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Abstract: Our aim in this paper is to investigate graph automorphism and group automorphism determining all
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1. Introduction
There is an old definition of a graph attributed to Arthur Cayley, which is related to a group G , and a subset
S of G , not including the identity element 1 . The Cayley graph Cay(G,S) is the graph with the vertex set
V (Cay(G,S)) = G and the edge set E(Cay(G,S)) = {(u, v)|vu−1 ∈ S} . We notice that the edge set can be
identified with set of ordered pairs {(g, sg)|g ∈ G, s ∈ S} . If S is closed under taking inverse, S = S−1 , then
Cay(G,S) is an undirected graph. Obviously, the degree of each vertex is |S| and Cay(G,S) is connected if
and only if G = ⟨S⟩ .

A graph Γ is called vertex-transitive or edge-transitive if the automorphism group Aut(Γ) , acts transi-
tively on vertex-set or edge-set of Γ , respectively. Now, let Γ = Cay(G,S) .

For g ∈ G , let ρg : G → G given by ρg(x) = xg . By definition of Cayley graph, clearly ρg ∈ Aut(Γ) .
The set ρ(G) = {ρg | g ∈ G} forms a subgroup (isomorphic to G) of Aut(Γ) . In this way, Γ is vertex-transitive
because ρ(G) ⩽ Aut(Γ) , acting right regularly on the vertices of Γ , while Γ is not edge-transitive in general.

We employ the following notation and terminology. The notation G = K ⋊H is used to indicate that
G is a semidirect product of K by H . We denote by Aut(G,S) , the subgroup of Aut(G) consisting of all
σ ∈ Aut(G) such that σ(S) = S . It is easy to see that Aut(G,S) is a subgroup of the automorphisms group of
Cay(G,S) . Zn denotes a cyclic group of order n , and S4 denotes the symmetric group on four letters. The
distance of length i , between two vertices u and v , in a graph Γ is the number of i edges in a shortest path
connecting them, denoted by d(u, v) = i . Let us introduce the Di(u) = {v ∈ V (Γ) | d(u, v) = i} .

As far as the authors know, the concepts normal and normal edge transitive introduced by M.Y. Xu and
C.E. Praeger in [9] and [7], respectively for the first time. A Cayley graph Γ = Cay(G,S) is called normal if
ρ(G) is a normal subgroup of Aut(Γ) , i.e. NAut(Γ)(ρ(G)) = Aut(Γ) ; and Γ is called normal edge-transitive if
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NAut(Γ)(ρ(G)) is transitive on the edges of Γ . These concepts play an important role in the theory of Cayley
graphs.

Normal edge-transitive Cayley graphs on non-Abelian groups of order p2 , 3p2 , 4p2 and modular groups
of order 8n , where p is prime and n is a natural number, were studied in [2, 5, 6, 8]. In this paper, motivated
by [2, 6], we determine the structure of Cayley graphs on non-Abelian groups of orders 5p2 with cyclic Sylow
p -subgroup with respect to tetravalent sets with same-order elements, where p is a prime number. Some results
of normal edge-transitive Cayley graphs of PGL(2, p) , p prime, and Frobenius groups are given in [4] and [1],
respectively.

We collect the main results in this paper into one theorem.

Theorem 1.1 (Main Theorem) Let G be a finite group of order 5p2 with cyclic Sylow p-subgroup. There
exists exactly three tetravalent subsets Si of G , 1 ⩽ i ⩽ 3 , such that for each i , G = ⟨Si⟩ , all elements of Si

are of order 5 and one of the following holds.

(1) S1 = {x, xy, x−1, (xy)−1} , and each element of S1 has order 5 ; Γ = Cay(G,S1) is normal, normal
edge-transitive and edge-transitive, but it is not arc-transitive. Aut(G,S1) ∼= Z2 and Aut(Γ) ∼= ρ(G)⋊Z2 .

(2) S2 = {x2, xy, x−2, (xy)−1} , and each element of S2 has order 5 ; Γ = Cay(G,S2) is normal but it is not
normal edge-transitive and arc-transitive. Aut(G,S2) is trivial and Aut(Γ) ∼= ρ(G) .

(3) S3 = {x2, x2y, x−2, (x2y)−1} , and each element of S3 has order 5 ; Γ = Cay(G,S3) is normal, normal
edge transitive and edge transitive, but it is not arc-transitive; Aut(G,S1) ∼= Z2 and Aut(Γ) ∼= ρ(G)⋊Z2 .

The tetravalent nonnormal Cayley graphs of order 5p2 is studied in Khazaei and Sharifi∗.

2. Preliminary and some results

We review some facts whose proofs can be found in the literature. Here we keep fixed terminologies used in the
first section.

Lemma 2.1 ([3, Lemma 2.1] or [7]) For a Cayley graph Γ = Cay(G,S) , we have NAut(Γ)(ρ(G)) = ρ(G) ⋊
Aut(G,S) .

Therefore, Γ is normal edge-transitive when ρ(G)⋊Aut(G,S) is transitive on the edge-set of Γ .
The following lemma is essential in this paper.

Lemma 2.2 ([7, Proposition 1(c)]) Consider the Cayley graph Γ = Cay(G,S) . Then the following are
equivalent:

(i) Γ is normal edge-transitive;

(ii) S = T ∪ T−1 , where T is an Aut(G,S)-orbit in G ;

Moreover, ρ(G)⋊Aut(G,S) is transitive on the arcs of Γ if and only if Aut(G,S) is transitive on S .
∗Khazaei S, Sharifi H. Tetravalent non-normal Cayley graphs of order 5p2 (submitted).
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Lemma 2.3 ([9, Proposition 1.5]) The following are equivalent

(i) ρ(G)�A ;

(ii) Aut(Γ) = ρ(G)⋊Aut(G,S) ;

(iii) A1 ⩽ Aut(G,S) .

Let G be a finite group of order 5p2 . By Sylow theorems we can see that if the Sylow p -subgroup of G
is cyclic then G is isomorphic to

⟨x, y|x5 = yp
2

= 1, x−1yx = yk⟩,

where 1 < k < p2 , p ∤ k , xyx−1 = yk
4 and k5 ≡ 1 (modp2 ).

By a simple computation we find o(xiyj) = 5 , for 1 ≤ i ≤ 4 , 0 ≤ j < p2 .

Lemma 2.4 | Aut(G) |⩽ p3(p− 1).

Proof Suppose that f is an automorphism of G . Therefore, for the generators x and y of G , f(x)

and f(y) must be of order 5 and p2 , respectively. In fact, f(x) ∈ {xiyj | 1 ⩽ i < 5, 0 ⩽ j < p2} and
f(y) ∈ {yj | (j, p) = 1} . We claim that f(x) = xyj , 0 ⩽ j < p2 . We shall prove this claim by the following
steps:

Step 1. f(x) ̸= x2yj , 0 ⩽ j < p2 .

Suppose that f(x) = x2yj and f(y) = yj
′ . On the other hand, x−1yx = yk . Thus, we have

f(yk) = f(x−1yx) = f(x)−1f(y)f(x) = y−jx−2yj
′
x2yj

= y−jx−1(x−1yj
′
x)xyj = y−jx−1(ykj

′
)xyj = y−jyk

2j′yj = yk
2j′ .

Moreover,

f(y) = yj
′
⇒ f(yk) = ykj

′
.

Therefore,

ykj
′
= yk

2j′ ⇒ p2 | (k2 − k)j′ ⇒ p2 | (k2 − k).

Since p ∤ k , we have p2 | k − 1 , contradicting 1 < k < p2 . Thus, f(x) ̸= x2yj with 0 ⩽ j ⩽ p2 .

Step 2. f(x) ̸= x3yj , 0 ⩽ j < p2 .

Suppose that f(x) = x3yj for some 0 ⩽ j < p2 . Similar to the first step, we conclude p2 | k(k2 − 1) ,
since 1 < k < p2 , p2 | k2 − 1 . That is a contradiction because if p2 | k2 − 1 is true then there are three
cases. First, if p|k + 1 and p|k − 1 , then this is invalid because p is odd. Secondly, if p2|k + 1 then
p2 = k + 1 , due to 1 < k < p2 . Besides, k5 ≡ 1 (mode p2 ). Thus, we have: (p2 − 1)5 ≡ 1 (mode p2 ).
However, this implies −1 ≡ 1 (mode p2 ), which is impossible. Third case i.e. p2|k − 1 does not occur
when 1 < k < p2 .
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Step 3. f(x) ̸= x4yj , 0 ⩽ j < p2 . Suppose that f(x) = x4yj for some 0 ⩽ j < p2 . Again, similar to the first
case, we have p2 | k(k3 − 1) . In this way, p2 | k3 − 1 , makes a contradiction because if p2|k3 − 1 then
p2|k5 − k2 . Moreover, k5 ≡ 1 (mode p2 ). Thus, p2 will divide k2 − 1 . However, in Step 2 we showed
that this does not happen.

Therefore, there are p2 cases for the image of f on x and the image of f on y has φ(p2) cases, where φ is
the Euler function. Hence, all states are totally p3(p− 1) . This completes the proof. 2

We are going to characterize the automorphism group of G . In the following lemma Z×
p2 denotes the

multiplication group of the field of order p2 with φ(p2) elements.

Lemma 2.5 Aut(G) ∼= Zp2 ⋊ Z×
p2 .

Proof Let A = {f ∈ Aut(G) | f(y) = y, f(x) = xyj , 0 ⩽ j < p2} . It is easy to see that A is a subgroup of
order p2 of Aut(G) . If f ∈ A and g ∈ Aut(G) with property f(y) = y, f(x) = xyj and g(y) = yi, g(x) = xyj

′ ,
then

g−1fg(y) = g−1(f(yi)) = g−1(yi) = y.

Hence, g−1fg ∈ A . Therefore A is a normal subgroup of Aut(G) . Suppose f(x) = xy, f(y) = y , then f is an
element of order p2 belonging A . Thus A = ⟨f⟩ . We conclude that A ∼= Zp2 .

Now, Let B = {f ∈ Aut(G) | f(x) = x, f(y) = yi, 1 ⩽ i < p2, (i, p) = 1}. B is a subgroup of order φ(p2)
such that intersection A and B is trivial. Obviously, B is isomorphic to Z×

p2 , and the result is now immediate.
2

We are interested in the Cayley graph Γ = Cay(G,S) when |S| = 4 , G = ⟨S⟩ , and all elements of S
are of order 5.

The elements of S are of the form xiyj , 0 ≤ i ≤ 4, 0 ≤ j < p2 . Since G = ⟨S⟩ and inverse x3yj and
x4yj are x2yj

′ and xyj
′ , respectively. We conclude that S = Si with i ∈ {1, 2, 3} , where, if xiyj ∈ S then

(xiyj)−1 ∈ S , with the following description:

S1 = {xyj , xyj
′
, (xyj)−1, (xyj

′
)−1}, j ̸≡ j′ (mod p2);

S2 = {xyj , x2yj
′
, (xyj)−1, (x2yj

′
)−1}, j′ ̸≡ j(k + 1) (mod p2);

S3 = {x2yj , (x2yj)−1, x2yj
′
, (x2yj

′
)−1}, (j ̸≡ j′ (mod p2));

So our task is then to study all Cay(G,Si) , 1 ⩽ i ⩽ 3 .

3. Γ1 = Cay(G,S1)

We start with the following lemma.

Lemma 3.1 S1 is equivalent to {x, xy, x−1, (xy)−1} .
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Proof We know S1 = {xyj , xyj′ , (xyj)−1, (xyj
′
)−1} where 0 ≤ j, j′ < p2 , j ̸≡ j′ (mod p2) . It is sufficient to

let f(x) = xyj and f(y) = yj
′−j . Hence, f(xy) = xyjyj

′−j = xyj
′ , as wanted. 2

From now on, we use this equivalent set for S1 . Clearly, G = ⟨S1⟩ .

Theorem 3.2 Aut(G,S1) ∼= Z2 .

Proof Obviously, Aut(G,S1) ⩽ S4 . On the other hand, Aut(G,S1) does not have any element of order
3. Because, if σ ∈ Aut(G,S1) is of order 3, then σ will fix an element of S1 . So, its inversion should also
be kept fix by σ . Thus, two remaining elements of S1 will be sent to each other by σ . Therefore, σ has a
transposition in its decomposition to disjoint cycles. Consequently, the order of σ is even. Moreover, Aut(G,S1)

can not contain an element of order 4 . Because, if there is such an element, then one of the following two cases
happens; σ1 = (x, xy, x−1, (xy)−1) or σ2 = (x, (xy)−1, x−1, xy) . Assume that σ(y) = yi with 0 < i < p .
For the first case, x−1 = σ1(xy) = σ1(x)σ1(y) = xyyi , where (i, p2) = 1 . Therefore x−2 = yi+1 which is
a contradiction. And, for the second case, x−1 = σ2((xy)

−1) = σ2(y
−1x−1) = σ2(y

−1)σ2(x
−1) . Therefore

x−2 = x−1y−ixy = y1−ki which is again a contradiction. Thus, Aut(G,S1) ∼= Z2 or Z2 × Z2 . By the proof of
Lemma 2.4, if σ ∈ Aut(G,S1) , then σ(x) = x or xy and σ(xy) = x or xy . If σ(x) = x then σ(xy) = xy . Thus,
σ(y) = y yields that σ is trivial. If σ(x) = xy then σ(xy) = x . Therefore x = σ(xy) = σ(x)σ(y) = xyσ(y) .
So, σ(y) = y−1 . Obviously, σ is an involution, and we are done.

2

Let A = Aut(Γ) , and suppose that Ag is a stabilizer of g , when A acts on G . We have the following
useful lemma.

Lemma 3.3 If φ ∈ Ag and one of the elements of D1(g) is fixed by φ , then φ fix all the elements of D1(g) .

Proof Let C1 = {g, xg, x2g, x3g, x4g} and C2 = {g, xyg, (xy)2g, (xy)3g, (xy)4g} . It is straightforward to
check that g is the only common vertex between these two cycles C1 and C2 of length 5 , see Figure 1.

x2g xg

x4gx3g

g

(xy)4g

xyg (xy)2g

(xy)3g

Figure 1. g is the only common vertex between these two cycles C1 and C2 of length 5.

If φ(xg) = xg then φ(xig) = xig for 1 ⩽ i ⩽ 4 . Because x4g ∈ D1 (g) and φ preserve distance, so we
have:

φ
(
x4g

)
∈ φ (D1 (g)) = D1 (φ (g)) = D1 (g) =

{
xg, x4g, xyg, (xy)

−1
g
}

=
{
φ (xg) , x4g, xyg, (xy)

−1
g
}

Since φ is one-to-one, so φ
(
x4g

)
∈

{
x4g, xyg, (xy)

−1
g
}

. On the other hand,
(
x2g, x3g

)
is an edge and

x2g ∈ D1 (xg) , x3g ∈ D1

(
x4g

)
, so there exists a member of φ (D1 (xg)) that is adjacent with a member of
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φ
(
D1

(
x4g

))
. Now, if φ

(
x4g

)
= xyg or (xy)

−1
g , these members do not exist. Thus φ

(
x4g

)
= x4g . x2g and

x3g are only vertices of D1 (xg) and D1

(
x4g

)
that are adjacent, so φ will fix them. Similarly, If φ(xyg) = xyg ,

then φ((xy)ig) = (xy)ig for 1 ⩽ i ⩽ 4 , also, if φ(xg) = x4g , then φ(xig) = x−ig for 1 ⩽ i ⩽ 4 . Then we have
two cases for φ :

Case 1. If φ(xg) = xg and φ(xyg) = (xy)−1g , then since

xy−kg ∈ D1

(
x2g

)
= φ

(
D1

(
x2g

))
,

we have

φ
(
xy−kg

)
∈
{
xg, x3g, xy−kg, x3yk

2

g
}
=

{
φ (xg) , φ

(
x3g

)
, xy−kg, x3yk

2

g
}
.

Furthermore, φ is one-to-one, thus we have

φ
(
xy−kg

)
∈
{
xy−kg, x3yk

2

g
}
.

Now since y−kg is adjacent with xy−kg and φ preserves distance, so we have:

φ
(
y−kg

)
∈ D1

(
xy−kg

)
∪D1

(
x3yk

2

g
)
= A

where A =
{
y−kg, x2y−kg, y−k−1g, x4yk

2

g, x2yk
2

g, x4yk
3+k2

g
}

.

On the other hand y−kg ∈ D3 (xyg) , so φ
(
y−kg

)
∈ φ (D3 (xyg)) = D3

(
(xy)

−1
g
)

. Now since A ∩

D3

(
(xy)

−1
g
)
= ∅ . Consequently, this case is a contradiction.

Case 2. If φ (xg) = x4g and φ (xyg) = xyg , then let

σ := ρg−1xg ◦ φ ◦ ρg−1xg.

Clearly φ ◦ σ (g) = g , φ ◦ σ (xg) = xg . x2ykg ∈ D1 (xg) , so we have

φ
(
x2ykg

)
∈ D1 (φ (xg)) = D1

(
x4g

)
=

{
g, x3g, yk

4

g, x3y−k3

g
}
=

{
φ (g) , φ

(
x2g

)
, yk

4

g, x3y−k3

g
}
.

Since φ is one-to-one, so φ
(
x2ykg

)
∈
{
yk

4

g, x3y−k3

g
}

. Now if φ
(
x2ykg

)
= x3y−k3

g , then φ ◦σ (xyg) =

(xy)
−1
g , which is a contradiction by Case 1. Thus φ

(
x2ykg

)
= yk

4

g . Clearly,

ykg ∈ D2

(
x2ykg

)
∩D2

(
(xy)

2
g
)
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So φ
(
ykg

)
∈ D2

(
yk

4

g
)
∩D2

(
(xy)

2
g
)

, which is a contradiction.

2

Result 3.4 If φ ∈ Aut(Γ1)g and φ fixes an element of D1(g) , then φ = id .

Proof Since graph is connected, it suffices to show that for every integer i ⩾ 1 , the statement:

g′ ∈ Di (g) ⇒ φ (g′) = g′

holds. By Lemma 3.3 the statement is true for i = 1 . Now assume that the statement is true for 1 ⩽ i ⩽ n ,
and we will show that the statement holds for n+1 . Let g′ ∈ Dn+1 (g) . Hence, there is a sequence of adjacent
vertices

g = g′0, g
′
1, ..., g

′
n−1, g

′
n, g

′
n+1

Clearly, g′n−1 ∈ Dn−1(g) and g′n ∈ Dn(g) . Therefore by hypothesis, φ
(
g′n−1

)
= g′n−1 and φ (g′n) = g′n .

By applying Lemma 3.3 for g := g′n and the fact φ
(
g′n−1

)
= g′n−1 . We conclude that φ

(
g′n+1

)
= g′n+1 , or

equivalently φ (g′) = g′ . 2

Lemma 3.5 If φ ∈ Aut(Γ1)1 and φ (x) = x−1 and let k ⩾ 1 . Then

φ
(
si11 s

j1
2 ...s

ik
1 s

jk
2

)
= s−i1

1 s−j1
2 ...s−ik

1 s−jk
2

where s1, s2 ∈ {x, xy} , s1 ̸= s2 and 1 ⩽ il, jl ⩽ 4 for 1 ⩽ l ⩽ k .

Proof Let σ := ρxφρx . We have σ ◦ φ(1) = 1 and σ ◦ φ(x) = x . So, by Lemma 3.3, σ ◦ φ = id and
φ2 = id . Consequently, σ = φ and φ = φ−1 . Therefore for every g ∈ G , we have φ (g) = φ (gx)x , so
φ (gx) = φ (g)x−1 . On the other hand, similar to the above, ρxyφρxy = φ . Thus for every g ∈ G , we conclude

that φ (gxy) = φ (g) (xy)
−1 . Since G = ⟨x, xy⟩ , the proof is completed. 2

Lemma 3.6 If φ ∈ Aut(Γ1)1 , then φ(x) ̸= x−1 .

Proof Suppose that φ(x) = x−1 . By previous lemma we have

φ
(
yk

4
)
= φ

(
(xy)x−1

)
= (xy)

−1
x = y−1.

On the other hand:

φ
(
yk

4
)
= φ

(
x−1 (xy)

)k4

=
(
x−1 (xy)

−1
)k4

=
(
xy−1x−1

)k4

= y−k8

= y−k3

.

So y−1 = y−k3 and p2
∣∣k3 − 1 , which is a contradiction.

2

Lemma 3.7 If φ ∈ Aut(Γ1)1 , then φ(x) ̸= (xy)−1 .
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Proof Suppose that φ(x) = (xy)−1 . If σ is a non-trivial element of Aut(G,S1) , then σ ◦ φ ∈ Aut(Γ1)1 and
σ ◦ φ(x) = x−1 , which is in contradiction with Lemma 3.6. 2

Result 3.8 If φ ∈ Aut(Γ1)1 and φ(x) = xy , then φ = σ .

Proof According to the Corollary 3.4 and φ ◦ σ(xy) = xy , the corollary is established. 2

Theorem 3.9 Aut(Γ1)1 ∼= Z2.

Proof The theorem now follows via Corollaries 3.4, 3.8 and Lemmas 3.6 and 3.7. 2

Eventually, Theorems 3.2, 3.9 and Lemmas 2.2, 2.3, cover case(1) of the main theorem.

4. Γ2 = Cay(G,S2)

Lemma 4.1 S2 is equivalent to {x2, xy, x−2, (xy)−1} .

Proof We know that S2 = {xyj , x2yj′ , (xyj)−1, (x2yj
′
)−1} , where j′ ̸≡ j(k+ 1) (mod p2) and 0 ⩽ j, j′ < p2 .

It is sufficient to set f ∈ Aut(G) as follows, f(x) = xyα and f(y) = yβ , where α is one of the following states

{
α = j′

2 (k
4 − k3 + k2 − k + 1), if j′ is even ;

α = p2+j′

2 (k4 − k3 + k2 − k + 1), if j′ is odd.

and β = j − α . 2

From now on, we use this equivalent set for S2 . Clearly, G = ⟨S2⟩ .

Theorem 4.2 Aut(G,S2) is trivial.

Proof If f ∈ Aut(G,S2) , then by proof of Lemma 2.4, we know f(x2) = x2 and f(xy) = xy . On the other
hand, for some suitable i, j that 1 ⩽ i, j < p2 and (j, p) = 1 we have f(x) = xyi and f(y) = yj . Therefore,
x2 = f(x2) = f(x)2 = xyixyi = x2yi(k+1) , and hence p2 | i(k + 1) . Moreover, xy = f(xy) = xyiyj = xyi+j , so
p2 | i + j − 1 . Clearly, (p, k + 1) = 1 ; otherwise, for some integer r , we have k = rp − 1 , and so, p2 | k5 − 1 ,
thus 1 ≡ k5(mod p2) ≡ 5rp − 1 . Hence, p2 | 5rp − 2 , which is a contradiction. Therefore, p2 | i . So, i = 0 .
Now since, p2 | i+ j − 1 , thus p2 | j − 1 . Therefore, j = 1 , and thus f is trivial. 2

Lemma 4.3 If φ ∈ Ag and one of the elements of D2(g) is fixed by φ then φ will fix all the elements of
D2(g) .

Proof Since φ(g) = g , so φ(D2(g)) = D2(g) . On the other hand, g is the only common vertex between these
two cycles of length 5, as in Figure 2.

If φ(xyg) = xyg , similar to Lemma 3.3, we conclude that φ((xy)ig) = (xy)ig for 1 ⩽ i ⩽ 4 and if
φ(x2g) = x2g , then φ(xig) = xig for 1 ⩽ i ⩽ 4 . With this information, we consider two cases:
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x4g

xg x3g

x2g

g

xyg

(xy)4g

(xy)2g

(xy)3g

Figure 2. g is the only common vertex between these two cycles of length 5.

Case 1. If φ(x2g) = x2g and contrary to the claim φ(xyg) = (xy)4g , then we have yk2+kg ∈ D3(xg)∩D2((xy)
3g) ;

since φ preserves distance, φ(yk2+kg) ∈ D3(xg) ∩D2((xy)
2g) . So we have:

φ(yk
2+kg) ∈ {(xy)4g, xyk+1g} =

{
φ (xyg) , xyk+1g

}
.

Since φ is one-to-one, we have φ
(
yk

2+kg
)
= xyk+1g .

So φ(yk
2+kg) = xyk+1g .

As before, since xyk+1g ∈ D3(xg) ∩D2((xy)
2g) , we have

φ(xyk+1g) ∈ D3(xg) ∩D2((xy)
3g) = {xyg, yk

2+kg}.

Clearly φ(xyk+1g) ̸= xyg . Therefore φ(xyk+1g) = yk
2+kg . On the other hand,

x3yk+1g ∈ D1

(
xyk+1g

)
∩D2

(
(xy)

2
g
)
.

But D1

(
yk

2+kg
)
∩D2

(
(xy)

3
g
)
= ∅ . This contradiction shows that this case will not happen.

Case 2. If φ
(
x2g

)
= x3g and contrary to the claim φ(xyg) = xyg , putting σ := ρg−1xg ◦ φ ◦ ρg−1xg , then clearly

φ ◦ σ (g) = g , φ ◦ σ
(
x2g

)
= x2g . So by previous case φ ◦ σ (xyg) = xyg . On the other hand, similar to

Lemma 3.3, φ
(
x2ykg

)
∈
{
x3y−k3

g, yk
4

g
}

. If φ
(
x2ykg

)
= x3y−k3

g , then φ ◦ σ (xyg) = (xy)
−1
g , which

is impossible regarding to Case 1. So φ
(
x2ykg

)
= yk

4

g . On the other hand,

yk
2+kg ∈ D2

(
x2ykg

)
∩D2

(
(xy)

3
g
)
.

Thus we have
φ
(
yk

2+kg
)
∈ D2

(
yk

4

g
)
∩D2

(
(xy)

3
g
)
,

which is a contradiction.

2

Result 4.4 If φ ∈ Aut(Γ2)g and φ fixed an element of D2(g) , then φ = id .
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Proof Similar to Corollary 3.4, it follows immediately from Lemma 4.3 and graph connectivity. 2

Lemma 4.5 If φ ∈ Aut(Γ2)1 , then φ(x2) ̸= x3 .

Proof On the contrary let φ(x2) = x3 . By Corollary 4.4, φ (xy) = (xy)
4 . It is easy to see that the conditions

of Lemma 3.5 are established; so we have

φ
(
yk

4
)
= φ

(
(xy)x2x2

)
= (xy)

−1
x−2x−2 = y−1x−1x = y−1.

On the other hand,

φ
(
yk

4
)
= φ

(
x2x2 (xy)

)k4

=
(
x3x3(xy)

−1
)k4

=

(
xy−1x−1

)k4

=
(
y−k4

)k4

= y−k3

.

So y−1 = y−k3 and p2
∣∣k3 − 1 which is a contradiction. 2

Lemma 4.6 If φ ∈ Aut(Γ2)1 , then φ(x2) ̸= xy .

Proof Suppose that φ(x2) = xy and let σ := ρ(xy)
−1φρx2 . One can see that σ◦φ−1 (1) = 1 , σ◦φ−1 (xy) = xy .

So by Corollary 4.4, σ = φ . Thus for every g ∈ G , we have φ
(
gx2

)
= φ (g)xy . Since φ (S2) = S2 , we have

φ (xy) ∈
{
x2, x3

}
. If φ (xy) = x3 , then φ2 ∈ Aut(Γ2)1 and φ2

(
x2

)
= x3 , which is in contradiction with Lemma

4.5. If φ (xy) = x2 , since φ2 = id , for every g ∈ G , φ (φ (g)xy) = φ2
(
gx2

)
= gx2 and φ (φ (g)xy) = gx2 .

Now by replacing φ (g) by g , we have φ (gxy) = φ (g)x2 . Therefore,

φ
(
yk

4
)
= φ

(
(xy)x−1

)
= φ

(
(xy)x2x2

)
= x2 (xy) (xy) = x4yk+1.

On the other hand, yk4

= (xy)
−1
x2x2x2 (xy)x−2 (xy) . Thus,

φ
(
yk

4
)
= x−2(xy)

3
x2(xy)

−1
x2 = x4yk

4+k3−k+1.

So x4yk
4+k3−k+1 = x4yk+1 and p2 | k4 + k3 − 2k . In this way,

p2
∣∣k5 + k4 − 2k2 → p2

∣∣(k2 − 1
) 2
.

Thus p
∣∣k2 − 1 which is a contradiction. So, the assertion is true.

2

Lemma 4.7 If φ ∈ Aut(Γ2)1 , then φ(x2) ̸= x4y−k4 .

Proof If φ(x2) = (xy)4 , then φ((xy)4) has two cases:

(I) φ((xy)4) = x3 , which leads to a contradiction by Lemma 4.5, due to φ2(x2) = x3 .
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(II) φ((xy)4) = x2 ; let σ := ρ(xy)−1φρx3 . One can show that σ ◦ φ (1) = 1 and σ ◦ φ
(
(xy)

−1
)
= (xy)

−1 .

Thus, by Corollary 4.4, we have σ = φ . Therefore, for every g ∈ G , φ
(
gx2

)
= φ (g) (xy)

−1 . Similarly
we have ρx2φρxy = φ . So for every g ∈ G , φ (gxy) = φ (g)x3 . Now we have

φ
(
yk

4
)
= φ

(
(xy)x−1

)
= φ

(
(xy)x2x2

)
= x3(xy)

−2
= xyk

2+k+1.

Furthermore, we have

φ
(
yk

4
)
= φ

(
(xy)

−1
x2x2x2 (xy)x−2 (xy)

)
=

x2(xy)
−3
x3 (xy)x3 = xy2k

3+k2

.

We conclude

p2 | 2k3 − k − 1
×k4

⇒ p2 |( k2 − 1)2

which is a contradiction.

2

Theorem 4.8 Aut(Γ2)1 ∼= id.

Proof The theorem now follows via Corollary 4.4 and Lemmas 4.5, 4.6 and 4.7. 2

Therefore, proof of the second part of main theorem can be seen by applying Theorem 4.2, 4.8, and
Lemmas 2.2 and 2.3.

5. Γ3 = Cay(G,S3)

Lemma 5.1 S3 is equivalent to {x2, x2y, x−2, (x2y)−1} .

Proof We know S3 = {x2yj , x2yj′ , (x2yj)−1, (x2yj
′
)−1} , where j ̸≡ j′(modp2) . Let f ∈ Aut(G) , such that

f(x) = xyi and f(y) = yd , where 0 ⩽ i < p2 and (d, p2) = 1 . We consider:

{
i = j

2 (k
4 − k3 + k2 − k + 1), if j is even;

i = p2+j
2 (k4 − k3 + k2 − k + 1), if j is odd.

and d = j′ − j . Therefore, (d, p) = 1 and this completes the proof. 2

From now on, we use this equivalent set for S3 . Clearly, G = ⟨S3⟩ .

Theorem 5.2 Aut(G,S3) ∼= Z2 .

Proof Suppose that f ∈ Aut(G,S3) . According to the proof of Lemma 2.4, we have two cases for f(x2) :

Case1. f(x2) = x2 .

Assuming that f(x) = xyi , where 0 ⩽ i < p2 , we have x2 = f(x2) = f(x)2 = xyixyi = x2yi(k+1) which
implies p2|i(k + 1) . As we have already shown p ∤ k + 1 , so p2|i . Thus, f(x) = x . On the other hand,
f(x2y) = x2y . Therefore, x2y = f(x2y) = f(x)2f(y) = x2f(y) which implies f(y) = y , so f = id .
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Case2. f(x2) = x2y .

By the first case, since (p, k + 1) = 1 , there exist integers r and i , such that i(k + 1) + rp2 = 1 . Thus,
p2|i(k + 1) − 1 . From this f(x2y) = x2 , we have x2yi(k+1)+j = x2 , for some integer j . Therefore,
p2|i(k + 1) + j which implies p2|i(k + 1) + j implies p2|j + 1 , where 0 ⩽ j < p2 . So, j = p2 − 1 . Thus

f(x) = xyk
4+k2+1 = (x2y)3 and f(y) = yp

2−1 . Hence, o(f) = 2 , and the result now follows.

2

Lemma 5.3 If φ ∈ Ag and one of the elements of D1(g) is fixed by φ , then φ fixes all the elements of D1(g) .

Proof g is the only common vertex between the two cycles of the length five, as in Figure 3.

(x2y)2g x2yg

(x2y)4g(x2y)3g

g

x2g

x3g xg

x4g

Figure 3. g is the only common vertex between these two cycles of length 5.

If φ(x2g) = x2g , then φ(xig) = xig for 1 ⩽ i ⩽ 4 . Since x3g ∈ D1 (g) and φ preserves distance, we
conclude that,

φ
(
x3g

)
∈ φ (D1 (g)) = D1 (φ (g)) = D1 (g) =

{
x2g, x3g, x2yg,

(
x2y

)−1
g
}

=
{
φ
(
x2g

)
, x3g, x2yg, x3y−k3

g
}

Since φ is one-to-one, so φ
(
x3g

)
∈

{
x3g, x2yg, x3y−k3

g
}

. On the other hand,
(
x4g, xg

)
is an edge, x4g ∈

D1

(
x2g

)
and xg ∈ D1

(
x3g

)
, so there exists a vertex in φ

(
D1

(
x2g

))
that is adjacent with a vertex in

φ
(
D1

(
x3g

))
. Now if φ

(
x3g

)
= x2yg or x3y−k3

g , these members do not exist. Thus φ
(
x3g

)
= x3g . Now x4g

and xg are only vertices D1

(
x2g

)
and D1

(
x3g

)
that are adjacent, so φ fixes them. Exactly similar to the

above,
if φ(x2yg) = x2yg , then φ((x2y)ig) = (x2y)ig , for 1 ⩽ i ⩽ 4 ,if φ(x3g) = x2g , then φ(xig) = x−ig for

1 ⩽ i ⩽ 4 and if φ(
(
x2y

)−1
g) = x2yg , then φ((x2y)ig) = (x2y)−ig , for 1 ⩽ i ⩽ 4 .

With this information, we consider two cases

Case 1. Suppose φ(x2g) = x2g . If φ(x2yg) = (x2y)4g , then since φ preserves distance:

ykg ∈ D2(xg) ∩D3((x
2y)4g) =⇒ φ(ykg) ∈ D2(xg) ∩D3(x

2yg).

On the other hand, D2(xg) ∩ D3(x
2yg) = {yk3

g, xy−kg}. If φ(ykg) = yk
3

g , then 1 = d(yk
3

g, x3g) =

d(ykg, x3g) > 1 which is a contradiction. And if, φ(ykg) = xy−kg , then 1 = d(xy−kg, x3g) =

d(ykg, x3g) > 1 which is impossible. So this case does not happen.
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Case 2. Suppose φ(x2yg) = x2yg . If φ(x2g) = x3g , then

ykg ∈ D2(xg) ∩D3((x
2y)4g) =⇒ φ(ykg) ∈ D2(x

4g) ∩D3((x
2y)4g)

Consequently, φ(ykg) ∈ {x4yk2

g, y−1g} . If φ(ykg) = x4yk
2

g , then 1 = d(x4yk
2

g, x2g) = d(ykg, x3g) > 1 ,
also, if φ(ykg) = y−1g , then 1 = d(y−1g, x2g) = d(ykg, x3g) > 1 . These contradictions show that this
case also will not happen.

2

Result 5.4 If φ ∈ Aut(Γ3)g and φ fixes an element of D1(g) , then φ = id .

Proof Similar to Corollary 3.4 ,it follows immediately from Lemma 5.3 and graph connectivity. 2

Lemma 5.5 If φ ∈ Aut(Γ3)g , then φ(x2g) ̸= x3g .

Proof Suppose that φ(x2g) = x3g and let σ := ρg−1xgφρg−1xg . Then σ ◦ φ (g) = g , σ ◦ φ
(
x2g

)
= x2g . So

by Corollary 5.4 and the fact that φ2 = id , we have:

σ ◦ φ = id⇒ σ = φ.

Thus for every g′ ∈ G , φ (g′x) = φ (g′)x4 . Now let ψ := ρg−1x2ygφρg−1x2yg , then ψ (g) = g , ψ
(
x2yg

)
=(

x2yg
)4 , ψ ◦ φ = id and for every g′ ∈ G , we have

φ
(
g′x2y

)
= φ (g′)

(
x2y

)4
= φ (g′)x3y−k3

.

Now we have
φ (y) = φ

(
x3

(
x2y

))
= x2x3y−k3

= y−k3

.

Since φ2 = id , we have φ
(
y−k3

)
= y . On the other hand,

φ
(
y−k3

)
= φ(y)

−k3

=
(
y−k3

)−k3

= yk.

Hence p2 |k − 1 which is impossible. 2

Lemma 5.6 If φ ∈ Aut(Γ3)1 such that φ(x2) = x2y and f ∈ Aut(G,S3) is not trivial then φ = f .

Proof We know, f(x) = xyk
4+k2+1, f(y) = yp

2−1 and f ◦ φ(x2) = x2 . Thus, by Corollary 5.4, f ◦ φ = id .
On the other hand, since order of f is 2 , f = φ . 2

Lemma 5.7 If φ ∈ Aut(Γ3)1 , then φ(x2) ̸= (x2y)4 .

Proof Otherwise, if φ(x2) = (x2y)4 , then f ◦ φ(x2) = x3 . But this is against of Lemma 5.5. 2

As an application of Theorem 5.2, we offer the following theorem.

Theorem 5.8 Aut(Γ3)1 ∼= Z2.

Proof The statement is true by Corollary 5.4 and Lemmas 5.5, 5.6, and 5.7 2

Therefore, by Theorems 5.2 and 5.8, and Lemmas 2.2, 2.3, the third part of main theorem is proved.
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