsets under
∏m

i=1 fi . Let i0 ∈ {1, . . . ,m} , let
Ui0 be an open subset of Xi0 and, for each i ∈ {1, . . . ,m}\{i0} , let Vi = Xi and Vi0 = Ui0 . Then

∏m
i=1 Vi is
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a nonempty open subset of
∏m

i=1 Xi . Since
∏m

i=1 Xi is + invariant over open subsets under
∏m

i=1 fi , we have
that

∏m
i=1 Vi is +invariant under

∏m
i=1 fi . Then, by Proposition 3.10, Ui0 is + invariant under fi0 . 2

Theorem 3.15 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Then Per(

∏m
i=1 fi) is dense in

∏m
i=1 Xi if and only if, for each i ∈ {1, . . . ,m} , Per(fi) is dense in

Xi .

Proof Suppose that Per(
∏m

i=1 fi) is dense in
∏m

i=1 Xi . Thus, cl∏m
i=1 Xi

(Per(
∏m

i=1 fi)) =
∏m

i=1 Xi . Then, by
Corollary 3.5, part (2),

∏m
i=1 clXi

(Per(fi)) =
∏m

i=1 Xi . Consequently, for each i ∈ {1, . . . ,m} , clXi
(Per(fi)) =

Xi . Therefore, for each i ∈ {1, . . . ,m} , Per(fi) is dense in Xi .
Now suppose that, for each i ∈ {1, . . . ,m} , Per(fi) is dense in Xi . In consequence, we have

that,
∏m

i=1 clXi(Per(fi)) =
∏m

i=1 Xi . On the other hand, by Remark 3.4 and Corollary 3.5, part (2),
we have that

∏m
i=1 clXi(Per(fi)) = cl∏m

i=1 Xi
(
∏m

i=1 Per(fi)) = cl∏m
i=1 Xi

(Per (
∏m

i=1 fi)) . It follows that
cl∏m

i=1 Xi
(Per(

∏m
i=1 fi)) =

∏m
i=1 Xi . Therefore, Per(

∏m
i=1 fi) is dense in

∏m
i=1 Xi . 2

Proposition 3.16 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. If trans(

∏m
i=1 fi) is dense in

∏m
i=1 Xi , then, for each i ∈ {1, . . . ,m} , trans(fi) is dense in Xi .

Proof Suppose that trans(
∏m

i=1 fi) is dense in
∏m

i=1 Xi . Hence, cl∏m
i=1 Xi

(trans(
∏m

i=1 fi)) =
∏m

i=1 Xi .
Thus, by Corollary 3.5, part (1),

∏m
i=1 Xi ⊆

∏m
i=1 clXi

(trans(fi)) . Consequently, for each i ∈ {1, . . . ,m} ,
Xi ⊆ clXi(trans(fi)) . Therefore, for each i ∈ {1, . . . ,m} , trans(fi) is dense in Xi . 2

The converse of Proposition 3.16 is not true in general.

Example 3.17 Let X = {1, 2} be a set topologized with τ = {∅, X, {1}, {2}} , and let f : X → X be a function
given by f(1) = 2 and f(2) = 1 . Note that

1. O(1, f) = {1, 2} is dense in X and O(2, f) = {2, 1} is dense in X . Thus, trans(f) is dense in X .

2. trans(f × f) = ∅ .

Theorem 3.18 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. If, for each i ∈ {1, . . . ,m} , trans(fi) is dense in Xi and Xi is + invariant over open subsets under
fi , then trans(

∏m
i=1 fi) is dense in

∏m
i=1 Xi .

Proof Suppose that, for each i ∈ {1, . . . ,m} , trans(fi) is dense in Xi and that Xi is + invariant over
open subsets under fi . Let U be a nonempty open subset of

∏m
i=1 Xi . Then, for each i ∈ {1, . . . ,m} , there

exists a nonempty open subset Ui of Xi such that
∏m

i=1 Ui ⊆ U . By hypothesis, for each i ∈ {1, . . . ,m} ,
Ui ∩ trans(fi) ̸= ∅ . Consequently, for each i ∈ {1, . . . ,m} , there exists xi ∈ Ui such that xi is a transitive
point of fi . Since, for each i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi , by Theorem 3.7,
part (2), we have that (x1, . . . , xm) is a transitive point of

∏m
i=1 fi . Even more, (x1, . . . , xm) ∈ U . Therefore,

trans(
∏m

i=1 fi) is dense in
∏m

i=1 Xi . 2
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Lemma 3.19 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. If j ∈ {1, . . . ,m} , let Uj , Vj be two nonempty open subsets of Xj and, for each i ∈ {1, . . . ,m}\{j} ,
we put Ui = Xi and Vi = Xi , then n∏m

i=1 fi(
∏m

i=1 Ui,
∏m

i=1 Vi) ⊆ nfj (Uj , Vj) .

Proof Let k ∈ n∏m
i=1 fi(

∏m
i=1 Ui,

∏m
i=1 Vi) . Then (

∏m
i=1 Ui) ∩ (

∏m
i=1 fi)

−k
(
∏m

i=1 Vi) ̸= ∅. Let (y1, . . . , ym) ∈

(
∏m

i=1 Ui) ∩ (
∏m

i=1 fi)
−k(
∏m

i=1 Vi) . It follows that (
∏m

i=1 fi)
k((y1, . . . , ym)) ∈

∏m
i=1 Vi . Then, by Remark

3.1, part (1), we have that (fk
1 (y1), . . . , f

k
m(ym)) ∈

∏m
i=1 Vi . Consequently, yj ∈ Uj ∩ f−k

j (Vj) . Then,
k ∈ nfj (Uj , Vj) . Thus, n∏m

i=1 fi(
∏m

i=1 Ui,
∏m

i=1 Vi) ⊆ nfj (Uj , Vj) . 2

4. Dynamic properties of product functions

Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function. In this
section, we present the relationships that exist between the functions

∏m
i=1 fi and fi , for each i ∈ {1, . . . ,m} ,

when any of them is exact, mixing, transitive, weakly mixing, totally transitive, strongly transitive, chaotic,
minimal, orbit-transitive, strictly orbit-transitive, ω -transitive, TT++ , mild mixing, exactly Devaney chaotic,
backward minimal, totally minimal, scattering, Touhey or an F -system.

Theorem 4.1 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Let M be one of the following classes of functions: transitive, weakly mixing, totally transitive,
strongly transitive, chaotic, orbit-transitive, strictly orbit-transitive, ω -transitive, TT++ , backward minimal,
Touhey, an F-system, scattering or mild mixing. If

∏m
i=1 fi ∈ M , then, for each i ∈ {1, . . . ,m} , fi ∈ M .

Proof Suppose that
∏m

i=1 fi is transitive. Let i0 ∈ {1, . . . ,m} and let Ui0 , Vi0 be nonempty open subsets of
Xi0 . For every i ∈ {1, . . . ,m}\{i0} , let Ui = Xi and let Vi = Xi . Then

∏m
i=1 Ui and

∏m
i=1 Vi are nonempty

open subsets of
∏m

i=1 Xi . Since,
∏m

i=1 fi is transitive, there exists k ∈ N such that (
∏m

i=1 fi)
k(
∏m

i=1 Ui) ∩
(
∏m

i=1 Vi) ̸= ∅ . Let (u1, . . . , um) ∈
∏m

i=1 Ui such that (
∏m

i=1 fi)
k((u1, . . . , um)) ∈

∏m
i=1 Vi . Thus, by Remark

3.1, part (1), we have that fk
i0
(ui0) ∈ Vi0 . Therefore, fk

i0
(ui0) ∈ fk

i0
(Ui0) ∩ Vi0 , fk

i0
(Ui0) ∩ Vi0 ̸= ∅ and fi0 is

transitive.
Suppose that

∏m
i=1 fi is weakly mixing. Let i0 ∈ {1, . . . ,m} and let U ,V be nonempty open sub-

sets of Xi0 × Xi0 . Then there exist nonempty open subsets U1
i0
, U2

i0
, V 1

i0
and V 2

i0
of Xi0 such that U1

i0
×

U2
i0

⊆ U and V 1
i0

× V 2
i0

⊆ V . For each i ∈ {1, . . . ,m}\{i0} , let U1
i = U2

i = V 1
i = V 2

i = Xi . Hence,
(
∏m

i=1 U
1
i ) × (

∏m
i=1 U

2
i ) and (

∏m
i=1 V

1
i ) × (

∏m
i=1 V

2
i ) are nonempty open subsets of (

∏m
i=1 Xi) × (

∏m
i=1 Xi) .

By hypothesis, there exists ((a1, . . . , am), (b1, . . . , bm)) ∈ (
∏m

i=1 U
1
i ) × (

∏m
i=1 U

2
i ) and k ∈ N such that

((
∏m

i=1 fi) × (
∏m

i=1 fi))
k((a1, . . . , am), (b1, . . . , bm)) ∈ (

∏m
i=1 V

1
i ) × (

∏m
i=1 V

2
i ) . Then by Remark 3.1, part (1),

(fi0 × fi0)
k((ai0 , bi0)) ∈ V 1

i0
× V 2

i0
. Even more, (ai0 , bi0) ∈ U1

i0
× U2

i0
. Therefore, (fi0 × fi0)

k(U) ∩ V ̸= ∅ and

hence f×2
i0

is transitive. Finally, fi0 is weakly mixing.

Suppose that
∏m

i=1 fi is totally transitive. Let i0 ∈ {1, . . . ,m} and let s ∈ N . By hypothesis, (
∏m

i=1 fi)
s

is transitive. By Remark 3.1, part (1),
∏m

i=1 f
s
i is transitive. Thus, by the first paragraph of the proof of this

theorem, we have that fs
i0

is transitive. Therefore, fi0 is totally transitive.

Suppose that
∏m

i=1 fi is strongly transitive. Let i0 ∈ {1, . . . ,m} and let Ui0 be a nonempty open subset
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of Xi0 . For every i ∈ {1, . . . ,m}\{i0} , let Ui = Xi . Then
∏m

i=1 Ui is a nonempty open subset of
∏m

i=1 Xi . By
hypothesis, there exists s ∈ N such that

∏m
i=1 Xi =

∪s
k=0(

∏m
i=1 fi)

k(
∏m

i=1 Ui) . Let xi0 ∈ Xi0 and, for each i ∈
{1, . . . ,m}\{i0} , let xi ∈ Xi . Then there exists k1 ∈ {0, . . . , s} such that (x1, . . . , xm) ∈ (

∏m
i=1 fi)

k1(
∏m

i=1 Ui) .

Thus, by Remark 3.1, part (1), we have that xi0 ∈ fk1
i0
(Ui0) . Therefore, Xi0 =

∪s
k=0 f

k
i0
(Ui0) and hence fi0 is

strongly transitive.

Suppose that
∏m

i=1 fi is chaotic. By the first paragraph of the proof of this theorem, for all i ∈ {1, . . . ,m} ,
fi is transitive. Moreover, by Theorem 3.15, for every i ∈ {1, . . . ,m} , Per(fi) is dense in Xi . Thus, for each
i ∈ {1, . . . ,m} , fi is chaotic.

Suppose that
∏m

i=1 fi is orbit-transitive. Consequently, there exists (x1, . . . , xm) ∈
∏m

i=1 Xi such that
cl∏m

i=1 Xi
(O((x1, . . . , xm),

∏m
i=1 fi)) =

∏m
i=1 Xi . Thus, by Theorem 3.3, part (1), for every i ∈ {1, . . . ,m} , we

have that clXi(O(xi, fi)) = Xi . Thus, for all i ∈ {1, . . . ,m} , fi is orbit-transitive.

Suppose that
∏m

i=1 fi is strictly orbit-transitive. Consequently, there exists (x1, . . . , xm) ∈
∏m

i=1 Xi such
that cl∏m

i=1 Xi
(O(

∏m
i=1 fi((x1, . . . , xm)),

∏m
i=1 fi)) =

∏m
i=1 Xi . Therefore, by Theorem 3.3, part (1), for every

i ∈ {1, . . . ,m} , clXi
(O(fi(xi), fi)) = Xi and hence, for all i ∈ {1, . . . ,m} , fi is strictly orbit-transitive.

Suppose that
∏m

i=1 fi is ω -transitive. Consequently, there exists (x1, . . . , xm) ∈
∏m

i=1 Xi such that
ω((x1, . . . , xm),

∏m
i=1 fi) =

∏m
i=1 Xi . Thus, by Theorem 3.3, part (2), for each i ∈ {1, . . . ,m} , ω(xi, fi) = Xi .

Therefore, for each i ∈ {1, . . . ,m} , fi is ω -transitive.

Suppose that
∏m

i=1 fi is TT++ . Let i0 ∈ {1, . . . ,m} and let Ui0 , Vi0 be nonempty open subsets of Xi0 .
For every i ∈ {1, . . . ,m}\{i0} , let Ui = Xi and Vi = Xi . Then by Lemma 3.19, n∏m

i=1 fi
(
∏m

i=1 Ui,
∏m

i=1 Vi) ⊆

nfi0
(Ui0 , Vi0) . Moreover, by hypothesis, n∏m

i=1 fi
(
∏m

i=1 Ui,
∏m

i=1 Vi) is infinite. Therefore, nfi0
(Ui0 , Vi0) is

infinite and hence fi0 is TT++ .

Suppose that
∏m

i=1 fi is backward minimal. Let i0 ∈ {1, . . . ,m} , let xi0 ∈ Xi0 and let Ui0 be a
nonempty open subset of Xi0 . For each i ∈ {1, . . . ,m}\{i0} , let Ui = Xi and let xi ∈ Xi . Then

∏m
i=1 Ui

is a nonempty open subset of
∏m

i=1 Xi . By hypothesis, we deduce that {A ∈
∏m

i=1 Xi : (
∏m

i=1 fi)
l(A) =

(x1, . . . , xm), for some l ∈ N} ∩
∏m

i=1 Ui ̸= ∅ . Let (u1, . . . , um) ∈
∏m

i=1 Ui and let l ∈ N such that
(
∏m

i=1 fi)
l((u1, . . . , um)) = (x1, . . . , xm) . It follows that, ui0 ∈ {y ∈ Xi0 : f l

i0
(y) = xi0 , for some l ∈ N} ∩ Ui0 ̸=

∅ . Thus, the set {y ∈ Xi0 : f l
i0
(y) = xi0 , for some l ∈ N} is dense in Xi0 . Since xi0 ∈ Xi0 is arbitrary, we have

that fi0 is backward minimal.

Suppose that
∏m

i=1 fi is Touhey. Let i0 ∈ {1, . . . ,m} and let Ui0 , Vi0 be nonempty open subsets of Xi0 .
For each i ∈ {1, . . . ,m}\{i0} , let Ui = Xi and Vi = Xi . Then,

∏m
i=1 Ui and

∏m
i=1 Vi are nonempty open

subsets of
∏m

i=1 Xi . By hypothesis, there exist a periodic point (x1, . . . , xm) ∈
∏m

i=1 Ui and k ∈ Z+ such that
(
∏m

i=1 fi)
k((x1, . . . , xm)) ∈

∏m
i=1 Vi . By Theorem 3.3, part (4), xi0 is a periodic point of fi0 such that xi0 ∈ Ui0

and by Remark 3.1, part (1), fk
i0
(xi0) ∈ Vi0 . Therefore, fi0 is Touhey.

Suppose that
∏m

i=1 fi is an F -system. Thus,
∏m

i=1 fi is totally transitive and Per(
∏m

i=1 fi) is dense in∏m
i=1 Xi . By the third paragraph of this proof, we have that, for each i ∈ {1, . . . ,m} , fi is totally transitive.

Moreover, by Theorem 3.15, for each i ∈ {1, . . . ,m} , Per(fi) is dense in Xi . Therefore, for each i ∈ {1, . . . ,m} ,
fi is an F -system.
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Suppose that
∏m

i=1 fi is scattering. Let i0 ∈ {1, . . . ,m} , let Y be a topological space and let g : Y → Y

be a minimal function. Let U and V be nonempty open subsets of Xi0 × Y . Then, there exist nonempty open
subsets U1

i0
, U2

i0
of Xi0 and nonempty open subsets V1, V2 of Y such that U1

i0
× V1 ⊆ U and U2

i0
× V2 ⊆ V .

For each i ∈ {1, . . . ,m}\{i0} , let U1
i = U2

i = Xi . Thus,
∏m

i=1 U
1
i and

∏m
i=1 U

2
i are nonempty open

subsets of
∏m

i=1 Xi . By hypothesis, there exist ((u1, . . . , um), v1) ∈ (
∏m

i=1 U
1
i ) × V1 and k ∈ N such that

((
∏m

i=1 fi) × g)k((u1, . . . , um), v1) ∈ (
∏m

i=1 U
2
i ) × V2 . It follows that (ui0 , v1) ∈ U1

i0
× V1 and by Remark 3.1,

part (1), (fi0 × g)k((ui0 , v1)) ∈ U2
i0
× V2 . Therefore, (fi0 × g)k(U) ∩ V ̸= ∅ and hence fi0 is scattering.

The proof for mild mixing is similar to that given for scattering. 2

The converse of Theorem 4.1 is not true in general. Let us see a partial example of this in the following:

Example 4.2 Let f : [0, 2] → [0, 2] be a function given by:

f(x) =

 2x+ 1, 0 ≤ x ≤ 1
2 ,

−2x+ 3, 1
2 ≤ x ≤ 1,

−x+ 2, 1 ≤ x ≤ 2.

In [8, Example 1], it is proved that f is a chaotic function. Moreover, it is proved that f×f : [0, 2]×[0, 2] →
[0, 2] × [0, 2] is not transitive and, therefore, it is not chaotic. Furthermore, in [1, 15], it is proved that for
continua and continuous functions, the notions: transitive, orbit-transitive, strictly orbit-transitive, ω -transitive
and TT++ are equivalent. Therefore, the converse of Theorem 4.1, for all these classes of functions are not
true in general.

Theorem 4.3 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Then, for each i ∈ {1, . . . ,m} , fi is exact if and only if

∏m
i=1 fi is exact.

Proof Suppose that
∏m

i=1 fi is exact. Let i0 ∈ {1, . . . ,m} and let Ui0 be a nonempty open subset of Xi0 .
For each i ∈ {1, . . . ,m}\{i0} , let Ui = Xi . Then

∏m
i=1 Ui is an open subset of

∏m
i=1 Xi . By hypothesis, there

exists k ∈ N such that (
∏m

i=1 fi)
k(
∏m

i=1 Ui) =
∏m

i=1 Xi . By Remark 3.1, part (3), fk
i0
(Ui0) = Xi0 . Thus, fi0 is

exact.
Now, suppose that, for each i ∈ {1, . . . ,m} , fi is exact. Let U be a nonempty open subset of

∏m
i=1 Xi .

Then, for each i ∈ {1, . . . ,m} , there exists a nonempty open subset Ui of Xi such that
∏m

i=1 Ui ⊆ U . By

hypothesis, for each i ∈ {1, . . . ,m} , there exists ki ∈ N such that fki
i (Ui) = Xi . On the other hand, by the

diagram on Figure, we have that, for each i ∈ {1, . . . ,m} , fi is surjective. Then, for each i ∈ {1, . . . ,m} and
for each l ∈ N , f l

i (Xi) = Xi . Let k = max{k1, . . . , km} . It follows that, for each i ∈ {1, . . . ,m} , there exists
li ∈ Z+ such that k = ki + li . Thus, for each i ∈ {1, . . . ,m} , fk

i (Ui) = f li+ki
i (Ui) = f li

i (fki
i (Ui)) = f li

i (Xi) =

Xi . Consequently, by Remark 3.1, part (1), (
∏m

i=1 fi)
k(
∏m

i=1 Ui) =
∏m

i=1 f
k
i (Ui) =

∏m
i=1 Xi . Therefore,

(
∏m

i=1 fi)
k(U) =

∏m
i=1 Xi and

∏m
i=1 fi is exact. 2

Theorem 4.4 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Then

∏m
i=1 fi is mixing if and only if, for each i ∈ {1, . . . ,m} , fi is mixing.
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Proof Suppose that
∏m

i=1 fi is mixing. Let i0 ∈ {1, . . . ,m} and let Ui0 , Vi0 be two nonempty open
subsets of Xi0 . For each i ∈ {1, . . . ,m}\{i0} , we put Ui = Xi and Vi = Xi . It follows that

∏m
i=1 Ui

and
∏m

i=1 Vi are nonempty open subsets of
∏m

i=1 Xi . Since
∏m

i=1 fi is mixing, there exists N ∈ N such
that (

∏m
i=1 fi)

k(
∏m

i=1 Ui) ∩ (
∏m

i=1 Vi) ̸= ∅ , for each k ≥ N . Let k ≥ N and let (a1, . . . , vi0 , . . . , am) ∈
(
∏m

i=1 fi)
k(
∏m

i=1 Ui) ∩ (
∏m

i=1 Vi) . Then there exists (x1, . . . , ui0 , . . . , xm) ∈
∏m

i=1 Ui such that

(
m∏
i=1

fi

)k

((x1, . . . , ui0 , . . . , xm)) = (a1, . . . , vi0 , . . . , am).

Thus, fk
i0
(ui0) = vi0 . Thereby, vi0 ∈ fk

i0
(Ui0) ∩ Vi0 . Consequently, fk

i0
(Ui0) ∩ Vi0 ̸= ∅ , for each k ≥ N .

Therefore, fi0 is mixing.
Now, suppose that, for each i ∈ {1, . . . ,m} , fi is mixing. Let U and V be two nonempty open subsets

of
∏m

i=1 Xi . Then, for each i ∈ {1, . . . ,m} , there exist nonempty open subsets Ui and Vi of Xi , such that∏m
i=1 Ui ⊆ U and

∏m
i=1 Vi ⊆ V . Since fi is mixing, for each i ∈ {1, . . . ,m} , there exists Ni ∈ N such

that fk
i (Ui) ∩ Vi ̸= ∅ , for each k ≥ Ni . Let N = max{N1, . . . , Nm} and let l ≥ N . Thus, by hypothesis

f l
i (Ui)∩Vi ̸= ∅ . For each i ∈ {1, . . . ,m} , let ai ∈ Ui be such that f l

i (ai) ∈ Vi . Then (a1, . . . , am) ∈
∏m

i=1 Ui and
(
∏m

i=1 fi)
l(a1, . . . , am) ∈

∏m
i=1 Vi . Hence, (

∏m
i=1 fi)

l(a1, . . . , am) ∈ [(
∏m

i=1 fi)
l(
∏m

i=1 Ui)] ∩ (
∏m

i=1 Vi) . Hence,
for each l ≥ N , [(

∏m
i=1 fi)

l(
∏m

i=1 Ui)] ∩ (
∏m

i=1 Vi) ̸= ∅ . Therefore,
∏m

i=1 fi is mixing. 2

By Theorems 3.15 and 4.3, we have the following result.

Proposition 4.5 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Then, for each i ∈ {1, . . . ,m} , fi is exactly Devaney chaotic if and only if

∏m
i=1 fi is exactly Devaney

chaotic.

Theorem 4.6 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
continuous function. If

∏m
i=1 fi is minimal, then, for each i ∈ {1, . . . ,m} , fi is minimal.

Proof Let i0 ∈ {1, . . . ,m} . Since fi0 is continuous, it is enough to show that, for each x ∈ Xi0 ,
clXi0

(O(x, fi0)) = Xi0 . Let x ∈ Xi0 , for each i ∈ {1, . . . ,m}\{i0} , let xi ∈ Xi and let xi0 = x . Then,
(x1, . . . , xm) ∈

∏m
i=1 Xi . Since, for each i ∈ {1, . . . ,m} , fi is continuos, we have that,

∏m
i=1 fi is a minimal and

continuous function. Thus, we have that cl∏m
i=1 Xi

(O((x1, . . . , xm),
∏m

i=1 fi)) =
∏m

i=1 Xi . Later, by Theorem
3.3, part (1), for each i ∈ {1, . . . ,m} , clXi(O(xi, fi)) = Xi . In particular, clXi0

(O(x, fi0)) = Xi0 . Considering
that x ∈ Xi0 is arbitrary, by [15, Proposition 6.2], fi0 is minimal. 2

Corollary 4.7 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
continuous function. If

∏m
i=1 fi is totally minimal, then, for each i ∈ {1, . . . ,m} , fi is totally minimal.

Proof Let s ∈ N . By hypothesis, (
∏m

i=1 fi)
s is minimal. Then, by Remark 3.1, part (1),

∏m
i=1 f

s
i is minimal.

Thus, by Theorem 4.6, for each i ∈ {1, . . . ,m} , fs
i is minimal. 2
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Lemma 4.8 Let X1, . . . , Xm+1 be topological spaces and, for each i ∈ {1, . . . ,m + 1} , let fi : Xi → Xi be a
function. If, for each i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi and fi× fm+1 is transitive,
then (

∏m
i=1 fi)× fm+1 is transitive.

Proof Suppose that, for each i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi and fi × fm+1

is transitive. Let U , V be two nonempty open subsets of (
∏m

i=1 Xi) × Xm+1 . It follows that, there exist
nonempty open subsets U1 and U2 of

∏m
i=1 Xi and there exist nonempty open subsets V1 and V2 of Xm+1

such that, U1 × V1 ⊆ U and U2 × V2 ⊆ V . Hence, for each i ∈ {1, . . . ,m} , there exist nonempty open subsets
U1
i , U

2
i of Xi such that

∏m
i=1 U

1
i ⊆ U1 and

∏m
i=1 U

2
i ⊆ U2 . By hypothesis, there exists ki ∈ N such that

(fi × fm+1)
ki(U1

i × V1) ∩ (U2
i × V2) ̸= ∅ . Then, for each i ∈ {1, . . . ,m} , there exists (ui, vi) ∈ U1

i × V1 such
that (fi × fm+1)

ki((ui, vi)) ∈ U2
i × V2 . Consequently, for every i ∈ {1, . . . ,m} , fki

i (ui) ∈ U2
i . Let k =

max{k1, . . . , km} . Then, by Lemma 3.2, we have that, for all i ∈ {1, . . . ,m} , fk
i (ui) ∈ U2

i . Let i0 ∈ {1, . . . ,m}
be such that k = ki0 , and let v = vi0 . Thus, fk

m+1(v) ∈ V2 . Hence, ((u1, . . . , um), v)) ∈ (
∏m

i=1 U
1
i ) × V1 and

((
∏m

i=1 fi)×fm+1)
k(((u1, . . . , um), v)) ∈ (

∏m
i=1 U

2
i )×V2 . Consequently, [(

∏m
i=1 fi)×fm+1]

k(U1×V1)∩(U2×V2) ̸=
∅ . Therefore, (

∏m
i=1 fi)× fm+1 is transitive. 2

Remark 4.9 Let X be a topological space and let f : X → X be a function. Observe that if X is + invariant
over open subsets under f , then f cannot be strongly transitive unless X has the trivial topology.

Theorem 4.10 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function. Let M be one of the following classes of functions: transitive, weakly mixing, totally transitive,
chaotic, orbit-transitive, strictly orbit-transitive, ω -transitive, TT++ , Touhey, scattering, an F-system or mild
mixing. If, for each i ∈ {1, . . . ,m} , fi ∈ M and Xi is + invariant over open subsets under fi , then∏m

i=1 fi ∈ M .

Proof Suppose that, for each i ∈ {1, . . . ,m} , fi is transitive. Let U and V be two nonempty open
subsets of

∏m
i=1 Xi . Then, for each i ∈ {1, . . . ,m} , there exist nonempty open subsets Ui and Vi of Xi

such that
∏m

i=1 Ui ⊆ U and
∏m

i=1 Vi ⊆ V . By hypothesis, for each i ∈ {1, . . . ,m} , there exists ki ∈ N

such that fki
i (Ui) ∩ Vi ̸= ∅ . For each i ∈ {1, . . . ,m} , let ui ∈ Ui be such that fki

i (ui) ∈ Vi and let k =

max{k1, . . . , km} . By Lemma 3.2, we have that, for each i ∈ {1, . . . ,m} , fk
i (ui) ∈ Vi . Hence, (u1, . . . , um) ∈∏m

i=1 Ui and (fk
1 (u1), . . . , f

k
m(um)) ∈

∏m
i=1 Vi . Consequently, (

∏m
i=1 fi)

k((u1, . . . , um)) ∈
∏m

i=1 Vi . It follows
that (

∏m
i=1 fi)

m(
∏m

i=1 Ui) ∩ (
∏m

i=1 Vi) ̸= ∅ . Therefore, (
∏m

i=1 fi)
k(U) ∩ V ̸= ∅ and

∏m
i=1 fi is transitive.

Suppose that, for each i ∈ {1, . . . ,m} , fi is weakly mixing. Let U1,U2,V1 , and V2 be four nonempty
open subsets of

∏m
i=1 Xi . Then, for each i ∈ {1, . . . ,m} , there exist nonempty open subsets U1

i , U
2
i , V

1
i and

V 2
i of Xi , such that

∏m
i=1 U

1
i ⊆ U1 ,

∏m
i=1 U

2
i ⊆ U2 ,

∏m
i=1 V

1
i ⊆ V1 and

∏m
i=1 V

2
i ⊆ V2 . Since, fi is weakly

mixing, for every i ∈ {1, . . . ,m} , there exists ki ∈ N such that fki
i (U j

i ) ∩ V j
i ̸= ∅ , for each j ∈ {1, 2} . For

each i ∈ {1, . . . ,m} , let ai ∈ U1
i be such that fki

i (ai) ∈ V 1
i and let a

′

i ∈ U2
i be such that fki

i (a
′

i) ∈ V 2
i .

Let k = max{k1, . . . , km} . Hence, by Lemma 3.2, for each i ∈ {1, . . . ,m} , fk
i (ai) ∈ V 1

i and fk
i (a

′

i) ∈ V 2
i .

It follows that (
∏m

i=1 fi)
k((a1, . . . , am)) ∈

∏m
i=1 V

1
i and (

∏m
i=1 fi)

k((a
′

1, . . . , a
′

m)) ∈
∏m

i=1 V
2
i . Consequently,

(
∏m

i=1 fi)
k(U1) ∩ V1 ̸= ∅ and (

∏m
i=1 fi)

k(U2) ∩ V2 ̸= ∅ . Therefore,
∏m

i=1 fi is weakly mixing.
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Suppose that, for each i ∈ {1, . . . ,m} , fi is totally transitive. Let s ∈ N and let U , V be two
nonempty open subsets of

∏m
i=1 Xi . Then, for each i ∈ {1, . . . ,m} , there exist nonempty open subsets Ui, Vi

of Xi such that
∏m

i=1 Ui ⊆ U and
∏m

i=1 Vi ⊆ V . Since, for each i ∈ {1, . . . ,m} , fi is totally transitive, for each

i ∈ {1, . . . ,m} , there exists ki ∈ N such that (fs
i )

ki(Ui)∩Vi ̸= ∅ . Hence, for all i ∈ {1, . . . ,m} , fski
i (Ui)∩Vi ̸= ∅ .

For every i ∈ {1, . . . ,m} , let ui ∈ Ui be such that fski
i (ui) ∈ Vi . Let k = max{k1, . . . , km} . By Lemma 3.2, for

each i ∈ {1, . . . ,m} , fsk
i (ui) ∈ Vi . Thus, (fsk

1 (u1), . . . , f
sk
m (um)) ∈

∏m
i=1 f

sk
i (Ui) and (fsk

1 (u1), . . . , f
sk
m (um)) ∈∏m

i=1 Vi . By Remark 3.1, part (1), we have that, (
∏m

i=1 fi)
sk((u1, . . . , um)) ∈ (

∏m
i=1 fi)

sk(
∏m

i=1 Ui) and
(
∏m

i=1 fi)
sk((u1, . . . , um)) ∈

∏m
i=1 Vi . Consequently:

(
m∏
i=1

fi

)sk

((u1, . . . , um)) ∈

( m∏
i=1

fi

)sk( m∏
i=1

Ui

) ∩
m∏
i=1

Vi.

Hence, (
∏m

i=1 fi)
s is transitive. Since s ∈ N is arbitrary, we have that

∏m
i=1 fi is totally transitive.

Suppose that, for each i ∈ {1, . . . ,m} , fi is a chaotic function. Then, for each i ∈ {1, . . . ,m} , fi is
transitive and Per(fi) is dense in Xi . By the first part of the proof of this theorem, we have that,

∏m
i=1 fi is

transitive and by Theorem 3.15, Per(
∏m

i=1 fi) is dense in
∏m

i=1 Xi . Therefore,
∏

i=1 fi is chaotic.
Suppose that, for each i ∈ {1, . . . ,m} , fi is orbit-transitive. Thus, for all i ∈ {1, . . . ,m} , there exists

xi ∈ Xi such that clXi
(O(xi, fi)) = Xi . Then, by Theorem 3.7, part (2), cl∏m

i=1 Xi
(O ((x1, . . . , xm),

∏m
i=1 fi)) =∏m

i=1 Xi. Thence,
∏m

i=1 fi is orbit-transitive.
Suppose that, for each i ∈ {1, . . . ,m} , fi is strictly orbit-transitive. Then, for every i ∈ {1, . . . ,m} ,

there exists xi ∈ Xi such that clXi(O(fi(xi), fi)) = Xi . By Theorem 3.7, part (2):

cl∏m
i=1 Xi

(O((f1(x1), . . . , fn(xm)),

m∏
i=1

fi)) =

m∏
i=1

Xi.

Consequently cl∏m
i=1 Xi

(O ((
∏m

i=1 fi) ((x1, . . . , xm)),
∏m

i=1 fi)) =
∏m

i=1 Xi. Therefore,
∏m

i=1 fi is strictly orbit-
transitive.

Suppose that, for each i ∈ {1, . . . ,m} , fi is ω -transitive. Then, for every i ∈ {1, . . . ,m} , there exists
xi ∈ Xi such that ω(xi, fi) = Xi . By Theorem 3.7, part (1), ω((x1, . . . , xm),

∏m
i=1 fi) =

∏m
i=1 Xi . Therefore,∏m

i=1 fi is ω -transitive.
Suppose that, for each i ∈ {1, . . . ,m} , fi is TT++ . Let U and V be two nonempty open subsets

of
∏m

i=1 Xi . Then, for every i ∈ {1, . . . ,m} , there exist nonempty open subsets Ui, Vi of Xi such that∏m
i=1 Ui ⊆ U and

∏m
i=1 Vi ⊆ V . Since, for all i ∈ {1, . . . ,m} , fi is TT++ , we have that, for each i ∈ {1, . . . ,m} ,

nfi(Ui, Vi) is infinite. For every i ∈ {1, . . . ,m} , let ki ∈ nfi(Ui, Vi) . Then, for each i ∈ {1, . . . ,m} ,
fki
i (Ui) ∩ Vi ̸= ∅ . It follows that, for all i ∈ {1, . . . ,m} , there exists ui ∈ Ui such that fki

i (ui) ∈ Vi . Let
k = max{k1, . . . , km} . By Lemma 3.2, for every i ∈ {1, . . . ,m} , fk

i (ui) ∈ Vi . Then [
∏m

i=1 fi]
k((u1, . . . , um)) ∈

[
∏m

i=1 fi]
k(
∏m

i=1 Ui)∩
∏m

i=1 Vi . Consequently, [
∏m

i=1 fi]
k(U)∩V ̸= ∅ . Therefore, k ∈ n∏m

i=1 fi(U ,V) . Now, since,

for each i ∈ {1, . . . ,m} , nfi(Ui, Vi) is infinite, for every i ∈ {1, . . . ,m} , we can take k
′

i ∈ nfi(Ui, Vi) such that

k
′

i > k . Let k1 = max{k′

1, . . . , k
′

m} . By Lemma 3.2, for every i ∈ {1, . . . ,m} , fk1
i (ui) ∈ Vi . It follows that,
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(
∏m

i=1 fi)
k1(
∏m

i=1 Ui) ∩
∏m

i=1 Vi ̸= ∅ . Consequently, (
∏m

i=1 fi)
k1(U) ∩ V ≠ ∅ . Therefore, k1 ∈ n∏m

i=1 fi(U ,V)
and k1 > k . Continuing with this process, we have that n∏m

i=1 fi(U ,V) is an infinite set. Since U and V are
arbitrary, we have that the function

∏m
i=1 fi is TT++ .

Suppose that, for each i ∈ {1, . . . ,m} , fi is Touhey. Let U and V be two nonempty open subsets
of
∏m

i=1 Xi . Then, for every i ∈ {1, . . . ,m} , there exist two nonempty open subsets Ui and Vi of Xi such
that

∏m
i=1 Ui ⊆ U and

∏m
i=1 Vi ⊆ V . Since, for all i ∈ {1, . . . ,m} , fi is Touhey, for each pair of nonempty

open subsets Ui and Vi , there exist a periodic point xi ∈ Ui and ki ∈ Z+ such that fki
i (xi) ∈ Vi . Let

k = max{k1, . . . , km} . Then, by Lemma 3.2, we have that for each i ∈ {1, . . . ,m} , fk
i (xi) ∈ Vi . By Theorem

3.3, part (4), we obtain that (x1, . . . , xm) is a periodic point of
∏m

i=1 fi such that (x1, . . . , xm) ∈
∏m

i=1 Ui ⊆ U
and (

∏m
i=1 fi)

k((x1, . . . , xm)) ∈
∏m

i=1 Vi ⊆ V . Therefore,
∏m

i=1 fi is Touhey.
Suppose that, for each i ∈ {1, . . . ,m} , fi is an F-system. Then, for every i ∈ {1, . . . ,m} , fi is totally

transitive and Per(fi) is dense in Xi . By the third paragraph of the proof of this theorem, we have that∏m
i=1 fi is totally transitive. Moreover, by Theorem 3.15, we know that Per(

∏m
i=1 fi) is dense in

∏m
i=1 Xi .

Therefore,
∏m

i=1 fi is an F-system.
Suppose that, for each i ∈ {1, . . . ,m} , fi is mild mixing. Let Y be a topological space, let g : Y → Y be

a transitive function. By hypothesis, for each i ∈ {1, . . . ,m} , fi×g is transitive. Since, for each i ∈ {1, . . . ,m} ,
Xi is +invariant over open subsets under fi , by Lemma 4.8, (

∏m
i=1 fi)× g is transitive. Therefore,

∏m
i=1 fi is

mild mixing.
Suppose that, for each i ∈ {1, . . . ,m} , fi is scattering. Let Y be a topological space and let g : Y → Y be

a minimal function. By hypothesis, for each i ∈ {1, . . . ,m} , fi × g is transitive. Since, for each i ∈ {1, . . . ,m} ,
Xi is +invariant over open subsets under fi , by Lemma 4.8, (

∏m
i=1 fi)× g is transitive. Therefore,

∏m
i=1 fi is

scattering. 2

Proposition 4.11 Let X1, . . . , Xm be topological spaces and, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
continuous function. If for every i ∈ {1, . . . ,m} , fi is minimal and Xi is + invariant over open subsets under
fi , then

∏m
i=1 fi is minimal.

Proof Suppose that, for each i ∈ {1, . . . ,m} , fi is minimal and Xi is + invariant over open subsets
under fi . By hypothesis, we have that

∏m
i=1 fi is a continuous function. Thus, it is sufficient to show

that, for all (x1, . . . , xm) ∈
∏m

i=1 Xi , cl∏m
i=1 Xi

(O((x1, . . . , xm),
∏m

i=1 fi)) =
∏m

i=1 Xi . Let (x1, . . . , xm) ∈∏m
i=1 Xi . Since, for each i ∈ {1, . . . ,m} , fi is minimal, we have that clXi

(O(xi, fi)) = Xi . Since, for
every i ∈ {1, . . . ,m} , Xi is +invariant over open subsets under fi , by Theorem 3.7, part (2), we have that
cl∏m

i=1 Xi
(O((x1, . . . , xm),

∏m
i=1 fi)) =

∏m
i=1 Xi. Thus, since

∏m
i=1 fi is continuous, we have that

∏m
i=1 fi is

minimal. 2

Corollary 4.12 Let X1, . . . , Xm be topological spaces and for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
continuous function. If for each i ∈ {1, . . . ,m} , fi is totally minimal and Xi is + invariant over open subsets
under fi , then

∏m
i=1 fi is totally minimal.

Proof Let s ∈ N . By hypothesis, for every i ∈ {1, . . . ,m} , fs
i is minimal and continuous. Thus, by
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Proposition 4.11,
∏m

i=1 f
s
i is minimal. Then, by Remark 3.1, part (1), (

∏m
i=1 fi)

s is minimal. Finally, since
s ∈ N is arbitrary, we have that

∏m
i=1 fi is totally minimal. 2

5. Dynamic properties of n-fold symmetric product of a product space.

Let X1, . . . , Xm be topological spaces. In this section we analyze some topological and dynamical properties of
the hyperspace Fn(

∏m
i=1 Xi) and their relationships with the spaces Fn(Xi) and Xi , for each i ∈ {1, . . . ,m} .

Lemma 5.1 Let X1, . . . , Xm be topological spaces, let i0 ∈ {1, . . . ,m} , let n ∈ N , let {a1, . . . , ar} ∈ Fn(Xi0)

with r ≤ n , and let U1, . . . , Un be nonempty open subsets of Xi0 such that {a1, . . . , ar} ∈ ⟨U1, . . . , Un⟩ . For
each i ∈ {1, . . . ,m}\{i0} and for every l ∈ {1, . . . , r} , let ali ∈ Xi and let ali0 = al .

1. If, for each l ∈ {1, . . . , r} , bl = (al1, . . . , a
l
i0
, . . . , alm) , then {b1, . . . , br} ∈ Fn(

∏m
i=1 Xi) .

2. If, for every i ∈ {1, . . . ,m}\{i0} and for each j ∈ {1, . . . , n} , V j
i = Xi and V j

i0
= Uj , then {b1, . . . , br} ∈

⟨U ′

1, . . . , U
′

n⟩ , where, for all j ∈ {1, . . . , n} , U
′

j =
∏m

i=1 V
j
i .

Proof It is not difficult to see that (1) is satisfied. We show that (2) is true. Let p ∈ {1, . . . , r} .
Since {a1, . . . , ar} ∈ ⟨U1, . . . , Un⟩ , there exists j0 ∈ {1, . . . , n} such that ap = apj0 ∈ Uj0 . Thus, bp =

(ap1, . . . , a
p
i0
, . . . , apm) ∈

∏m
i=1 V

j0
i = U

′

j0
. Therefore, bp ∈

∪n
j=1 U

′

j . Consequently, {b1, . . . , br} ⊆
∪n

j=1 U
′

j . Now,

we will prove that, for each j ∈ {1, . . . , n} , {b1, . . . , br} ∩ U
′

j ̸= ∅ . Let k ∈ {1, . . . , n} . Then, U
′

k =
∏m

i=1 V
k
i .

Since {a1, . . . , ar} ∩Uk ̸= ∅ , there exists l0 ∈ {1, . . . , r} such that al0 ∈ Uk . Hence, (ak1 , . . . , al0 , . . . , a
k
m) ∈ U

′

k .

Consequently, for each j ∈ {1, . . . , n} , {b1, . . . , br} ∩ U
′

j ̸= ∅ . Therefore, {b1, . . . , br} ∈ ⟨U ′

1, . . . , U
′

n⟩ . 2

Lemma 5.2 Let X1, . . . , Xm be topological spaces, let l, n ∈ N be such that l ≤ n , for each i ∈ {1, . . . ,m} ,
let U i

1, . . . , U
i
n be nonempty open subsets of Xi , and for every j ∈ {1, . . . , l} , let (xj

1, . . . , x
j
m) ∈

∏m
i=1 Xi .

If {(xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}} ∈ ⟨

∏m
i=1 U

i
1, . . . ,

∏m
i=1 U

i
n⟩ , then, for each i ∈ {1, . . . ,m} , {x1

i , . . . , x
l
i} ∈

⟨U i
1, . . . , U

i
n⟩ .

Proof Let i0 ∈ {1, . . . ,m} . We will show that {x1
i0
, . . . , xl

i0
} ∈ ⟨U i0

1 , . . . , U i0
n ⟩ . First we will prove

that {x1
i0
, . . . , xl

i0
} ⊆

∪n
j=1 U

i0
j . Let k ∈ {1, . . . , l} . By hypothesis, there exists s ∈ {1, . . . , n} such that

(xk
1 , . . . , x

k
m) ∈

∏m
p=1 U

p
s . Then xk

i0
∈ U i0

s . Thus, xk
i0

∈
∪n

j=1 U
i0
j . Therefore, {x1

i0
, . . . , xl

i0
} ⊆

∪n
j=1 U

i0
j .

Now we will see that, for each j ∈ {1, . . . , n} , {x1
i0
, . . . , xl

i0
} ∩ U i0

j ̸= ∅ . Let p ∈ {1, . . . , n} . By

hypothesis, {(xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}} ∩

∏m
i=1 U

i
p ̸= ∅ . Thus, there exists j ∈ {1, . . . , l} such that

(xj
1, . . . , x

j
m) ∈

∏m
i=1 U

i
p . Then, xj

i0
∈ U i0

p . Hence, {x1
i0
, . . . , xl

i0
}∩U i0

p ̸= ∅ . Because p ∈ {1, . . . , n} is arbitrary,

we have that, for every p ∈ {1, . . . , n} , {x1
i0
, . . . , xl

i0
} ∩ U i0

p ̸= ∅ . Therefore, {x1
i0
, . . . , xl

i0
} ∈ ⟨U i0

1 , . . . , U i0
n ⟩ .

Finally, since i0 ∈ {1, . . . ,m} is arbitrary, we have that, for all i ∈ {1, . . . ,m} , {x1
i , . . . , x

l
i} ∈ ⟨U i

1, . . . , U
i
n⟩ . 2
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Lemma 5.3 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function, let
n ∈ N and let U i

1, . . . , U
i
n, V

i
1 , . . . , V

i
n be nonempty open subsets of Xi . Then, for each i ∈ {1, . . . ,m} :

nFn(
∏m

i=1 fi)

(⟨
m∏
i=1

U i
1, . . . ,

m∏
i=1

U i
n

⟩
,

⟨
m∏
i=1

V i
1 , . . . ,

m∏
i=1

V i
n

⟩)
⊆ nFn(fi)(⟨U

i
1, . . . , U

i
n⟩, ⟨V i

1 , . . . , V
i
n⟩).

Proof Let k ∈ nFn(
∏m

i=1 fi)(⟨
∏m

i=1 U
i
1, . . . ,

∏m
i=1 U

i
n⟩, ⟨

∏m
i=1 V

i
1 , . . . ,

∏m
i=1 V

i
n⟩) . Then

(
Fn

(
m∏
i=1

fi

))k(⟨ m∏
i=1

U i
1, . . . ,

m∏
i=1

U i
n

⟩)
∩

⟨
m∏
i=1

V i
1 , . . . ,

m∏
i=1

V i
n

⟩
̸= ∅.

Now, let l ≤ n and let {(xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}} ∈ ⟨

∏m
i=1 U

i
1, . . . ,

∏m
i=1 U

i
n⟩ , such that

(
Fn

(
m∏
i=1

fi

))k

({xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}}) ∈

⟨
m∏
i=1

V i
1 , . . . ,

m∏
i=1

V i
n

⟩
.

By Remark 3.1, parts (1) and (2), we have that {(fk
1 (x

j
1), . . . , f

k
m(xj

m)) : j ∈ {1, . . . , l}} ∈ ⟨
∏m

i=1 V
i
1 , . . . ,

∏m
i=1 V

i
n⟩ .

Thus, by Lemma 5.2, for every i ∈ {1, . . . ,m} , {x1
i , . . . , x

l
i} ∈ ⟨U i

1, . . . , U
i
n⟩ and {fk

i (x
1
i ), . . . , f

k
i (x

l
i)} ∈

⟨V i
1 , . . . , V

i
n⟩ . Hence, for all i ∈ {1, . . . ,m} , (Fn(fi))

k({x1
i , . . . , x

l
i}) ∈ (Fn(fi))

k(⟨U i
1, . . . , U

i
n⟩) ∩ ⟨V i

1 , . . . , V
i
n⟩ .

Therefore, for every i ∈ {1, . . . ,m} , k ∈ nFn(fi)(⟨U i
1, . . . , U

i
n⟩, ⟨V i

1 , . . . , V
i
n⟩) . 2

By Corollary 3.8 and by [4, Theorem 3.14], we have the following result.

Proposition 5.4 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
and let n ∈ N . Then the following hold:

1. For each i ∈ {1, . . . ,m} , Fn(Xi) is perfect if and only if
∏n

i=1 Xi is perfect.

2. For each i ∈ {1, . . . ,m} , Xi is perfect if and only if Fn(
∏m

i=1 Xi) is perfect.

3. For each i ∈ {1, . . . ,m} , Fn(Xi) is perfect if and only if Fn(
∏m

i=1 Xi) is perfect.

By Theorem 3.9 and [4, Theorem 3.8], we have the following result.

Proposition 5.5 Let X1, . . . , Xm be topological spaces and let n ∈ N . Then the following hold:

1. For each i ∈ {1, . . . ,m} , Xi is pseudoregular if and only if Fn(
∏m

i=1 Xi) is pseudoregular.

2. For every i ∈ {1, . . . ,m} , Fn(Xi) is pseudoregular if and only if
∏m

i=1 Xi is pseudoregular.

Theorem 5.6 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
and let l, n ∈ N be such that l ≤ n . If A = {(xj

1, . . . , x
j
m) : j ∈ {1, . . . , l}} ∈ Fn(

∏m
i=1 Xi) is a transitive point

of Fn(
∏m

i=1 fi) , then, for every i ∈ {1, . . . ,m} , {x1
i , . . . , x

l
i} is a transitive point of Fn(fi) .
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Proof Suppose that A is a transitive point of Fn(
∏m

i=1 fi) . Let i0 ∈ {1, . . . ,m} and let U be a nonempty
open subset of Fn(Xi0) . Hence, by [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un of Xi0

such that ⟨U1, . . . , Un⟩ ⊆ U . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} , let V j
i = Xi and

V j
i0

= Uj . Then, for all j ∈ {1, . . . , n} , let U
′

j =
∏n

i=1 V
j
i . Thus, ⟨U ′

1, . . . , U
′

n⟩ is a nonempty open subset

of Fn(
∏m

i=1 Xi) . By hypothesis, ⟨U ′

1, . . . , U
′

n⟩ ∩ O(A,Fn(
∏m

i=1 fi)) ̸= ∅. In consequence, there exists k ∈ N

such that [Fn(
∏m

i=1 fi)]
k(A) ∈ ⟨U ′

1, . . . , U
′

n⟩. Then {(fk
1 (x

j
1), . . . , f

k
n(x

j
m)) : j ∈ {1, . . . , l}} ∈ ⟨U ′

1, . . . , U
′

n⟩.
By Lemma 5.2, we have that {fk

i0
(x1

i0
), . . . , fk

i0
(xl

i0
)} ∈ ⟨U1, . . . , Un⟩ . Hence, [Fn(fi0)]

k({x1
i0
, . . . , xl

i0
}) ∈

⟨U1, . . . , Un⟩ ⊆ U and U ∩ O({x1
i0
, . . . , xl

i0
},Fn(f)) ̸= ∅ . Therefore, {x1

i0
, . . . , xl

i0
} is a transitive point of

Fn(fi0) . Because i0 ∈ {1, . . . ,m} is arbitrary, we have that, for each i ∈ {1, . . . ,m} , {x1
i , . . . , x

l
i} is a transitive

point of Fn(fi) . 2

Theorem 5.7 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a
function, let l, n ∈ N be such that l ≤ n , and let A = {(xj

1, . . . , x
j
m) : j ∈ {1, . . . , l}} ∈ Fn(

∏m
i=1 Xi) . If

ω(A,Fn(
∏m

i=1 fi)) = Fn(
∏m

i=1 Xi) , then, for each i ∈ {1, . . . ,m} , ω({x1
i , . . . , x

l
i},Fn(fi)) = Fn(Xi).

Proof Suppose that ω(A,Fn(
∏m

i=1 fi)) = Fn(
∏m

i=1 Xi) . Let i0 ∈ {1, . . . ,m} . Now we show that
ω({x1

i0
, . . . , xl

i0
},Fn(fi0)) = Fn(Xi0) . Let {a1, . . . , ar} ∈ Fn(Xi0) with r ≤ n , let U be an open sub-

set of Fn(Xi0) such that {a1, . . . , ar} ∈ U and let k ∈ N . By [10, Lemma 4.2], there exist nonempty
open subsets U1, . . . , Un of Xi0 such that {a1, . . . , ar} ∈ ⟨U1, . . . , Un⟩ ⊆ U . For each l ∈ {1, . . . , r}
and for every i ∈ {1, . . . ,m}\{i0} , let ali ∈ Xi and let ali0 = al . Then, for all l ∈ {1, . . . , r} , let

a
′

l = (al1, . . . , a
l
m) . On the other hand, for each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} , let

V j
i = Xi and V j

i0
= Uj . Finally, for all j ∈ {1, . . . , n} , let U

′

j =
∏m

i=1 V
j
i . By Lemma 5.1, part (1),

{a′

1, . . . , a
′

r} ∈ Fn(
∏m

i=1 Xi) . Hence, by hypothesis, {a′

1, . . . , a
′

r} ∈ ω(A,Fn(
∏m

i=1 fi)) . By Lemma 5.1, part

(2), {a′

1, . . . , a
′

r} ∈ ⟨U ′

1, . . . , U
′

n⟩ . Thus, there exists s ≥ k , such that [Fn(
∏m

i=1 fi)]
s(A) ∈ ⟨U ′

1, . . . , U
′

n⟩ . By

Remark 3.1, parts (1) and (2), we have that {(fs
1 (x

p
1), . . . , f

s
i0
(xp

i0
), . . . , fs

m(xp
m)) : p ∈ {1, . . . , l}} ∈ ⟨U ′

1, . . . , U
′

n⟩.

By Lemma 5.2, {fs
i0
(x1

i0
), . . . , fs

i0
(xl

i0
)} ∈ ⟨U1, · · · , Un⟩ . Thus, [Fn(fi0)]

s({x1
i0
, . . . , xl

i0
}) ∈ ⟨U1, . . . , Un⟩ ⊆ U .

Then {a1, . . . , ar} ∈ ω({x1
i0
, . . . , xl

i0
},Fn(fi0)) . Thus, ω({x1

i0
, . . . , xl

i0
},Fn(fi0)) = Fn(Xi0) . 2

By Theorem 3.15 and [4, Theorem 3.4], we have the following result.

Theorem 5.8 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
and let n ∈ N . Then the following hold:

1. For every i ∈ {1, . . . ,m} , Per(fi) is dense in Xi if and only if Per(Fn(
∏m

i=1 fi)) is dense in
Fn(

∏m
i=1 Xi) .

2. For each i ∈ {1, . . . ,m} , Per(Fn(fi)) is dense in Fn(Xi) if and only if Per(
∏m

i=1 fi) is dense in
∏m

i=1 Xi .

By Proposition 3.10 and [4, Theorem 3.3], we have the following result.

Proposition 5.9 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
and let n ∈ N . Then the following hold:
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1. For every i ∈ {1, . . . ,m} , Ui is + invariant under fi if and only if ⟨
∏m

i=1 Ui⟩ is + invariant under
Fn(

∏m
i=1 fi) .

2. For each i ∈ {1, . . . ,m} , ⟨Ui⟩ is + invariant under Fn(fi) if and only if
∏m

i=1 Ui is + invariant under∏m
i=1 fi .

6. Induced functions to n-fold symmetric products of product spaces

Let X1, . . . , Xm be topological spaces and for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function. In this section
we analyze the relationships between the functions Fn(

∏m
i=1 fi) , Fn(fi) and fi , for every i ∈ {1, . . . ,m} , when

any of this is exact, mixing, transitive, weakly mixing, totally transitive, strongly transitive, chaotic, minimal,
totally minimal, orbit-transitive, strictly orbit-transitive, ω -transitive, TT++ , mild mixing, exactly Devaney
chaotic, backward minimal, scattering, Touhey or an F -system.

Theorem 6.1 Let X,Y be topological spaces, let f : X → X , g : Y → Y be functions and let n ∈ N . If
Fn(f)× g is transitive, then f × g is transitive.

Proof Suppose that Fn(f) × g is transitive. Let U ,V be two nonempty open subsets of X × Y . Then
there exist nonempty open subsets U1, U2 of X and V1, V2 of Y such that U1 × V1 ⊆ U and U2 × V2 ⊆ V .
Thus, ⟨U1⟩ and ⟨U2⟩ are nonempty open subsets of Fn(X) . By hypothesis, there exists k ∈ N such that
(Fn(f) × g)k(⟨U1⟩ × V2) ∩ (⟨U2⟩ × V2) ̸= ∅ . It follows that there exists ({x1, . . . , xr}, v1) ∈ ⟨U1⟩ × V2 such
that [Fn(f) × g]k(({x1, . . . , xr}, v1)) ∈ ⟨U2⟩ × V2 . Let x ∈ {x1, . . . , xr} . We have that, x ∈ U1 and
fk(x) ∈ U2 . Consequently, for each x ∈ {x1, . . . , xr} , (x, v1) ∈ U1 × V1 and (f × g)k((x, v1)) ∈ U2 × V2 .
Thus, (f × g)k(U) ∩ V ̸= ∅ and f × g is transitive. 2

The proof of Proposition 6.2 is followed by [4, Theorems 3.4 and 4.10].

Proposition 6.2 Let X be a topological space, let f : X → X be a function, and let n ∈ N . Then f is exactly
Devaney chaotic if and only if Fn(f) is exactly Devaney chaotic.

Theorem 6.3 Let X be a topological space, let f : X → X be a function and let n ∈ N . Let M be one of
the following classes of functions: Touhey, an F-system, backward minimal, totally minimal, mild mixing or
scattering. If Fn(f) ∈ M , then f ∈ M .

Proof Suppose that Fn(f) is Touhey. Let U, V be nonempty open subsets of X . Hence, ⟨U⟩ and ⟨V ⟩ are
nonempty open subsets of Fn(X) . Since Fn(f) is Touhey, there exist a periodic point {x1, . . . , xr} ∈ ⟨U⟩ and
k ∈ Z+ such that [Fn(f)]

k({x1, . . . , xr}) ∈ ⟨V ⟩ . Then, by [4, Theorem 3.4], for each i ∈ {1, . . . , r} , xi is a
periodic point of f . Furthermore, for every i ∈ {1, . . . , r} , xi ∈ U and fk(xi) ∈ V . Therefore, f is Touhey.

Suppose that Fn(f) is an F-system. Then Fn(f) is totally transitive and Per(Fn(f)) is dense in Fn(X) .
Thus, by [4, Theorem 4.14], f is totally transitive and, by [4, Theorem 3.4], Per(f) is dense in X . Therefore,
f is an F-system.

Suppose that Fn(f) is backward minimal. Let x ∈ X and let U be a nonempty open subset of X .
Then ⟨U⟩ is a nonempty open subset of Fn(X) and {x} ∈ Fn(X) . Since Fn(f) is backward minimal, the set
{A ∈ Fn(X) : (Fn(f))

l(A) = {x}, for some l ∈ N} , is dense in Fn(X) . Thus, there exist {x1, . . . , xr} ∈ ⟨U⟩ and
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l ∈ N such that [Fn(f)]
l({x1, . . . , xr}) = {x} . It follows that, for each i ∈ {1, . . . , r} , xi ∈ U and f l(xi) = x .

Thus, {y ∈ X : f l(y) = x, for some l ∈ N} ∩ U ̸= ∅ . Therefore, the set {y ∈ X : f l(y) = x, for some l ∈ N} is
dense in X . Because x ∈ X is arbitrary, we have that f is backward minimal.

Suppose that Fn(f) is totally minimal. Let s ∈ N . By hypothesis, (Fn(f))
s is minimal. Then, by

Remark 3.1, part (1), Fn(f
s) is minimal. Hence, by [4, Theorem 4.18], fs is minimal.

Suppose that Fn(f) is mild mixing. Let Y be a topological space and let g : Y → Y be a transitive
function. By hypothesis, Fn(f) × g is transitive. Thus, by Theorem 6.1, f × g is transitive. Therefore, f is
mild mixing.

Suppose that Fn(f) is scattering. Let Y be a topological space, let g : Y → Y be a minimal function.
By hypothesis, Fn(f)× g is transitive. By Theorem 6.1, f × g is transitive. Therefore, f is scattering. 2

The converse of Theorem 6.3 is not true in general. Let us see a partial example of this in the following:

Example 6.4 Let X = [0, 1] and let f : X → X be a function given by:

f(x) =

 2x+ 1
2 , if x ∈ [0, 1

4 ];
3
2 − 2x, if x ∈ [ 14 ,

1
2 ];

1− x, if x ∈ [ 12 , 1].

In [10, Example 4.10], it is shown that f is a chaotic function; however, the function Fn(f) is not chaotic.
On the other hand, observe that f is a continuous function. Thus, by [18, Proposition 2.6], f is Touhey. If
we suppose that Fn(f) is Touhey, again, by [18, Proposition 2.6], Fn(f) is a chaotic function, which is a
contradiction. Therefore, Fn(f) is not Touhey.

Theorem 6.5 Let X,Y be topological spaces, let f : X → X , g : Y → Y be functions and let n ∈ N . If X is
+ invariant over open subsets under f and f × g is transitive, then Fn(f)× g is transitive.

Proof Suppose that X is + invariant over open subsets under f and f × g is transitive. Let U and V be
two nonempty open subsets of Fn(X) × Y . Then there exist nonempty open subsets U1,U2 of Fn(X) and
V1, V2 of Y such that U1 × V1 ⊆ U and U2 × V2 ⊆ V . By [10, Lemma 4.2], there exist nonempty open subsets
U1
1 . . . , U1

n , U2
1 , . . . , U

2
n of X such that ⟨U1

1 , . . . , U
1
n⟩ ⊆ U1 and ⟨U2

1 , . . . , U
2
n⟩ ⊆ U2 . Since f × g is transitive,

for each i ∈ {1, . . . , n} , there exists ki ∈ N such that (f × g)ki(U1
i × V1) ∩ (U2

i × V2) ̸= ∅ . Hence, for every
i ∈ {1, . . . , n} , there exists (ui, vi) ∈ U1

i × V1 such that (f × g)ki(ui, vi) ∈ U2
i × V2 . It follows that, for all

i ∈ {1, . . . , n} , fki(ui) ∈ U2
i . Let k = max{k1, . . . , kn} . By Lemma 3.2, for each i ∈ {1, . . . , n} , fk(ui) ∈ U2

i .
Consequently, {fk(u1), . . . , f

k(un)} ∈ ⟨U2
1 , . . . , U

2
n⟩ which means that [Fn(f)]

k({u1, . . . , un}) ∈ ⟨U2
1 , . . . , U

2
n⟩ .

Moreover, {u1, . . . , un} ∈ ⟨U1
1 , . . . , U

1
n⟩ . Suppose that k = ki0 , where i0 ∈ {1, . . . , n} , and let v = vi0 . Then

gk(v) ∈ V2 and v ∈ V1 . Finally, [Fn(f) × g]k(({u1, . . . , un}, v)) ∈ ⟨U2
1 , . . . , U

2
n⟩ × V2 and ({u1, . . . , un}, v) ∈

⟨U1
1 , . . . , U

1
n⟩ × V2 . Therefore, [Fn(f)× g]k(U) ∩ V ̸= ∅ and Fn(f)× g is transitive. 2

Theorem 6.6 Let X be a topological space, let f : X → X be a function, and let n ∈ N . Let M be one of
the following classes of function: transitive, totally transitive, chaotic, Touhey, an F-system, mild mixing or
scattering. Then, if f ∈ M and X is + invariant over open subsets under f , then Fn(f) ∈ M .
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Proof Suppose that f is transitive. Let U and V be two nonempty open subsets of Fn(X) . Thence, by [10,
Lemma 4.2], there exist nonempty open subsets U1, . . . , Un , V1, . . . , Vn of X such that ⟨U1, . . . , Un⟩n ⊆ U and
⟨V1, . . . , Vn⟩n ⊆ V . Since f is transitive, for each i ∈ {1, . . . , n} , there exists ki ∈ N such that fki(Ui)∩Vi ̸= ∅ .
Then, for every i ∈ {1, . . . , n} , there exists ui ∈ Ui such that fki(ui) ∈ Vi . Let k = max{k1, . . . , kn} .
By Lemma 3.2, for all i ∈ {1, . . . , n} , fk(ui) ∈ Vi . It follows that, {u1, . . . , un} ∈ ⟨U1, . . . , Un⟩ and
[Fn(f)]

k({u1, . . . , un}) ∈ ⟨V1, . . . , Vn⟩ . Therefore, [Fn(f)]
k(U) ∩ V ̸= ∅ and Fn(f) is transitive.

Suppose that f is totally transitive. Let s ∈ N and let U , V be two nonempty open subsets of Fn(X) .
Then by [10, Lemma 4.2], we have that, there exist nonempty open subsets U1, . . . , Un, V1, . . . , Vn of X such
that, ⟨U1, . . . , Un⟩ ⊆ U and ⟨V1, . . . , Vn⟩ ⊆ V . Since fs is transitive, for each i ∈ {1, . . . , n} , there exists
ki ∈ N such that (fs)ki(Ui) ∩ Vi ̸= ∅ . For every i ∈ {1, . . . , n} , let ui ∈ Ui such that (fs)ki(ui) ∈ Vi . Let k =

max{k1, . . . .kn} . Thus, by Lemma 3.2, for all i ∈ {1, . . . , n} , (fs)k(ui) ∈ Vi . Thus, {u1, . . . , un} ∈ ⟨U1, . . . , Un⟩
and {(fs)k(u1), . . . , (f

s)k(un)} ∈ ⟨V1, . . . , Vn⟩ . So, ([Fn(f)]
s)k({u1, . . . , un}) ∈ ⟨V1, . . . , Vn⟩ . It follows that,

([Fn(f)]
s)k(U) ∩ V ̸= ∅ . Consequently, [Fn(f)]

s is transitive. Finally, because s is arbitrary, we have that
Fn(f) is totally transitive.

Suppose that f is chaotic. Then f is transitive and Per(f) is dense in X . Thus, by [4, Theorem 3.4],
we have that Per(Fn(f)) is dense in Fn(X) . Moreover, by the first part of this proof, if f is transitive then
Fn(f) is transitive. Therefore, Fn(f) is chaotic.

Suppose that f is Touhey. Let U , V be two nonempty open subsets of Fn(X) . Then, by [10,
Lemma 4.2], there exist nonempty open subsets U1, . . . , Un , V1, . . . , Vn of X such that ⟨U1, . . . , Un⟩ ⊆ U
and ⟨V1, . . . , Vn⟩ ⊆ V . Since f is Touhey, for every i ∈ {1, . . . , n} , there exist a periodic point xi ∈ Ui and
ki ∈ Z+ such that fki(xi) ∈ Vi . Let k = max{k1, . . . , kn} . Then, by Lemma 3.2, for each i ∈ {1, . . . , n} ,
fk(xi) ∈ Vi . Consequently, [Fn(f)]

k({x1, . . . , xn}) ∈ ⟨V1, . . . , Vn⟩ . Furthermore, {x1, . . . , xn} ∈ ⟨U1, . . . , Un⟩ .
On the other hand, since, for all i ∈ {1, . . . , n} , xi is a periodic point of fi , by [4, Theorem 3.4], {x1, . . . , xn}
is a periodic point of Fn(f) . Therefore, Fn(f) is Touhey.

Suppose that f is an F-system. Then f is totally transitive and Per(f) is dense in X . Thus, by the
second part of this proof, we have that Fn(f) is totally transitive. Moreover, by [4, Theorem 3.4], Per(Fn(f))

is dense. Therefore, Fn(f) is an F-system.
Suppose that f is mild mixing. Let Y be a topological space and let g : Y → Y be a transitive function.

By hypothesis, f×g is transitive. Since X is + invariant over open subsets under f , by Theorem 6.5, Fn(f)×g

is transitive. Therefore, Fn(f) is mild mixing.
Suppose that f is scattering. Let Y be a topological space, let g : Y → Y be a minimal function. By

hypothesis, f × g is transitive. Since, X is + invariant over open subsets under f , by Theorem 6.5, Fn(f)× g

is transitive. Therefore, Fn(f) is scattering. 2

Theorem 6.7 Let X be a topological space, let f : X → X be a continuous function and let n ∈ N . If f is
minimal and X is + invariant over open subsets under f , then Fn(f) is minimal.

Proof Suppose that f is minimal and that X is +invariant over open subsets under f . Since f is a
continuous function, by [4, Theorem 6.1] Fn(f) is a continuous function. Thus, to show that Fn(f) is minimal,
by [15, Proposition 6.2], we need to prove that, for each A ∈ Fn(X) , clFn(X)(O(A,Fn(f))) = Fn(X). Let
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{x1, . . . , xr} ∈ Fn(X) . Since f is minimal, for each i ∈ {1, . . . ,m} , clX(O(xi, f)) = X . Let U be a nonempty
open subset of Fn(X) . Then, by [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un of X such
that ⟨U1, . . . , Un⟩ ⊆ U . Consider the following cases:

Case (i): r = n . In this case, for each i ∈ {1, . . . , n} , there exists ki ∈ N such that fki(xi) ∈ Ui .
Let k = max{k1, . . . , kn} . Then, by Lemma 3.2, we have that, for every i ∈ {1, . . . , n} , fk(xi) ∈ Ui .
Thus, [Fn(f)]

k({x1, . . . , xr}) ∈ ⟨U1, . . . , Un⟩ . This implies that O({x1, . . . , xr},Fn(f)) ∩ U ̸= ∅ . Therefore,
clFn(X)(O({x1, . . . , xr},Fn(f))) = Fn(X) . Finally, since {x1, . . . , xr} ∈ Fn(X) is arbitrary, we have that
Fn(f) is minimal.

Case (ii): r < n . In this case, for each i ∈ {1, . . . , r} , O(xi, f)∩Ui ̸= ∅ and for every j ∈ {r+1, . . . , n} ,
O(xr, f) ∩ Uj ̸= ∅ . Then, for all i ∈ {1, . . . , r} , there exists ki ∈ N such that fki(xi) ∈ Ui and for each j ∈
{r+1, . . . , n} , there exists kj ∈ N such that fkj (xr) ∈ Uj . Let k = max{k1, . . . , kn} . Then, by Lemma 3.2, for
every i ∈ {1, . . . , r} , fk(xi) ∈ Ui and for all i ∈ {1, . . . , n} , fk(xr) ∈ Ui . It follows that {fk(x1), . . . , f

k(xr)} ∈
⟨U1, . . . , Un⟩ ⊆ U . Consequently, [Fn(f)]

k({x1, . . . , xr}) ∈ U . Thus, O({x1, . . . , xr},Fn(f))∩U ̸= ∅ . Therefore,
clFn(X)(O({x1, . . . , xr},Fn(f))) = Fn(X) . Because {x1, . . . , xr} ∈ Fn(X) is arbitrary, Fn(f) is minimal. 2

Proposition 6.8 Let X be a topological space, let f : X → X be a continuous function, and let n ∈ N . If f

is totally minimal and X is + invariant over open subsets under f , then Fn(f) is totally minimal.

Proof Let s ∈ N . By hypothesis, fs is minimal and continuous. Hence, by Theorem 6.7, Fn(f
s) is minimal.

Then, by Remark 3.1, part (1), (Fn(f))
s is minimal. Since s ∈ N is arbitrary, we have that Fn(f) is totally

minimal. 2

Theorem 6.9 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
and let n ∈ N . Then the following hold:

1. Fn(
∏m

i=1 fi) is exact if and only if, for each i ∈ {1, . . . ,m} , Fn(fi) is exact.

2. Fn(
∏m

i=1 fi) is exact if and only if, for each i ∈ {1, . . . ,m} , fi is exact.

Proof Suppose that Fn(
∏m

i=1 fi) is exact. Let i0 ∈ {1, . . . ,m} and let U be a nonempty open subset of
Fn(Xi0) . By [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un of Xi0 such that ⟨U1, . . . , Un⟩ ⊆ U .
For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} , let U j

i = Xi and U j
i0

= Uj . Moreover, for

all j ∈ {1, . . . , n} , let U
′

j =
∏m

i=1 U
j
i . Note that ⟨U ′

1, . . . , U
′

n⟩ is a nonempty open subset of Fn(
∏m

i=1 Xi) .

Since Fn(
∏m

i=1 fi) is exact, there exists k ∈ N such that [Fn (
∏m

i=1 fi)]
k
(⟨U ′

1, . . . , U
′

n⟩) = Fn (
∏m

i=1 Xi) . Let
{x1, . . . , xr} ∈ Fn(Xi0) , with r ≤ n . For each j ∈ {1, . . . ,m}\{i0} and for every l ∈ {1, . . . , r} let alj ∈ Xj

and let ali0 = xl . Finally, for all l ∈ {1, . . . , r} , let x
′

l = (al1, . . . , a
l
m) . By Lemma 5.1, part (1), {x′

1, . . . , x
′

r} ∈

Fn(
∏m

i=1 Xi) . Then {x′

1, . . . , x
′

r} ∈ [Fn(
∏m

i=1 fi)]
k(⟨U ′

1, . . . , U
′

n⟩) . Thus, there exists {(bj1, . . . , bjm) : j ∈

{1, . . . , p}} ∈ ⟨U ′

1, . . . , U
′

n⟩ such that [Fn(
∏m

i=1 fi)]
k({(bj1, . . . , bjm) : j ∈ {1, . . . , p}}) = {x′

1, . . . , x
′

r}. Hence,
{fk

i0
(b1i0), . . . , f

k
i0
(bpi0)} = {x1, . . . , xr} . It follows that [Fn(fi0)]

k({b1i0 , . . . , b
p
i0
}) = {x1, . . . , xr} . On the other

hand, by Lemma 5.2, {x1, . . . , xr} ∈ [Fn(fi0)]
k(⟨U1 . . . , Un⟩) . Therefore, Fn(Xi0) = [Fn(fi0)]

k(U) and Fn(fi0)

is exact.
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Suppose that, for each i ∈ {1, . . . ,m} , Fn(fi) is exact. Then, by [4, Theorem 4.10], for every i ∈
{1, . . . ,m} , fi is exact. Thus, by Theorem 4.3,

∏m
i=1 fi is exact. Finally, by [4, Theorem 4.10], Fn(

∏m
i=1 fi) is

exact.
Suppose that Fn(

∏m
i=1 fi) is exact. By [4, Theorem 4.10],

∏m
i=1 fi is exact. Then, by Theorem 4.3, for

each i ∈ {1, . . . ,m} , fi is exact.
Finally, suppose that, for every i ∈ {1, . . . ,m} , fi is exact. By Theorem 4.3,

∏m
i=1 fi is exact. Then, by

[4, Theorem 4.10], Fn(
∏m

i=1 fi) is exact. 2

By Theorems 6.2 and 4.5, we have the following result.

Theorem 6.10 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} let fi : Xi → Xi be a function,
and let n ∈ N . Then the following are equivalent:

1. For each i ∈ {1, . . . ,m} , fi is exactly Devaney chaotic.

2. Fn(
∏m

i=1 fi) is exactly Devaney chaotic.

3. For every i ∈ {1, . . . ,m} , Fn(fi) is exactly Devaney chaotic.

By [4, Theorem 4.8] and Theorem 4.4, we have the following result.

Theorem 6.11 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} let fi : Xi → Xi be a function
and let n ∈ N . Then the following are equivalent:

1. For each i ∈ {1, . . . ,m} , fi is mixing.

2. Fn(
∏m

i=1 fi) is mixing.

3. For every i ∈ {1, . . . ,m} , Fn(fi) is mixing.

Theorem 6.12 Let X1, . . . , , Xm+1 be topological spaces, let n ∈ N and, for each i ∈ {1, . . . ,m + 1} , let
fi : Xi → Xi be a function. If Fn(

∏m
i=1 fi)× fm+1 is transitive, then, for each i ∈ {1, . . . ,m} , Fn(fi)× fm+1

is transitive.

Proof Suppose that Fn(
∏m

i=1 fi)× fm+1 is transitive. Let i0 ∈ {1, . . . ,m} and let U1 , U2 be two nonempty
open subsets of Fn(Xi0) × Xm+1 . Then there exist nonempty open subsets U , V of Fn(Xi0) and F1 , F2

of Xm+1 such that U × F1 ⊆ U1 and V × F2 ⊆ U2 . Thus, by [10, Lemma 4.2], there exist nonempty
open subsets U1, . . . , Un , V1, . . . , Vn of Xi0 such that ⟨U1, . . . , Un⟩ ⊆ U and ⟨V1, . . . , Vn⟩ ⊆ V . For each
i ∈ {1, . . . ,m}\{i0} and, for every j ∈ {1, . . . , n} , let U j

i = Xi , V j
i = Xi , U j

i0
= Uj and V j

i0
= Vj . Finally,

for all j ∈ {1, . . . , n} , let U
′

j =
∏m

i=1 U
j
i and let V

′

j =
∏m

i=1 V
j
i . It follows that, ⟨U ′

1, . . . , U
′

n⟩ and ⟨V ′

1 , . . . , V
′

n⟩

are nonempty open subsets of Fn(
∏m

i=1 Xi) . By hypothesis, we have that, there exists k ∈ N such that

[Fn(
∏m

i=1 fi) × fm+1]
k(⟨U ′

1, . . . , U
′

n⟩ × F1) ∩ (⟨V ′

1 , . . . , V
′

n⟩ × F2) ̸= ∅ . Thus, there exists ({(xl
1, . . . , x

l
m) : l ≤

n}, v1) ∈ ⟨U ′

1, . . . , U
′

n⟩×F1 such that [Fn(
∏m

i=1 fi)× fm+1]
k(({(xl

1, . . . , x
l
m) : l ≤ n}× v1)) ∈ ⟨V ′

1 , . . . , V
′

n⟩×F2 .
Then, by Lemma 5.2, {x1

i0
, . . . , xl

i0
} ∈ ⟨U1, . . . , Un⟩ and {fk

i0
(x1

i0
), . . . , fk

i0
(xl

i0
)} ∈ ⟨V1, . . . , Vn⟩ . Hence, we have

that ({x1
i0
, . . . , xl

i0
}, v1) ∈ ⟨U1, . . . , Un⟩ × F1 and [Fn(fi0) × fm+1]

k(({x1
i0
, . . . , xl

i0
}, v1)) ∈ ⟨V1, . . . , Vn⟩ × F2 .

Therefore, [Fn(fi0)× fm+1]
k(U1) ∩ (U2) ̸= ∅ and hence Fn(fi0)× fm+1 is transitive. 2
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Theorem 6.13 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} let fi : Xi → Xi be a
function, let n ∈ N , and let M be one of the following classes of functions: transitive, weakly mixing,
totally transitive, strongly transitive, chaotic, orbit-transitive, strictly orbit-transitive, ω -transitive, Touhey,
an F-system, backward minimal, mild mixing, scattering or TT++ . If Fn(

∏m
i=1 fi) ∈ M , then, for every

i ∈ {1, . . . ,m} , Fn(fi) ∈ M .

Proof Suppose that Fn(
∏m

i=1 fi) is transitive. Let i0 ∈ {1, . . . ,m} and let U , V be nonempty open subsets
of Fn(Xi0) . Then, by [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un , V1, . . . , Vn of Xi0 such
that ⟨U1, . . . , Un⟩ ⊆ U and ⟨V1, . . . , Vn⟩ ⊆ V . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} ,
let U j

i = Xi , U j
i0

= Uj , V j
i = Xi and V j

i0
= Vj . Finally, for all j ∈ {1, . . . , n} , let U

′

j =
∏m

i=1 U
j
i

and V
′

j

∏m
i=1 V

j
i . Note that ⟨U ′

1, . . . , U
′

n⟩ and ⟨V ′

1 , . . . , V
′

n⟩ are nonempty open subsets of Fn(
∏m

i=1 Xi) . By

hypothesis, there exists k ∈ N such that (Fn (
∏m

i=1 fi))
k
(⟨U ′

1, . . . , U
′

n⟩) ∩ ⟨V ′

1 , . . . , V
′

n⟩ ̸= ∅. Hence, there exists

{(xj
1, . . . , x

j
m) : j ∈ {1, . . . , r}} ∈ ⟨U ′

1, . . . , U
′

n⟩ , with r ≤ n such that

(
Fn

(
m∏
i=1

fi

))k

({(xj
1, . . . , x

j
m) : j ∈ {1, . . . , r}}) ∈ ⟨V

′

1 , . . . , V
′

n⟩.

By Remark 3.1, parts (1) and (2), {(fk
1 (x

j
1), . . . , f

k
m(xj

m)) : j ∈ {1, . . . , r}} ∈ ⟨V ′

1 , . . . , V
′

n⟩ . Consequently, by
Lemma 5.2, {fk

i0
(x1

i0
), . . . , fk

i0
(xr

i0
)} ∈ ⟨V1, . . . , Vn⟩ . Which means that (Fn(fi0))

k({x1
i0
, . . . , xr

i0
}) ∈ ⟨V1, . . . , Vn⟩.

On the other hand, {x1
i0
, . . . , xr

i0
} ∈ ⟨U1, . . . , Un⟩ . Thus, [Fn(fi0)]

k(⟨U1, . . . , Un⟩)∩⟨V1, . . . , Vn⟩ ̸= ∅ . Therefore,
Fn(fi0) is transitive.

Suppose that Fn(
∏m

i=1 fi) is weakly mixing. Let i0 ∈ {1, . . . ,m} and let U1,U2,V1 and V2 be four
nonempty open subsets of Fn(Xi0) . Then, by [10, Lemma 4.2], there exist nonempty open subsets U1

1 , . . . , U
1
n ,

U2
1 , . . . , U

2
n , V 1

1 , . . . , V
1
n , V 2

1 , . . . , V
2
n of Xi0 such that ⟨U1

1 , . . . , U
1
n⟩ ⊆ U1 , ⟨U2

1 , . . . , U
2
n⟩ ⊆ U2 , ⟨V 1

1 , . . . , V
1
n ⟩ ⊆

V1 and ⟨V 2
1 , . . . , V

2
n ⟩ ⊆ V2 . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} , let W j

i = Xi ,

T j
i = Xi , F j

i = Xi , Lj
i = Xi , W j

i0
= U1

j , T j
i0

= U2
j , F j

i0
= V 1

j and Lj
i0

= V 2
j . Moreover, for all

j ∈ {1, . . . , n} , let, Wj =
∏m

i=1 W
j
i , Tj =

∏m
i=1 T

j
i , Fj =

∏m
i=1 F

j
i and Lj =

∏m
i=1 L

j
i . Then, ⟨W1, . . . ,Wn⟩ ,

⟨T1, . . . , Tn⟩ , ⟨F1, . . . , Fn⟩ and ⟨L1, . . . , Ln⟩ are nonempty open subsets of Fn(
∏m

i=1 Xi) . By hypothesis,
(Fn(

∏m
i=1 fi))

k(⟨W1, . . . ,Wn⟩) ∩ ⟨F1, . . . , Fn⟩ ̸= ∅ and (Fn(
∏m

i=1 fi))
k(⟨T1, . . . , Tn⟩) ∩ ⟨L1, . . . , Ln⟩ ̸= ∅ . Thus,

there exist {(xj
1, . . . , x

j
m) : j ∈ {1, . . . , r}} ∈ ⟨W1, . . . ,Wn⟩ and {(yj1, . . . , yjm) : j ∈ {1, . . . , p}} ∈ ⟨T1, . . . , Tn⟩

such that (
Fn

(
m∏
i=1

fi

))k

({(xj
1, . . . , x

j
m) : j ∈ {1, . . . , r}}) ∈ ⟨F1, . . . , Fn⟩

and (
Fn

(
m∏
i=1

fi

))k

({(yj1, . . . , yjm) : j ∈ {1, . . . , p}}) ∈ ⟨L1, . . . , Ln⟩.

Thus, by Remark 3.1, parts (1) and (2), we have that {(fk
1 (x

j
1), . . . , f

k
m(xj

m)) : j ∈ {1, . . . , r}} ∈ ⟨F1, . . . , Fn⟩ and
{(fk

1 (y
j
1), . . . , f

k
m(yjm)) : j ∈ {1, . . . , p}} ∈ ⟨L1, . . . , Ln⟩. By Lemma 5.2, it follows that {fk

i0
(x1

i0
), . . . , fk

i0
(xr

i0
)} ∈
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⟨V 1
1 , . . . , V

1
n ⟩ and {fk

i0
(y1i0), . . . , f

k
i0
(ypi0)} ∈ ⟨V 2

1 , . . . , V
2
n ⟩ . Then (Fn(fi0))

k({x1
i0
, . . . , xr

i0
}) ∈ ⟨V 1

1 , . . . , V
1
n ⟩

and (Fn(fi0))
k({y1i0 , . . . , y

p
i0
}) ∈ ⟨V 2

1 , . . . , V
2
n ⟩ . Moreover, {x1

i0
, . . . , xr

i0
} ∈ ⟨U1

1 , . . . , U
1
n⟩ and {y1i0 , . . . , y

p
i0
} ∈

⟨U2
1 , . . . , U

2
n⟩ . Hence, we have that (Fn(fi0))

k(⟨U1
1 , . . . , U

1
n⟩)∩⟨V 1

1 , . . . , V
1
n ⟩ ̸= ∅ and (Fn(fi0))

k(⟨U2
1 , . . . , U

2
n⟩)∩

⟨V 2
1 , . . . , V

2
n ⟩ ̸= ∅ . It follows that, for each i ∈ {1, 2} , (Fn(fi0))

k(Ui) ∩ Vi ̸= ∅ . Finally, Fn(fi0) is weakly
mixing.

Suppose that Fn(
∏m

i=1 fi) is totally transitive. Let i0 ∈ {1, . . . ,m} , let s ∈ N , and let U ,V be
two nonempty open subsets of Fn(Xi0) . Then, by [10, Lemma 4.2], there exist nonempty open subsets
U1, . . . , Un, V1, . . . , Vn of Xi0 such that ⟨U1, . . . , Un⟩ ⊆ U and ⟨V1, . . . , Vn⟩ ⊆ V . For each i ∈ {1, . . . ,m}\{i0}

and for every j ∈ {1, . . . , n} , let U j
i = Xi , V j

i = Xi , U j
i0

= Uj and V j
i0

= Vj . Moreover, for all j ∈ {1, . . . , n} ,

let U
′

j =
∏m

i=1 U
j
i and V

′

j =
∏m

i=1 V
j
i . It follows that ⟨U ′

1, . . . , U
′

n⟩ and ⟨V ′

1 , . . . , V
′

n⟩ are nonempty open
subsets of Fn(

∏m
i=1 Xi) . Then, since (Fn(

∏m
i=1 fi))

s is transitive, we have that, there exists k ∈ N such

that ([Fn(
∏m

i=1 fi)]
s)k(⟨U ′

1, . . . , U
′

n⟩) ∩ ⟨V ′

1 , . . . , V
′

n⟩ ̸= ∅. Thus, there exists {(xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}} ∈

⟨U ′

1, . . . , U
′

n⟩ such that [Fn (
∏m

i=1 fi)]
sk

({(xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}}) ∈ ⟨V ′

1 , . . . , V
′

n⟩. In consequence,

{(fsk
1 (xj

1), . . . , f
sk
m (xj

m)) : j ∈ {1, . . . , l}} ∈ ⟨V ′

1 , . . . , V
′

n⟩. Then, by Lemma 5.2, {fsk
i0
(x1

i0
), . . . , fsk

i0
(xl

i0
)} ∈

⟨V1, . . . , Vn⟩ . Hence, ([Fn(fi0)]
s)k({x1

i0
, . . . , xl

i0
}) ∈ ⟨V1, . . . , Vn⟩ . Meanwhile, by Lemma 5.2, {x1

i0
, . . . , xl

i0
} ∈

⟨U1, . . . , Un⟩ . It follows that ([Fn(fi0)]
s)k(⟨U1, . . . , Un⟩) ∩ ⟨V1, . . . , Vn⟩ ̸= ∅ . Consequently, ([Fn(fi0)]

s)k(U) ∩
V ̸= ∅ . Therefore, [Fn(fi0)]

s is transitive. Since s ∈ N is arbitrary, we have that Fn(fi0) is totally transitive.

Suppose that Fn(
∏m

i=1 fi) is strongly transitive. Let i0 ∈ {1, . . . ,m} and let U be a nonempty open
subset of Fn(Xi0) . Thence, by [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un of Xi0 such
that ⟨U1, . . . , Un⟩ ⊆ U . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} , let U j

i = Xi and U j
i0

= Uj .

Moreover, for all j ∈ {1, . . . , n} , let U
′

j =
∏m

i=1 U
j
i . Note that ⟨U ′

1, . . . , U
′

n⟩ is a nonempty open subset of

Fn(
∏m

i=1 Xi) . By hypothesis, there exists s ∈ N such that Fn (
∏m

i=1 Xi) =
∪s

k=0 [Fn (
∏m

i=1 fi)]
k
(⟨U ′

1, . . . , U
′

n⟩).

Let {x1, . . . , xr} ∈ Fn(Xi0) . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , r} , let aji ∈ Xi and let

aji0 = xj . Then, for all j ∈ {1, . . . , r} , let x
′

j = (aj1, . . . , a
j
m) . Note that {x′

1, . . . , x
′

r} ∈ Fn(
∏m

i=1 Xi) .

Thus, there exists k ∈ {0, . . . , s} such that {x′

1, . . . , x
′

r} ∈ [Fn(
∏m

i=1 fi)]
k(⟨U ′

1, . . . , U
′

n⟩). Then, there exists

{(yj1, . . . , yjm) : j ∈ {1, . . . , p}} ∈ ⟨U ′

1, . . . , U
′

n⟩ such that [Fn (
∏m

i=1 fi)]
k
({(yj1, . . . , yjm) : j ∈ {1, . . . , p}}) =

{x′

1, . . . , x
′

r}. By Remark 3.1, we have that {(fk
1 (y

j
1), . . . , f

k
m(yjm)) : j ∈ {1, . . . , p}} = {x′

1, . . . , x
′

r} . Thus,
[Fn(fi0)]

k({y1i0 , . . . , y
p
i0
}) = {x1, . . . , xr} . On the other hand, by Lemma 5.2, {y1i0 , . . . , y

p
i0
} ∈ ⟨U1, . . . , Un⟩ .

Hence, {x1, . . . , xr} ∈ [Fn(fi0)]
k(⟨U1, . . . , Un⟩) . Therefore, {x1, . . . , xr} ∈

∪s
k=0[Fn(fi0)]

k(U) and Fn(fi0) is
strongly transitive.

Suppose that Fn(
∏m

i=1 fi) is chaotic. Then Fn(
∏m

i=1 fi) is transitive and Per(Fn(
∏m

i=1 fi)) is dense
in Fn(

∏m
i=1 Xi) . Thus, for each i ∈ {1, . . . ,m} , Fn(fi) is transitive and by Theorem 5.8, part (2), for every

i ∈ {1, . . . ,m} , Per(Fn(fi)) is dense in Fn(Xi) . Therefore, for all i ∈ {1, . . . ,m} , Fn(fi) is chaotic.

Suppose that Fn(
∏m

i=1 fi) is orbit-transitive. Then, there exists a transitive point {(xj
1, . . . , x

j
m) : j ∈

{1, . . . , l}} of Fn(
∏m

i=1 fi) . Thus, by Theorem 5.6, we have that, for each i ∈ {1, . . . ,m} , {x1
i , . . . , x

l
i} is a

transitive point of Fn(fi) . Consequently, for every i ∈ {1, . . . ,m} , O({x1
i , . . . , x

l
i},Fn(fi)) is a dense subset in
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Fn(Xi) . Which implies that, for all i ∈ {1, . . . ,m} , Fn(fi) is orbit-transitive.
Suppose that Fn(

∏m
i=1 fi) is strictly orbit-transitive. It follows that, there exists a transitive point

{(f1(xj
1), . . . , fm(xj

m)) : j ∈ {1, . . . , l}} of Fn(
∏m

i=1 fi) . By Theorem 5.6, for each i ∈ {1, . . . ,m} , we have that
{fi(x1

i ), . . . , fi(x
l
i)} is a transitive point of Fn(fi) . Thus, for every i ∈ {1, . . . ,m} , Fn(fi)({x1

i , . . . , x
l
i}) is a

transitive point of Fn(fi) . Hence, for all i ∈ {1, . . . ,m} , the subset O(Fn(fi)({x1
i , . . . , x

l
i}),Fn(fi)) is dense in

Fn(Xi) . Therefore, for each i ∈ {1, . . . ,m} , Fn(fi) is strictly orbit-transitive.

Suppose that Fn(
∏m

i=1 fi) is ω -transitive. By hypothesis, there exists {(xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}} ∈

Fn(
∏m

i=1 Xi) such that ω({(xj
1, . . . , x

j
m) : j ∈ {1, . . . , l}},Fn(

∏m
i=1 fi)) = Fn(

∏m
i=1 Xi). Then, by Theorem 5.7,

for each i ∈ {1, . . . ,m} , ω({x1
i , . . . , x

l
i},Fn(fi)) = Fn(Xi) , which means that for every i ∈ {1, . . . ,m} , Fn(fi)

is ω -transitive.
Suppose that Fn(

∏m
i=1 fi) is TT++ . Let i0 ∈ {1, . . . ,m} and let U , V be two nonempty open subsets

of Fn(Xi0) . Then, by [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un ,V1, . . . , Vn of Xi0 such
that ⟨U1, . . . , Un⟩n ⊆ U and ⟨V1, . . . , Vn⟩n ⊆ V . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} ,
let U j

i = Xi , V j
i = Xi , U j

i0
= Uj and V j

i0
= Vj . Moreover, for all j ∈ {1, . . . , n} , let U

′

j =
∏m

i=1 U
j
i and

V
′

j =
∏m

i=1 V
j
i . Note that ⟨U ′

1, . . . , U
′

n⟩ and ⟨V ′

1 , . . . , V
′

n⟩ are nonempty open subsets of Fn(
∏m

i=1 Xi) . By

hypothesis, nFn(
∏m

i=1 fi)(⟨U
′

1, . . . , U
′

n⟩, ⟨V
′

1 , . . . , V
′

n⟩) is infinite. On the other hand, by Lemma 5.3, we have that

nFn(
∏m

i=1 fi)(⟨U
′

1, . . . , U
′

n⟩, ⟨V
′

1 , . . . , V
′

n⟩) ⊆ nFn(fi0 )
(⟨U1, . . . , Un⟩, ⟨V1, . . . , Vn⟩).

Consequently, nFn(fi0 )
(⟨U1, . . . , Un⟩, ⟨V1, . . . , Vn⟩) is infinite. Therefore, Fn(fi0) is TT++ .

Suppose that Fn(
∏m

i=1 fi) is Touhey. Let i0 ∈ {1, . . . ,m} and let U ,V be two nonempty open subsets
of Fn(Xi0) . Thence, by [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un , V1, . . . , Vn of Xi0

such that ⟨U1, . . . , Un⟩ ⊆ U and ⟨V1, . . . , Vn⟩ ⊆ V . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} ,
let U j

i = Xi , V j
i = Xi , U j

i0
= Uj and V j

i0
= Vj . Finally, for all j ∈ {1, . . . , n} , let U

′

j =
∏m

i=1 U
j
i and

V
′

j =
∏m

i=1 V
j
i . It follows that ⟨U ′

1, . . . , U
′

n⟩ and ⟨V ′

1 , . . . , V
′

n⟩ are nonempty open subsets of Fn(
∏m

i=1 Xi) . Since

Fn(
∏m

i=1 Fi) is Touhey, there exist a periodic point {(xl
1, . . . , x

l
m) : r ≤ n and l ∈ {1, . . . , r}} ∈ ⟨U ′

1, . . . , U
′

n⟩

and k ∈ Z+ such that [Fn (
∏m

i=1 fi)]
k
({(xl

1, . . . , x
l
m) : r ≤ n and l ∈ {1, . . . , r}}) ∈ ⟨V1, . . . , Vn⟩. By Remark

3.1, part (2), {(fk
1 (x

l
1), . . . f

k
m(xl

m)) : r ≤ n and l ∈ {1, . . . , r}} ∈ ⟨V ′

1 , . . . , V
′

n⟩ . Then, by Lemma 5.2,
{fk

i0
(x1

i0
), . . . , fk

i0
(xr

i0
)} ∈ ⟨V1, . . . , Vn⟩ ⊆ V . Thus, [Fn(fi0)]

k({x′

i0
, . . . , xr

i0
}) ∈ V . On the other hand, since

{(xl
1, . . . , x

l
m) : r ≤ n and l ∈ {1, . . . , r}} ∈ ⟨U ′

1, . . . , U
′

n⟩ , by Lemma 5.2, {x1
i0
, . . . , xr

i0
} ∈ ⟨U1, . . . , Un⟩ .

Moreover, since {(xl
1, . . . , x

l
m) : r ≤ n and l ∈ {1, . . . , r}} is a periodic point of Fn(

∏m
i=1 fi) , by [4, Theorem

3.4], for each l ∈ {1, . . . , r} , (xl
1, . . . , x

l
m) is a periodic point of

∏m
i=1 fi . Then, by Theorem 3.3, part (4), for

each l ∈ {1, . . . , r} , xl
i0

is a periodic point of fi0 . Thus, by [4, Theorem 3.4], {x1
i0
, . . . , xr

i0
} is a periodic point

of Fn(fi0) . Therefore, Fn(fi0) is Touhey.
Suppose that Fn(

∏m
i=1 fi) is an F-system. Then, Fn(

∏m
i=1 fi) is totally transitive and the subset

Per(Fn(
∏m

i=1 fi)) is dense in Fn(
∏m

i=1 Xi) . By [4, Theorem 3.4], Per(
∏m

i=1 fi) is dense in
∏m

i=1 Xi . In
consequence, by Theorem 3.15, for each i ∈ {1, . . . ,m} , Per(fi) is dense in Xi . Again, by [4, Theorem 3.4],
for every i ∈ {1, . . . ,m} , Per(Fn(fi)) is dense in Fn(Xi) . On the other hand, by the third paragraph of this
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proof, we have that, for all i ∈ {1, . . . ,m} , Fn(fi) is totally transitive. Therefore, for each i ∈ {1, . . . ,m} ,
Fn(fi) is an F-system.

Suppose that Fn(
∏m

i=1 fi) is backward minimal. Let i0 ∈ {1, . . . ,m} and let {x1, . . . , xr} ∈ Fn(Xi0) .

For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , r} , let yji ∈ Xi and let yji0 = xj . Hence, {(yj1, . . . , yjm) :

j ∈ {1, . . . , r}} ∈ Fn(
∏m

i=1 Xi) . Since Fn(
∏m

i=1 fi) is backward minimal, the set {A ∈ Fn(
∏m

i=1 Xi) :

[Fn(
∏m

i=1 fi)]
l(A) = {(yj1, . . . , yjm) : j ∈ {1, . . . , r}}, for some l ∈ N} , is dense in Fn(

∏m
i=1 Xi) . Let U be

a nonempty open subset of Fn(Xi0) . Then, by [10, Lemma 4.2], there exist nonempty open subsets U1, . . . , Un

of Xi0 such that ⟨U1, . . . , Un⟩ ⊆ U . For each i ∈ {1, . . . ,m}\{i0} and for every j ∈ {1, . . . , n} , let U j
i = Xi

and U j
i0

= Uj . Finally, for all j ∈ {1, . . . , n} , let U
′

j =
∏m

i=1 U
j
i . Thus, ⟨U ′

1, . . . , U
′

n⟩ is a nonempty open

subset of Fn(
∏m

i=1 Xi) . By hypothesis, there exist {(zj1, . . . , zjm) : p ≥ n and j ∈ {1, . . . , p}} ∈ ⟨U ′

1, . . . , U
′

n⟩

and l ∈ N such that [Fn(
∏m

i=1 fi)]
l({(zj1, . . . , zjm) : p ≥ n and j ∈ {1, . . . , p}}) = {(yj1, . . . , yjm) : j ∈

{1, . . . , r}} . Meanwhile, by Lemma 5.2, {z1i0 , . . . , z
p
i0
} ∈ ⟨U1, . . . , Un⟩ . Moreover, by Remark 3.1, parts (1)

and (2), {(f l
1(z

j
1), . . . , f

l
m(zjm)) : p ≥ n and j ∈ {1, . . . , p}} = {(yj1, . . . , yjm) : j ∈ {1, . . . , r}} . It follows that

{f l
i0
(z1i0), . . . , f

l
i0
(zpi0)} = {y1i0 , . . . , y

r
i0
} . Consequently, [Fn(fi0)]

l({z1i0 , . . . , z
p
i0
}) = {y1i0 , . . . , y

r
i0
} . Therefore, the

set {A ∈ Fn(Xi0) : [Fn(fi)]
l(A) = {x1, . . . , xr}, for some l ∈ N} is dense in Fn(Xi0) and Fn(fi0) is backward

minimal.
Suppose that Fn(

∏m
i=1 fi) is mild mixing. Let i0 ∈ {1, . . . ,m} , let Y be a topological space and let

g : Y → Y be a transitive function. By hypothesis, Fn(
∏m

i=1 fi) × g is transitive. Thus, by Theorem 6.12,
Fn(fi0)× g is transitive. Therefore, Fn(fi0) is mild mixing.

Suppose that Fn(
∏m

i=1 fi) is scattering. Let i0 ∈ {1, . . . ,m} , let Y be a topological space and let
g : Y → Y be a minimal function. By hypothesis, Fn(

∏m
i=1 fi) × g is transitive. Thus, by Theorem 6.12,

Fn(fi0)× g is transitive. Therefore, Fn(fi0) is scattering. 2

Theorem 6.14 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a continuous
function, and let n ∈ N . If Fn(

∏m
i=1 fi) is minimal, then, for every i ∈ {1, . . . ,m} , Fn(fi) is minimal.

Proof Suppose that Fn(
∏m

i=1 fi) is minimal. Let i0 ∈ {1, . . . ,m} . By hypothesis, fi0 is continuous. Hence,
Fn(fi0) is continuous. Thus, by [15, Proposition 6.2], it is sufficient to prove that for each A ∈ Fn(Xi0) ,
clFn(Xi0 )

(O(A,Fn(fi0))) = Fn(Xi0) . Let {x1, . . . , xr} ∈ Fn(Xi0) with r ≤ n . For each i ∈ {1, . . . ,m}\{i0}

and for every j ∈ {1, . . . , r} , let yji ∈ Xi and yji0 = xj . Thus, {(yj1, . . . , yjm) : j ∈ {1, . . . , r}} ∈ Fn(
∏m

i=1 Xi) .

Since Fn(
∏m

i=1 fi) is minimal. We have that clFn(
∏m

i=1 Xi)

(
O
(
{(yj1, . . . , yjm) : j ∈ {1, . . . , r}},Fn (

∏m
i=1 fi)

))
=

Fn (
∏m

i=1 Xi) . Thus, by Theorem 5.6, for all i ∈ {1, . . . ,m} we have that, clFn(Xi)(O({y1i , . . . , yri },Fn(fi))) =

Fn(Xi) . In particular, we have that, clFn(Xi0
)(O({y1i0 , . . . , y

r
i0
},Fn(fi0))) = Fn(Xi0) . Consequently

clFn(Xi0
)(O({x1, . . . , xr},Fn(fi0))) = Fn(Xi0).

Since {x1, . . . , xr} ∈ Fn(Xi0) is arbitrary, Fn(fi0) is minimal. 2

519



ROJAS et al./Turk J Math

Theorem 6.15 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a continuous
function, and let n ∈ N . If Fn(

∏m
i=1 fi) is totally minimal, then, for every i ∈ {1, . . . ,m} , Fn(fi) is totally

minimal.

Proof Suppose that Fn(
∏m

i=1 fi) is totally minimal. Let s ∈ N . By hypothesis, [Fn(
∏m

i=1 fi)]
s is minimal.

Then, by Remark 3.1, part (2), Fn(
∏m

i=1 f
s
i ) is minimal. Then, by Theorem 6.14, for each i ∈ {1, . . . ,m} ,

Fn(f
s
i ) is minimal. Again, by Remark 3.1, part (2), for every i ∈ {1, . . . ,m} , [Fn(fi)]

s is minimal. Since s ∈ N
is arbitrary, we have that, for all i ∈ {1, . . . ,m} , Fn(fi) is totally minimal. 2

By [4, Theorems 4.11, 4.12, 4.14, 4.15, 4.19, 5.1, 5.3, 5.6, 5.9], Theorem 6.3, and Theorem 6.13, we have
the following result.

Theorem 6.16 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
let n ∈ N , and let M be one of the following classes of functions: transitive, weakly mixing, totally transitive,
strongly transitive, chaotic, orbit-transitive, strictly orbit-transitive, ω -transitive, TT++ , Touhey, an F-system,
backward minimal, mild mixing or scattering. If Fn(

∏m
i=1 fi) ∈ M , then, for every i ∈ {1, . . . ,m} , fi ∈ M .

The converse of Theorem 6.16 is not true in general. Let us see a partly example of this in the following:

Example 6.17 Let f : [0, 2] → [0, 2] be a function given by:

f(x) =

 2x+ 1, 0 ≤ x ≤ 1
2 ,

−2x+ 3, 1
2 ≤ x ≤ 1,

−x+ 2, 1 ≤ x ≤ 2.

In [8, Example 1], it is shown that f is transitive; however, f × f : [0, 2] × [0, 2] → [0, 2] × [0, 2] is not
transitive. If we suppose that Fn(f × f) is transitive, by [4, Theorem 4.11], we have that f × f is transitive.
Which is a contradiction. Therefore, Fn(f × f) is not transitive.

By Theorems 6.3, 6.14, 6.15, and [4, Theorem 4.18], we have the following result.

Theorem 6.18 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a continuous
function, and let n ∈ N . Then the following hold:

1. If Fn(
∏m

i=1 fi) is minimal, then, for every i ∈ {1, . . . ,m} , fi is minimal.

2. If Fn(
∏m

i=1 fi) is totally minimal, then, for all i ∈ {1, . . . ,m} , fi is totally minimal.

By Theorems 3.14, 4.10, 6.6, and [4, Theorems 5.2, 5.4, 5.7], we obtain the following result.

Theorem 6.19 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
let n ∈ N , and let M be one of the following classes of functions: transitive, totally transitive, chaotic, orbit-
transitive, strictly orbit-transitive, ω -transitive, Touhey, an F-system, mild mixing or scattering. If for every
i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi and fi ∈ M , then Fn(

∏m
i=1 fi) ∈ M .
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Corollary 6.20 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
let n ∈ N , and let M be one of the following classes of functions: transitive, totally transitive, chaotic, orbit-
transitive, strictly orbit-transitive, ω -transitive, Touhey, an F-system, mild mixing, scattering or TT++ . If for
every i ∈ {1, . . . ,m} , Xi is + invariant over open subsets under fi and Fn(fi) ∈ M , then Fn(

∏m
i=1 fi) ∈ M .

Theorem 6.21 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function,
and let n ∈ N . If for every i ∈ {1, . . . ,m} , fi is weakly mixing and continuous and Xi is + invariant over
open subsets under fi , then Fn(

∏m
i=1 fi) is weakly mixing.

Proof Suppose that, for each i ∈ {1, . . . ,m} , fi is weakly mixing and continuous and that Xi is +invariant
over open subsets under fi . Then, by Theorem 4.10,

∏m
i=1 fi is weakly mixing. Even more,

∏m
i=1 fi is

continuous. Thus, by [4, Theorem 4.13], we have that Fn(
∏m

i=1 fi) is weakly mixing. 2

Corollary 6.22 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a function
such that

∏m
i=1 fi is continuous, and let n ∈ N . If, for every i ∈ {1, . . . ,m} , Fn(fi) is weakly mixing and Xi

is + invariant over open subsets under fi , then Fn(
∏m

i=1 fi) is weakly mixing.

Proof Suppose that, for each i ∈ {1, . . . ,m} , Fn(fi) is weakly mixing, and that Xi is + invariant over open
subsets under fi and

∏m
i=1 fi is continuous. Then, by [4, Theorem 4.12], for each i ∈ {1, . . . ,m} , fi is weakly

mixing. Even more, for each i ∈ {1, . . . ,m} , fi is continuous. Thus, by Theorem 6.21, Fn(
∏m

i=1 fi) is weakly
mixing. 2

Theorem 6.23 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a continuous
function, and let n ∈ N . If, for every i ∈ {1, . . . ,m} , fi is minimal and Xi is + invariant over open subsets
under fi , then Fn(

∏m
i=1 fi) is minimal.

Proof Suppose that, for each i ∈ {1, . . . ,m} , fi is minimal and that Xi is + invariant over open subsets
under fi . Then, by Proposition 4.11,

∏m
i=1 fi is minimal. Even more,

∏m
i=1 fi is continuous and by Theorem

3.14,
∏m

i=1 Xi is +invariant over open subsets under
∏m

i=1 fi . Thus, by Theorem 6.7, Fn(
∏m

i=1 fi) is minimal.
2

As a consequence of Theorem 6.23 and [4, Theorem 4.18], we have the following result.

Corollary 6.24 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a continuous
function, and let n ∈ N . If, for every i ∈ {1, . . . ,m} , Fn(fi) is minimal and Xi is + invariant over open
subsets under fi , then Fn(

∏m
i=1 fi) is minimal.

As a consequence of Corollary 4.12, Theorem 3.14, and Proposition 6.8, we obtain the following.

Corollary 6.25 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a continuous
function, and let n ∈ N . If, for every i ∈ {1, . . . ,m} , fi is totally minimal and Xi is + invariant over open
subsets under fi , then Fn(

∏m
i=1 fi) is totally minimal.

As a consequence of Theorem 6.3 and Corollary 6.25, we have:
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Corollary 6.26 Let X1, . . . , Xm be topological spaces, for each i ∈ {1, . . . ,m} , let fi : Xi → Xi be a continuous
function and let n ∈ N . If, for every i ∈ {1, . . . ,m} , Fn(fi) is totally minimal and Xi is + invariant over
open subsets under fi , then Fn(

∏m
i=1 fi) is totally minimal.
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