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Abstract: Our aim in this paper is to investigate graph automorphism and group automorphism determining all
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1. Introduction
There is an old definition of a graph attributed to Arthur Cayley, which is related to a group G, and a subset
S of G, not including the identity element 1. The Cayley graph Cay(G,S) is the graph with the vertex set
V(Cay(G,S)) = G and the edge set E(Cay(G,S)) = {(u,v)jvu"t € S}. We notice that the edge set can be
identified with set of ordered pairs {(g,sg)|g € G,s € S}. If S is closed under taking inverse, S = S~!, then
Cay(G,S) is an undirected graph. Obviously, the degree of each vertex is |S| and Cay(G,S) is connected if
and only if G = (S).

A graph T is called vertex-transitive or edge-transitive if the automorphism group Awut(T'), acts transi-
tively on vertex-set or edge-set of I', respectively. Now, let I' = Cay(G, 5).

For g € G, let p, : G — G given by py(x) = xg. By definition of Cayley graph, clearly p, € Aut(I").
The set p(G) = {py | g € G} forms a subgroup (isomorphic to G) of Aut(I'). In this way, I' is vertex-transitive
because p(G) < Aut(T"), acting right regularly on the vertices of T, while T" is not edge-transitive in general.

We employ the following notation and terminology. The notation G = K x H is used to indicate that
G is a semidirect product of K by H. We denote by Aut(G,S), the subgroup of Aut(G) consisting of all
o € Aut(G) such that o(S) = 5. It is easy to see that Aut(G,S) is a subgroup of the automorphisms group of
Cay(G,S). Z, denotes a cyclic group of order n, and S; denotes the symmetric group on four letters. The
distance of length i, between two vertices u and v, in a graph I' is the number of i edges in a shortest path
connecting them, denoted by d(u,v) =i. Let us introduce the D;(u) = {v € V(T') | d(u,v) = i}.

As far as the authors know, the concepts normal and normal edge transitive introduced by M.Y. Xu and
C.E. Praeger in [9] and [7], respectively for the first time. A Cayley graph I' = Cay(G, S) is called normal if
p(G) is a normal subgroup of Aut(I'), i.e. Ny r)(p(G)) = Aut(T'); and T' is called normal edge-transitive if
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Nyur(r)(p(GQ)) is transitive on the edges of I'. These concepts play an important role in the theory of Cayley
graphs.

Normal edge-transitive Cayley graphs on non-Abelian groups of order p?, 3p?, 4p? and modular groups
of order 8n, where p is prime and n is a natural number, were studied in [2, 5, 6, 8]. In this paper, motivated
by [2, 6], we determine the structure of Cayley graphs on non-Abelian groups of orders 5p? with cyclic Sylow
p-subgroup with respect to tetravalent sets with same-order elements, where p is a prime number. Some results
of normal edge-transitive Cayley graphs of PGL(2,p), p prime, and Frobenius groups are given in [4] and [1],
respectively.

We collect the main results in this paper into one theorem.

Theorem 1.1 (Main Theorem) Let G be a finite group of order 5p? with cyclic Sylow p-subgroup. There
exists exactly three tetravalent subsets S; of G, 1 <1 < 3, such that for each i, G = (S;), all elements of S;
are of order 5 and one of the following holds.

(1) S1 = {z,2vy, 27, (wy)~t}, and each element of Si has order 5; I' = Cay(G,S1) is normal, normal
edge-transitive and edge-transitive, but it is not arc-transitive. Aut(G,S1) = Zs and Aut(T') = p(G) xZs.

(2) Sy ={a? xy, 272, (wy)~ '}, and each element of So has order 5; I' = Cay(G, S2) is normal but it is not

normal edge-transitive and arc-transitive. Aut(G,Sz2) is trivial and Aut(T") = p(G).

(3) Sz = {2% 2%y, 272, (2%y)"1}, and each element of Ss3 has order 5; T = Cay(G,Ss) is normal, normal

edge transitive and edge transitive, but it is not arc-transitive; Aut(G,S1) = Zy and Aut(T) = p(G) X Zs.

The tetravalent nonnormal Cayley graphs of order 5p? is studied in Khazaei and Sharifi*.

2. Preliminary and some results

We review some facts whose proofs can be found in the literature. Here we keep fixed terminologies used in the

first section.

Lemma 2.1 (/3, Lemma 2.1] or [7]) For a Cayley graph T' = Cay(G,S), we have Ny (p(G)) = p(G)
Aut(G, S).

Therefore, I' is normal edge-transitive when p(G) x Aut(G,S) is transitive on the edge-set of T'.

The following lemma is essential in this paper.

Lemma 2.2 ([7, Proposition 1(c)]) Consider the Cayley graph T' = Cay(G,S). Then the following are

equivalent:
(i) T is normal edge-transitive;
(i) S=TUT™t, where T is an Aut(G,S)-orbit in G;

Moreover, p(G) x Aut(G,S) is transitive on the arcs of T if and only if Aut(G,S) is transitive on S.

*Khazaei S, Sharifi H. Tetravalent non-normal Cayley graphs of order 5p? (submitted).
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Lemma 2.3 ([9, Proposition 1.5]) The following are equivalent
(i) p(G) < A;

(ii) Aut(T') = p(G) x Aut(G, S);

(iii) A < Aut(G,S).

Let G be a finite group of order 5p%. By Sylow theorems we can see that if the Sylow p-subgroup of G
is cyclic then G is isomorphic to
(@ yla® =y =127 yw = y"),
where 1 <k <p?, ptk, ayz~! = yk4 and k° =1 (modp?).
By a simple computation we find o(z'y?) =5, for 1 <i <4, 0<j < p?.

Lemma 2.4 | Aut(G) |<p3(p—1).

Proof Suppose that f is an automorphism of G. Therefore, for the generators = and y of G, f(x)
and f(y) must be of order 5 and p?, respectively. In fact, f(x) € {2y’ | 1 < i <5, 0 < j < p?} and
fy) € {y7 | (4,p) = 1}. We claim that f(z) = 2y’, 0 < j < p*>. We shall prove this claim by the following
steps:

Step 1. f(x) # 2%y, 0 < j < p?.

Suppose that f(x) = 22y’ and f(y) = y7". On the other hand, z~'yz = y*. Thus, we have

FF) = fla yz) = f2) " fy) fz) = y a2y oy

s _ 7 . s -/ . s 2. 2 ./
=y e @y ey =y T (Y ey =y Ty Ty =yt

Moreover,

Therefore,

-/ 2./ .
Y=yt = p? | (K k) =0t | (K k).
Since ptk, we have p? | k — 1, contradicting 1 < k < p?. Thus, f(z) # z?y’ with 0 < j < p?.

Step 2. f(x) # 23y, 0 < j < p?.
Suppose that f(z) = 23y’ for some 0 < j < p? . Similar to the first step, we conclude p? | k(k% — 1),
since 1 < k < p?, p? | k? — 1. That is a contradiction because if p? | k? — 1 is true then there are three
cases. First, if p|k + 1 and plk — 1, then this is invalid because p is odd. Secondly, if p?|k + 1 then
p?=k+1,dueto 1 <k < p?. Besides, k> =1 (mode p?). Thus, we have: (p?> —1)° =1 (mode p?).
However, this implies —1 = 1 (mode p?), which is impossible. Third case i.e. p*|k — 1 does not occur

when 1 < k < p?.
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Step 3. f(z) # 2*y?, 0 < j < p?. Suppose that f(z) = z*y’ for some 0 < j < p?. Again, similar to the first
case, we have p? | k(k® — 1). In this way, p? | k> — 1, makes a contradiction because if p?|k® — 1 then
p?|k® — k%. Moreover, k> = 1 (mode p?). Thus, p? will divide k* — 1. However, in Step 2 we showed
that this does not happen.

Therefore, there are p? cases for the image of f on 2 and the image of f on y has ¢(p?) cases, where ¢ is
the Euler function. Hence, all states are totally p®(p — 1). This completes the proof. O
We are going to characterize the automorphism group of G. In the following lemma Z;z denotes the

multiplication group of the field of order p? with ¢(p?) elements.
Lemma 2.5 Aut(G) = Zy: X Z);.

Proof Let A= {fc Aut(G) | f(y) =y, f(x) = 37,0 < j < p?}. It is easy to see that A is a subgroup of
order p? of Aut(G). If f € A and g € Aut(G) with property f(y) =y, f(z) = zy? and g(y) = v, g(z) = 2,
then
9 9w =97 (FW) =97 (W) = v
Hence, g~ fg € A. Therefore A is a normal subgroup of Aut(G). Suppose f(z) = zy, f(y) =y, then f isan
element of order p? belonging A. Thus A = (f). We conclude that A = Z,.
Now, Let B = {f € Aut(Q) | f(z) =z, f(y) =y, 1 <i < p?, (i,p) = 1}. B is a subgroup of order o(p?)

such that intersection A and B is trivial. Obviously, B is isomorphic to Z; , and the result is now immediate.
O

We are interested in the Cayley graph I' = Cay(G,S) when |S| =4 , G = (S), and all elements of S
are of order 5.

The elements of S are of the form z'y/,0 < i < 4,0 < j < p?. Since G = (S) and inverse 3y’ and
x4yl are nyj/ and xyjl, respectively. We conclude that S = S; with i € {1,2,3}, where, if 2°y? € S then
(xiy?)~t € S, with the following description:

Sy = {ay? oy’ (xy?) 7L (2 )T G # 5 (mod p?);
So = {ay?,2%y7, (xy?) L, (227 )}, 5 # (k4 1) (mod p?);
Sy = {2y, (a2 "L 2%y (227 )Y, (G £ 5 (mod p?));

So our task is then to study all Cay(G,S;), 1 < i< 3.

N

3. Fl = Cay(G, 51)

We start with the following lemma.
Lemma 3.1 S; is equivalent to {z,xy,x~ 1, (zy)~'}.
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Proof We know Sy = {xy/, zy, (xy7) "1, (27 )~} where 0 < j,j' < p2, j £ j' (mod p?). Tt is sufficient to
let f(z) =zy/ and f(y) = y? ~7. Hence, f(xy) = xyly’ ~7 = 2yi | as wanted. O

From now on, we use this equivalent set for S;. Clearly, G = (S1).

Theorem 3.2 Aut(G,S;) X Zs.

Proof Obviously, Aut(G,S1) < S4. On the other hand, Aut(G,S;) does not have any element of order
3. Because, if 0 € Aut(G,S1) is of order 3, then ¢ will fix an element of S;. So, its inversion should also
be kept fix by o. Thus, two remaining elements of S; will be sent to each other by o. Therefore, o has a
transposition in its decomposition to disjoint cycles. Consequently, the order of ¢ is even. Moreover, Aut(G, S1)

can not contain an element of order 4. Because, if there is such an element, then one of the following two cases

1

happens; o1 = (z, 2y, 271, (vy)~1) or oo = (x,(zy) L, 27 2y). Assume that o(y) = y* with 0 < i < p.

For the first case, 7! = oy(zy) = o1(x)o1(y) = wyy®, where (i,p?) = 1. Therefore =2 = 3! which is
a contradiction. And, for the second case, 27! = oa((zy)™!) = ooy t2™!) = ooy 1)oa(x™!). Therefore

-2 1—ki

r 2=ty ey =y which is again a contradiction. Thus, Aut(G, S1) & Zs or Zy X Zy. By the proof of
Lemma 2.4, if o € Aut(G, S1), then o(x) =z or xy and o(xy) =z or xy. If o(x) = x then o(xy) = zy. Thus,
o(y) =y yields that o is trivial. If o(z) = zy then o(xy) = x. Therefore z = o(zy) = o(x)o(y) = zyo(y).
So, o(y) = y~!. Obviously, ¢ is an involution, and we are done.

O
Let A = Aut(T"), and suppose that A, is a stabilizer of g, when A acts on G. We have the following

useful lemma.
Lemma 3.3 If ¢ € A; and one of the elements of D1(g) is fixed by ¢, then ¢ fix all the elements of D1(g).

Proof Let C; = {g,2g,2%g,2%g,v*g} and Cy = {g,2yg, (xy)?g, (xy)3g, (vy)*g}. It is straightforward to

check that ¢ is the only common vertex between these two cycles C; and C5 of length 5, see Figure 1.
2 zg
/ '

zlg

z%g y)tg ——— (xy)’g

(z

/

3 \
z°g €T

vg —— (2)%g

Figure 1. g is the only common vertex between these two cycles C1 and C3 of length 5.

If p(zg) = zg then p(2'g) = z'g for 1 < i < 4. Because 2*g € D; (g9) and ¢ preserve distance, so we

have:

@ (*9) € 9 (D1(9)) = D1 (¢ (9)) = D1 (9) = {wg,a*g,ayg, (zy) g}
— {¢(@g),a"g.2y9, (ey) g}

Since ¢ is one-to-one, so ¢ (;v4g) € {x4g7myg, (a:y)flg}. On the other hand, (ng,x?’g) is an edge and

229 € Dy (xg), 2°g € Dy (x4g), so there exists a member of ¢ (D (zg)) that is adjacent with a member of
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© (D1 (x4g)). Now, if ¢ (z4g) = xyg or (:cy)_lg, these members do not exist. Thus ¢ (z4g) =2%g. 2%¢ and

x3g are only vertices of Dy (zg) and D, (w4g) that are adjacent, so ¢ will fix them. Similarly, If ¢(zyg) = 2yg,

then o((zy)ig) = (zy)ig for 1 <i < 4, also, if p(zg) = 2*g, then ¢(z'g) = v7%g for 1 <i < 4. Then we have

two cases for :

Case 1.

Case 2.

If o(zg) = g and ¢(zyg) = (zy)~'g, then since
zy~*g € D1 (2°g) = ¢ (D1 (2%9)),
we have

_ _ 2
¢ (vy"g) € {xg,x?’g,wy kg, ay" g} =

_ 2
{w(fcg),w (2°9) ,xy~*g,a%y" g}-
Furthermore, ¢ is one-to-one, thus we have
_ _ P 2
v (zy"g) € {xy b9, 2%y g}~
Now since y~*g is adjacent with zy~*g and ¢ preserves distance, so we have:
2
¢ (y"g) € Dy (zy~"g) U D, <x3yk g) =A

k

_ _ e 2 2 3 2
where A = {y Fg,atyTFg yT R g 2tyh g, 2yt g, atyt TR 9}-

On the other hand y~*g € D3 (zyg), so ¢ (y_kg) € ¢ (Ds(zyg)) = D3 ((xy)flg). Now since A N

D3 ((xy)_lg> = (). Consequently, this case is a contradiction.
If ¢ (xg) = 2*g and ¢ (zyg) = zyg, then let
0 = Pg=129 ©P O Pg—1gg-

Clearly poo(g) =g, oo (xg) =xg. 2°y*g € D1 (zg), so we have
4 3 4 3
¢ (z%y*g) € D1 (p(xg)) = D1 (z'g) = {gw?’g,y‘“ g, 2%y F g} = {s@(g) v (2%9) ¥ g, 28y F g}~

Since ¢ is one-to-one, so ¢ (z?y*g) € {yk4g, :Z:Sy’k3g}. Now if ¢ (z?y*g) = 23y~ g, then poo (zyg) =

(xy)flg, which is a contradiction by Case 1. Thus ¢ (a:kag) = yk4g. Clearly,

y*g € Dy (2*yFg) N Dy ((xy)Qg)
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So ¢ (y*g) € Dy (yk4g) N Dy ((xy)gg) , which is a contradiction.

Result 3.4 If ¢ € Aut(I'1), and ¢ fizes an element of D1(g), then ¢ =id.

Proof Since graph is connected, it suffices to show that for every integer 7 > 1, the statement:

/

g e€Di(g)=wv(g)=g

holds. By Lemma 3.3 the statement is true for ¢ = 1. Now assume that the statement is true for 1 < i < n,
and we will show that the statement holds for n+1. Let ¢’ € D,,+1 (g). Hence, there is a sequence of adjacent

vertices
/ / / / /
9=90:91 59 n-1-9n9 n+1

/

Clearly, g/,_1 € Dn_1(g9) and g, € D,(g). Therefore by hypothesis, @(gil_l) =g,_, and ¢ (g,) = g,
By applying Lemma 3.3 for g := g/, and the fact ¢ (g;_l) = g/,_;. We conclude that ¢ (9;1+1) = gy 41, OF
equivalently ¢ (¢') =¢’. O

Lemma 3.5 If ¢ € Aut(I'1), and ¢ (z) =z~ and let k > 1. Then
® (s?sgl...siksgk) = s sy s sy Tk

where s1,89 € {z,xy}, s1# s2 and 1< 4,5, <4 for 1 <1< k.

Proof Let o := pypp,. We have 0o p(l) =1 and oo p(z) = z. So, by Lemma 3.3, 0 o ¢ = id and

1

©? = id. Consequently, 0 = ¢ and ¢ = ¢ 1. Therefore for every g € G, we have ¢ (g) = ¢ (g9z)x, so

¢ (gz) = ¢ (g)x~*. On the other hand, similar to the above, pyy,¢p.y, = ¢. Thus for every g € G, we conclude
that ¢ (gzy) = ¢ (g) (xy)~". Since G = (z,zy), the proof is completed. O

Lemma 3.6 If ¢ € Aut(T'1)1, then ¢(x) # 27 1.

Proof Suppose that ¢(x) = 2~1. By previous lemma we have
o () = () e) = (o) e =y
On the other hand:
® (yk4) =@z (Sﬂy))k4 = (x’l (Jﬁy)*l)k4 = (:Byflzfl)k4 =y =y

So y~ ! = y‘k3 and p? ’k3 — 1 , which is a contradiction.

Lemma 3.7 If ¢ € Aut(T1)1, then p(x) # (zy)~'.
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Proof Suppose that ¢(z) = (zy)~!. If o is a non-trivial element of Aut(G,S;), then ooy € Aut(l';); and
oo @(z) =21, which is in contradiction with Lemma 3.6. O
Result 3.8 If ¢ € Aut(T'1)1 and ¢(z) = zy, then p = 0.

Proof According to the Corollary 3.4 and ¢ o o(zy) = xy, the corollary is established. O

Theorem 3.9 Aut(Fl)l = ZQ.

Proof The theorem now follows via Corollaries 3.4, 3.8 and Lemmas 3.6 and 3.7. O

Eventually, Theorems 3.2, 3.9 and Lemmas 2.2, 2.3, cover case(1) of the main theorem.

4. FQ = Cay(G, SQ)

Lemma 4.1 S, is equivalent to {x2, zy,x =2, (zy)~'}.

Proof We know that Sy = {xy?, 22y7", (xy?)~1, (#2y? )1}, where j' # j(k+1) (mod p?) and 0 < j,j < p?.
It is sufficient to set f € Aut(G) as follows, f(z) = xy® and f(y) = y”, where « is one of the following states

a:%k4—k3+k271€+1), if §' is even ;
o= p2;j (k* — k3 4+ k2 —k+1), ifj is odd.

and B =7 — «. O

From now on, we use this equivalent set for Sy. Clearly, G = (S2).

Theorem 4.2 Aut(G, Ss) is trivial.

Proof If f € Aut(G,Ss), then by proof of Lemma 2.4, we know f(z?) = 22 and f(zy) = 2y. On the other
hand, for some suitable i,j that 1 <i,j < p? and (j,p) = 1 we have f(z) = zy® and f(y) = y’. Therefore,
22 = f(2?) = f(x)? = zyley’ = 22y** V) | and hence p? | i(k + 1). Moreover, zy = f(zy) = zy'y’ = zy'7, so
p? |i+j—1. Clearly, (p,k+ 1) = 1; otherwise, for some integer r, we have k = rp — 1, and so, p? | k% — 1,
thus 1 = k®(mod p?) = 5rp — 1. Hence, p? | 5rp — 2, which is a contradiction. Therefore, p? | i. So, i = 0.

Now since, p? | i+ j — 1, thus p? | j — 1. Therefore, j = 1, and thus f is trivial. O

Lemma 4.3 If ¢ € A; and one of the elements of Da(g) is fized by ¢ then ¢ will fir all the elements of
Ds(g) -

Proof Since ¢(g) =g, s0 ¢p(D2(g)) = D2(g). On the other hand, g is the only common vertex between these

two cycles of length 5, as in Figure 2.
If p(ryg) = zyg, similar to Lemma 3.3, we conclude that ¢((xy)'g) = (zy)ig for 1 < i < 4 and if

o(z%g) = g, then ¢(2'g) = x'g for 1 <1 < 4. With this information, we consider two cases:
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4 33‘2

g g ———— (zy)’g
\ ) /
/ \

Ty ——— g (zy

)ty —— (zy)?yg

Figure 2. g is the only common vertex between these two cycles of length 5.

Case 1. If p(22g) = 2%g and contrary to the claim ¢(zyg) = (zy)*g, then we have y¥* kg e Dy (xg)N D2 ((2y)39);
since ¢ preserves distance, ap(yk2+kg) € D3(xg) N Da((zy)?g). So we have:

2
ey Tg) € {(zy)*g, 2y g} = {¢ (zyg) ,2y" g} .

Since ¢ is one-to-one, we have ¢ (yk2+kg) = zyhtlg.

So @(y* Thg) = zyttlg.

As before, since xy**t1g € D3(xg) N Da((2y)%g), we have
play**'g) € Dy(ag) N Da((ay)’g) = {ayg.y* ).
Clearly ¢(xy**t1g) # wyg. Therefore p(zy**lg) = y***+*g. On the other hand,
x?’yk“g =) (xyk+1g) A Dy ((afy)zg> .
But D, (yk2+kg) N Dy ((xy)3g> = () . This contradiction shows that this case will not happen.

Case 2. If ¢ (2?g) = g and contrary to the claim ¢(zyg) = zyg, putting o := py—1,4 © Y 0 py-1,,, then clearly
poo(g)=g, poo (ng) = 22g. So by previous case ¢ o o (vyg) = xryg. On the other hand, similar to

Lemma 3.3, ¢ (xzykg) € {:ﬂ3y’k3g,yk4g}. If (xzykg) = x?’y’ksg, then ¢ oo (zyg) = (:cy)flg, which

is impossible regarding to Case 1. So ¢ (x2ykg) = yk4g. On the other hand,

2
y* kg € Dy (v*y*g) N Dy ((wy)3g> :

Thus we have
2 4
@ (y’“ *’“g) € D, (y’“ g) N D, ((xy)39> 7

which is a contradiction.

Result 4.4 If ¢ € Aut(T'2), and ¢ fized an element of Da(g), then ¢ = id.
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Proof Similar to Corollary 3.4, it follows immediately from Lemma 4.3 and graph connectivity. O

Lemma 4.5 If ¢ € Aut(T')1, then p(a?) # x3.

Proof On the contrary let ¢(2?) = 2®. By Corollary 4.4, ¢ (zy) = (xy)4. It is easy to see that the conditions
of Lemma 3.5 are established; so we have

¢ (y'“4> = ¢ ((zy)2?a?) = (zy) o 2r =y o la =y

On the other hand,

I 4 k* 13
(zy~t27 ) :<yk) =y
So y~ = y*k3 and p? |k:3 — 1 which is a contradiction. O

Lemma 4.6 If ¢ € Aut(T'y)1, then p(x?) # xy.

Proof Suppose that p(z?) = zy and let o := p Lppy2. One can see that oo™t (1) =1, cop™! (zy) = zy.

zy)

So by Corollary 4.4, o = ¢. Thus for every g € G, we have ¢ (gx2) = p(g)zy. Since ¢ (S2) = Sy, we have

o (wy) € {22, 2%} If p (zy) = 27, then ¢? € Aut(I';); and ¢? (2?) = 2®, which is in contradiction with Lemma

2

4.5. If ¢ (zy) = a?, since ¢? = id, for every g € G, ¢ (p(g9)xy) = ¢? (92%) = ga? and ¢ (¢ (g9) vy) = gz?.

Now by replacing ¢ (g) by g, we have ¢ (gzy) = ¢ (9) 2%. Therefore,
e (1) = ¢ () ™) = ¢ ((ay) 2%2?) = 2* (ay) (wy) = *y* 1,
On the other hand, y** = (a:y)_lexQxQ (vy) 22 (xy). Thus,
o () = a2 (wy) 0P (o)t = atyH R
So adyF TR =kl = pdyktl and p? | k4 4+ k3 — 2k. In this way,
PPIRS + K =2k = p? (K2 —1) %,

Thus p |k2 — 1 which is a contradiction. So, the assertion is true.

Lemma 4.7 If ¢ € Aut(Ts)1, then o(a?) # aty=F" .
Proof If p(2?) = (zy)?*, then ¢((xy)*) has two cases:

(1) ¢((zy)*) = 2, which leads to a contradiction by Lemma 4.5, due to ¢?(2?) = z3.
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(1) o((zy)*) = 2%; let o := P(ay)-1#PPz2 - One can show that oo (1) =1 and gop ((a:y)_l) = (zy)"".

Thus, by Corollary 4.4, we have o = ¢. Therefore, for every g € G, ¢ (gxz) = (9) (:Uy)fl. Similarly
we have p,2¢p., = ¢. So for every g € G, ¢ (gzy) = ¢ (g) 2*. Now we have

o () = o (@) ™) = o ((e9) %) = () > = g5+,

Furthermore, we have
4 — —
¢ () = ¢ ((@y) " a%%? (wy) a2 (ay)) =
2 (xy)"2® (ay) 2® = ay? T
We conclude
20013 1. 1 %Xk' 2,52 2
p° |2k —k—1= p°|(k* —1)

which is a contradiction.

Theorem 4.8 Aut(I'); = id.

Proof The theorem now follows via Corollary 4.4 and Lemmas 4.5, 4.6 and 4.7. O

Therefore, proof of the second part of main theorem can be seen by applying Theorem 4.2, 4.8, and
Lemmas 2.2 and 2.3.

5. F3 = an(G, Sg)
Lemma 5.1 S; is equivalent to {z?, 2%y, =2, (2%y)~'}.

Proof We know S5 = {nyj,xzyj/, (2y7) 1, (xzyj/)*l}, where j # j'(modp?). Let f € Aut(G), such that
f(z) =2y’ and f(y) = y?, where 0 < i < p? and (d,p?) = 1. We consider:

i %(k4—k3+k27k‘+1), if j is even;
i p22+j(k4 —k3+ k% —k+1), ifjisodd.

and d = j' — j. Therefore, (d,p) =1 and this completes the proof. O

From now on, we use this equivalent set for S3. Clearly, G = (S3).

Theorem 5.2 Aut(G, S3) = Z,.
Proof Suppose that f € Aut(G,S3). According to the proof of Lemma 2.4, we have two cases for f(x?):

Casel. f(z?%) = 22.

Assuming that f(z) = zy’, where 0 <4 < p?, we have 22 = f(2?) = f(z)? = zy’zy’ = 2%¢y***1D which
implies p?|i(k + 1). As we have already shown p{k + 1, so p?|i. Thus, f(x) = . On the other hand,
f(x%y) = 22y. Therefore, 2%y = f(z%y) = f(x)%f(y) = 2% f(y) which implies f(y) =y, so f = id.
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Case2. f(2?) = 22y.
By the first case, since (p,k + 1) = 1, there exist integers 7 and i, such that i(k + 1) 4+ rp? = 1. Thus,
p?li(k + 1) — 1. From this f(x?y) = 22, we have 22y'*+D+i = 22 for some integer j. Therefore,
p?li(k 4+ 1) + j which implies p?|i(k + 1) + j implies p?|j + 1, where 0 < j < p?. So, j = p?> — 1. Thus
flx) = xyk4+k2+1 = (2%y)® and f(y) = ypg’l. Hence, o(f) = 2, and the result now follows.

O

Lemma 5.3 If ¢ € A, and one of the elements of D1(g) is fizred by ¢, then ¢ fizes all the elements of D1(g) .

Proof g is the only common vertex between the two cycles of the length five, as in Figure 3.

(z%y)?g —— x%yg a?g ———— a'yg
)
(z%y)’9 —— (2%y)*g adg ————— 29

Figure 3. g is the only common vertex between these two cycles of length 5.

If p(22g) = x2g, then p(z'g) = x'g for 1 < i < 4. Since 23g € D; (g) and ¢ preserves distance, we

conclude that,
¢ (2°g9) €9 (D1(9)) = Di(p(9) =Di(g) = {x297x3gyx2y97 (xzy)_lg}
= {90 (z%9) 7x397x2y97x3y’k39}

Since ¢ is one-to-one, so ¢ (23g) € {xgg,ﬁyg,xgy*ksg}. On the other hand, (z%g,zg) is an edge, z'g €
Dy (2?g) and xzg € D (2%g), so there exists a vertex in ¢ (D; (z%g)) that is adjacent with a vertex in
© (D1 (x?’g)) . Now if ¢ (x3g) = 22yg or x?’y_kgg, these members do not exist. Thus ¢ (m3g) =23g. Now zg
and xg are only vertices D, (ng) and Dy (:cgg) that are adjacent, so ¢ fixes them. Exactly similar to the

above,
if p(z?yg) = x?yg, then o((z%y)'g) = (2%y)'g, for 1 < i < 4 jif p(z®g) = g, then p(z'g) = "¢ for

1<i<4andif o((2%y)  g) = 22yg, then p((z%)'g) = (¢%y) g, for 1 <i< 4.

With this information, we consider two cases
Case 1. Suppose p(22g) = 2%g. If p(2?yg) = (2%y)*g, then since ¢ preserves distance:
y*g € Da(zg) N D3((2%y)"g) = ¢(y"g) € Da(xg) N D3(z’yg).
On the other hand, Do(zg) N D3(z2yg) = {ykgg,xyfkg}. If p(ykg) = yksg, then 1 = d(yksg,x3g) =

d(y*g,2%g) > 1 which is a contradiction. And if, p(y*g) = zy~Fg, then 1 = d(zy~*g,2%g9) =
d(y*g,r3g) > 1 which is impossible. So this case does not happen.
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Case 2. Suppose p(22yg) = 2%yg. If p(x2g) = 23g, then
y"g € Da(zg) N D3((2%y)'g) = ¢(y*g) € Da(2"g) N D3((z*y)"9)

2 2 2
Consequently, p(y*g) € {z*y* g.y~'g}. If (y*g) = 2'y" g, then 1 = d(z*y* g,2°g) = d(y*g,2°g) > 1,
also, if p(y*g) = y~'g, then 1 = d(y~'g,2%g) = d(y*g,2%g) > 1. These contradictions show that this

case also will not happen.

Result 5.4 If ¢ € Aut(l's), and ¢ fizes an element of D1(g), then ¢ =id.

Proof Similar to Corollary 3.4 ,it follows immediately from Lemma 5.3 and graph connectivity. O

Lemma 5.5 If p € Aut(T's),, then o(z%g) # 23g.
Proof Suppose that ¢(z?g) = 2%g and let 0 := py-1,49p4-145. Then oo (g) =g, 0o (x?g) = zg. So
by Corollary 5.4 and the fact that ¢? = id, we have:

cop=1id=0=0p.

4

Thus for every ¢’ € G, ¢ (g'z) = ¢(¢')z*. Now let ¢ := py-1,2,0p,-14249, then ¥ (g) = g, ¥ (z?yg) =

($2y9)4, 1 o @ =id and for every ¢’ € G, we have
o (g'2%y) = ¢ (g) (%) = ¢ (g) 2%y

Now we have

2 k3 —K3

o (y) = (2 (z%y)) =22y ™" =y

Since ? = id, we have ¢ (y*kg) =y . On the other hand,

3 3 )k
sa(y’“):w(y)k:(y’“> =y~
Hence p? |k — 1 which is impossible. O
Lemma 5.6 If p € Aut(T'3); such that p(z?) = 2%y and f € Aut(G, S3) is not trivial then ¢ = f.

Proof We know, f(z) = zy* *F+1 f(y) = y?"~1 and f o (2?) = 22. Thus, by Corollary 5.4, fo ¢ = id.
On the other hand, since order of f is 2, f = . O

Lemma 5.7 If ¢ € Aut(T'3)1, then ¢(2?) # (2y)*.

Proof Otherwise, if ¢(2?) = (22y)*, then f o @(2?) = 2. But this is against of Lemma 5.5. O

As an application of Theorem 5.2, we offer the following theorem.

Theorem 5.8 Aut(I's); = Zo.

Proof The statement is true by Corollary 5.4 and Lemmas 5.5, 5.6, and 5.7 O

Therefore, by Theorems 5.2 and 5.8, and Lemmas 2.2, 2.3, the third part of main theorem is proved.
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