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Abstract: K -frames are strong tools for the reconstruction of elements from range of a bounded linear operator K on a
separable Hilbert space H . In this paper, we study some properties of K -frames and introduce the K -frame multipliers.
We also focus on representing elements from the range of K by K -frame multipliers.
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1. Introduction, notation, and motivation

For the first time, frames in Hilbert space were offered by Duffin and Schaeffer in 1952 and were brought to
life by Daubechies et al. [18]. A frame allows each element in the underlying space to be written as a linear
combination of the frame elements, but linear independence between the frame elements is not required. This
fact has a key role in applications such as signal processing, image processing, coding theory, and more. For more
details and applications of ordinary frames see [2, 3, 7–16, 20]. K -frames which have recently been introduced
by Gǎvruţa are a generalization of frames, in the meaning that the lower frame bound only holds for range of
a linear and bounded operator K in a Hilbert space [19].

A sequence m := {mi}i∈I of complex scalars is called seminormalized if there exist constants a and b

such that 0 < a ≤ |mi| ≤ b <∞ , for all i ∈ I . For two sequences Φ := {φi}i∈I and Ψ := {ψi}i∈I in a Hilbert
space H and a sequence m of complex scalars, the operator Mm,Φ,Ψ : H → H given by

Mm,Φ,Ψf =
∑
i∈I

mi⟨f, ψi⟩φi, (f ∈ H)

is called a multiplier. The sequence m is called the symbol. If Φ and Ψ are Bessel sequences for H and
m ∈ ℓ∞ , then Mm,Φ,Ψ is well-defined, M∗

m,Φ,Ψ = Mm,Ψ,Φ and ∥Mm,Φ,Ψ∥ ≤
√
BΦBΨ∥m∥∞ where BΦ and BΨ

are Bessel bounds of Φ and Ψ , respectively [4]. Frame multipliers have many applications in psychoacoustical
modeling and denoising [6, 24]. Moreover, several generalizations of multipliers are proposed [5, 21, 22].

It is important to detect the inverse of a multiplier if it exists [8, 23]. Our aim is to introduce K -frame
multipliers and apply them to reconstruct elements from the range of K .

Throughout this paper, we suppose that H is a separable Hilbert space, I a countable index set, and
IH the identity operator on H . For two Hilbert spaces H1 and H2 we denote by B(H1,H2) the collection of
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all bounded linear operators between H1 and H2 , and we abbreviate B(H,H) by B(H) . The range and null
spaces of K ∈ B(H) is denoted by R(K) and N(U) , respectively. Moreover, πV is the orthogonal projection
of H onto a closed subspace V ⊆ H . The pseudo-inverse of operator U ∈ B(H1,H2) is a bounded operator in
B(H2,H1) and denoted by U† such that [16]

UU†U = U, R(U†) = N(U)⊥, N(U†) = R(U)⊥.

We end this section by the following proposition.

Proposition 1.1 [19] Let L1 ∈ B(H1,H) and L2 ∈ B(H2,H) be two bounded operators. The following
statements are equivalent:

1. R(L1) ⊆ R(L2) .

2. L1L
∗
1 ≤ λ2L2L

∗
2 for some λ ≥ 0 .

3. there exists a bounded operator X ∈ B(H1,H2) so that L1 = L2X .

2. K -frames
Let H be a separable Hilbert space, a sequence F := {fi}i∈I ⊆ H is called a K -frame for H , if there exist
constants A,B > 0 such that

A∥K∗f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2, (f ∈ H). (2.1)

Clearly if K = IH , then F is an ordinary frame. The constants A and B in (2.1) are called
lower and upper bounds of F , respectively. The Bessel sequence {fi}i∈I is called A-tight, if A∥K∗f∥2 =∑

i∈I |⟨f, fi⟩|2 . Moreover, if ∥K∗f∥2 =
∑

i∈I |⟨f, fi⟩|2 we call F a Parseval K -frame. Obviously every K -frame
is a Bessel sequence; hence, similar to ordinary frames the synthesis operator can be defined as TF : l2 → H ;
TF ({ci}i∈I) =

∑
i∈I cifi . It is a bounded operator and its adjoint which is called the analysis operator given

by T ∗
F (f) = {⟨f, fi⟩}i∈I . Finally, the frame operator is given by SF : H → H ; SF f = TFT

∗
F f =

∑
i∈I⟨f, fi⟩fi .

Many properties of ordinary frames do not hold for K-frames, for example, the frame operator of a K-frame
is not invertible in general. It is worthwhile to mention that if K has close range then SF from R(K) onto
SF (R(K)) is an invertible operator [25]. In particular,

B−1∥f∥ ≤ ∥S−1
F f∥ ≤ A−1∥K†∥2∥f∥, (f ∈ SF (R(K))), (2.2)

where K† is the pseudoinverse of K . For further information in K -frames refer to [1, 19, 25]. Suppose {fi}i∈I

is a Bessel sequence. Define K : H → H by Kei = fi for all i ∈ I where {ei}i∈I is an orthonormal basis
of H . By using [16, Lemma 3.3.6] K has a unique extension to a bounded operator on H , so {fi}i∈I is a
K -frame for H by Corollary 3.7 of [25]. Thus, every Bessel sequence is a K -frame for some bounded operator
K . Moreover, every frame sequence {fi}i∈I can be considered as a K -frame. In fact, let {fi}i∈I be a frame
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sequence with bounds A and B , respectively and K = πH0 , where H0 = spani∈I{fi} , then for every f ∈ H

A∥K∗f∥2 ≤
∑
i∈I

|⟨K∗f, fi⟩|2

=
∑
i∈I

|⟨f, πH0
fi⟩|2

=
∑
i∈I

|⟨f, fi⟩|2 ≤ B∥f∥2.

In the following proposition we study K -frames with respect to their synthesis operator. The proof is similar
in spirit to that of [19, Theorem 4].

Proposition 2.1 A sequence F = {fi}i∈I is a K -frame if and only if

TF : ℓ2 → R(TF ); {ci}i∈I 7→
∑
i∈I

cifi,

is a well-defined operator and R(K) ⊆ R(TF ) .

Proof First, suppose that F is a K -frame. Then TF is well defined and bounded by [16, Theorem 5.4.1].
Moreover, the lower K -frame condition follows that

A⟨KK∗f, f⟩ = A∥K∗f∥2

≤ ∥T ∗
F f∥2 = ⟨TFT ∗

F f, f⟩.

Applying Proposition 1.1 yields

R(K) ⊆ R(TF ).

For the opposite direction, suppose that TF is a well-defined operator from ℓ2 to R(TF ) . Then [16, Lemma
3.1.1 ] shows that F is a Bessel sequence. Assume that T †

F : R(TF ) → ℓ2 is the pseudoinverse of TF . Since
R(K) ⊆ R(TF ) , for every f ∈ H we obtain

Kf = TFT
†
FKf.

This follows that

∥K∗f∥4 = |⟨K∗f,K∗f⟩|2

=
∣∣∣⟨K∗(T †

F )
∗T ∗

F f,K
∗f
⟩∣∣∣2

≤ ∥K∗∥2∥T †
F ∥

2∥T ∗
F f∥2∥K∗f∥2.

Hence,

1

∥T †
F ∥2∥K∥2

∥K∗f∥2 ≤
∑
i∈I

|⟨f, fi⟩|2.

2
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Definition 2.2 Let {fi}i∈I be a Bessel sequence. A Bessel sequence {gi}i∈I ⊆ H is called a K -dual of {fi}i∈I

if

Kf =
∑
i∈I

⟨f, gi⟩πR(K)fi, (f ∈ H). (2.3)

An approach to the K -duals of a K -frame can be found in [1]. Notice that K -duals of [1] satisfy (2.3). In
addition, the K -duals introduced by (2.3) covers a larger class than the K -duals of [1].

Lemma 2.3 [1] If G := {gi}i∈I is a K -dual of a Bessel sequence F := {fi}i∈I in H with Bessel bounds BF

and BG , respectively. Then {gi}i∈I is a K∗ -frame with lower bound B−1
F and

{
πR(K)fi

}
i∈I

is a K -frame for

H with bounds B−1
G and BF , respectively.

Using (2.3) and the similar argument in [1, Proposition 2.3] we can represent a K -dual for every K -frame.

Proposition 2.4 Let K ∈ B(H) have closed range and F = {fi}i∈I be a K -frame with bounds A and B , re-
spectively. Then

{
K∗(SF |R(K))

−1πSF (R(K))fi
}
i∈I

is a K -dual of F with the bounds B−1 and BA−1∥K∥2∥K†∥2 ,
respectively.

Proof First note that SF |R(K) : R(K) → SF (R(K)) is invertible by (2.2). It follows that
{
K∗(SF |R(K))

−1πSF (R(K))fi
}
i∈I

is a Bessel sequence. Moreover,

⟨
SF |R(K)f, g

⟩
=

⟨∑
i∈I

⟨
πR(K)f, fi

⟩
fi, g

⟩

=

⟨
f,
∑
i∈I

⟨g, fi⟩πR(K)fi

⟩
,

for all f ∈ R(K) and g ∈ SF (R(K)) . Thus,

(SF |R(K))
∗g =

∑
i∈I

⟨g, fi⟩πR(K)fi. (2.4)

Thus,

Kf = (SF |R(K))
−1SF |R(K) Kf

= (SF |R(K))
∗ ((SF |R(K))

−1
)∗
Kf

=
∑
i∈I

⟨(
(SF |R(K))

−1
)∗
Kf, fi

⟩
πR(K)fi

=
∑
i∈I

⟨
f,K∗(SF |R(K))

−1πSF (R(K))fi
⟩
πR(K)fi,

for all f ∈ H . Thus,
{
K∗(SF |R(K))

−1πSF (R(K))fi
}
i∈I

is a K -dual of F and with the lower bound of B−1 ,
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by the last lemma. On the other hand, by using (2.2) we have

∑
i∈I

∣∣⟨f,K∗(SF |R(K))
−1πSF (R(K))fi

⟩∣∣2 ≤ B
∥∥∥((SF |R(K))

−1
)∗
Kf
∥∥∥2

≤ B
∥∥(SF |R(K))

−1
∥∥2 ∥Kf∥2

≤ BA−1
∥∥K†∥∥2 ∥K∥2∥f∥2;

for all f ∈ H . This completes the proof. 2

The K -dual
{
K∗(SF |R(K))

−1πSF (R(K))fi
}
i∈I

of F = {fi}i∈I , introduced in the above proposition, is called

the canonical K -dual of F and represented by F̃ for brevity.
The relation between discrete frame bounds and its canonical dual bounds does not hold for K -frames,

see the following example.

Example 2.5 Let F =
{
(−1√

2
, 1√

2
), (−1√

2
, 1√

2
), ( 1√

2
, 1√

2
)
}

in H = C2 and K be the orthogonal projection onto

the subspace spanned by e1 , where {e1, e2} is the orthonormal basis of C2 . For all f = (a, b) ∈ C2 we obtain

1∥K∗f∥2 ≤
3∑

i=1

|⟨f, fi⟩|2 =
3

2
(a2 + b2)− ab ≤ 2∥f∥2.

One can see that SF (R(K)) = span( 32 ,
−1
2 ) . Hence,

F̃ =

{
(
−4

5
√
2
, 0), (

2

5
√
2
, 0), (

−4

5
√
2
, 0)

}
.

Therefore,
3∑

i=1

∣∣∣⟨f, f̃i⟩∣∣∣2 =
36

50
∥Kf∥2.

In discrete frames, every frame and its canonical dual are dual of each other. However, it is not true for K -
frames in general. In Example 2.5, we obtain SF̃ |R(K∗)= span( 3650 , 0) . It requires easy computations to see
that

K(SF̃ |R(K∗))
−1πSF̃ (R(K∗))(

1√
2
,
1√
2
) = (

502

362
√
2
, 0) ̸= (

1√
2
,
1√
2
).

Proposition 2.6 Let K ∈ B(H) have closed range and F = {fi}i∈I be a K -frame. Then
{
K∗πR(K)fi

}
i∈I

is

a K -dual for
{
(SF |R(K))

−1πSF (R(K))fi
}
i∈I

.

Proof Applying (2.3) we have

K∗f =
∑
i∈I

⟨f, πR(K)fi⟩f̃i,
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for all f ∈ H . On the other hand, KK† is a projection on R(K) . Thus,

Kf = πR(K)(K
†)∗K∗Kf

=
∑
i∈I

⟨
Kf, πR(K)fi

⟩
πR(K)(K

†)∗f̃i

=
∑
i∈I

⟨
Kf, πR(K)fi

⟩
πR(K)(SF |R(K))

−1πSF (R(K))fi.

for all f ∈ H . 2

Theorem 2.7 Let F = {fi}i∈I be a K -frame and
∑

i∈I

⟨
f, f̃i

⟩
fi has a representation

∑
i∈I cifi for some

coefficients {ci}i∈I , where f ∈ H . Then

∑
i∈I

|ci|2 =
∑
i∈I

|⟨f, f̃i⟩|2 +
∑
i∈I

|ci − ⟨f, f̃i⟩|2.

Proof First we claim that K∗(SF |R(K))
−1πSF (R(K))SF

(
(SF |R(K))

−1
)∗
K is the frame operator of the canon-

ical K -dual of F . Indeed,

SF̃ f =
∑
i∈I

⟨
f, f̃i

⟩
f̃i

=
∑
i∈I

⟨
f,K∗(SF |R(K))

−1πSF (R(K))fi
⟩
K∗(SF |R(K))

−1πSF (R(K))fi

= K∗(SF |R(K))
−1πSF (R(K))

∑
i∈I

⟨(
(SF |R(K))

−1
)∗
Kf, fi

⟩
fi

= K∗(SF |R(K))
−1πSF (R(K))SF

(
(SF |R(K))

−1
)∗
K, (f ∈ H)

Moreover,

∑
i∈I

∣∣∣⟨f, f̃i⟩∣∣∣2 =
⟨
SF̃ f, f

⟩
=

⟨
K∗(SF |R(K))

−1πSF (R(K))SF

(
(SF |R(K))

−1
)∗
Kf, f

⟩
.

Using the assumption we have

∑
i∈I

cifi =
∑
i∈I

⟨
f, f̃i

⟩
fi

=
∑
i∈I

⟨
f,K∗(SF |R(K))

−1πSF (R(K))fi
⟩
fi

= SF

(
(SF |R(K))

−1
)∗
Kf.
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Thus,

⟨∑
i∈I

cifi,
(
(SF |R(K))

−1
)∗
Kf

⟩
=

⟨
SF

(
(SF |R(K))

−1
)∗
Kf,

(
(SF |R(K))

−1
)∗
Kf
⟩

=
⟨
K∗(SF |R(K))

−1πSF (R(K))

(
(SF |R(K))

−1
)∗
Kf, f

⟩
=

⟨
SF̃ f, f

⟩
.

Similarly,

⟨(
(SF |R(K))

−1
)∗
Kf,

∑
i∈I

cifi

⟩
=
⟨
SF̃ f, f

⟩
.

This follows that

∑
i∈I

∣∣∣ci − ⟨f, f̃i⟩∣∣∣2 =
∑
i∈I

∣∣∣ci − ⟨((SF |R(K))
−1
)∗
Kf, fi

⟩∣∣∣2
=

∑
i∈I

|ci|2 −
∑
i∈I

ci

⟨
fi,
(
(SF |R(K))

−1
)∗
Kf
⟩

−
∑
i∈I

ci

⟨(
(SF |R(K))

−1
)∗
Kf, fi

⟩
+
∑
i∈I

∣∣∣⟨((SF |R(K))
−1
)∗
Kf, fi

⟩∣∣∣2
=

∑
i∈I

|ci|2 −
∑
i∈I

ci

⟨
fi,
(
(SF |R(K))

−1
)∗
Kf
⟩

−
∑
i∈I

ci

⟨(
(SF |R(K))

−1
)∗
Kf, fi

⟩
+
⟨
SF̃ f, f

⟩
=

∑
i∈I

|ci|2 − 2
⟨
K∗(SF |R(K))

−1πSF (R(K))SF

(
(SF |R(K))

−1
)∗
Kf, f

⟩
+
∑
i∈I

∣∣∣⟨f, f̃i⟩∣∣∣2
=

∑
i∈I

|ci|2 −
∑
i∈I

∣∣∣⟨f, f̃i⟩∣∣∣2 .
2

As a consequence of [16, Theorem 2.5.3] we obtain the following result.

Corollary 2.8 Let {fi}i∈I be a K -frame with the synthesis operator TF : ℓ2 → H . Then for every f ∈ H we
have

T †
F (SF

(
(SF |R(K))

−1
)∗
Kf) = {⟨f, f̃i⟩}i∈I ,

where T †
F is the pseudoinverse of TF .
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3. K -frame multiplier

In this section, we introduce the notion of multiplier for K -frames, when K ∈ B(H) . Many properties of
ordinary frame multipliers may not hold for K -frame multipliers. Similar differences can be observed between
frames and K -frames, see [25].

Definition 3.1 Let Φ = {φi}i∈I and Ψ = {ψi}i∈I be two Bessel sequences and let the symbol m = {mi}i∈I ∈
ℓ∞ . An operator R : H → H is called a K -right inverse of Mm,Φ,Ψ if

Mm,Φ,ΨRf = Kf, (f ∈ H),

and L : H → H is called a K-left inverse of Mm,Φ,Ψ if

LMm,Φ,Ψf = Kf, (f ∈ H).

Moreover, a K -inverse is a mapping in B(H) that is both a K -left and a K -right inverse.

By using Proposition 1.1, we give some sufficient and necessary conditions for the K -right invertibility
of multipliers. Moreover, similar to ordinary frames, the K -dual systems are investigated by K -right inverse
(resp. K -left inverse) of K -frame multipliers.

Proposition 3.2 Let Φ = {φi}i∈I and Ψ = {ψi}i∈I be two Bessel sequences and m ∈ ℓ∞ . The following
statements are equivalent:

1. R(K) ⊂ R(Mm,Φ,Ψ) .

2. KK∗ ≤ λ2Mm,Φ,ΨM∗
m,Φ,Ψ for some λ ≥ 0 .

3. Mm,Φ,Ψ has a K -right inverse.

Now, we can show that a K -dual of a K -frame fulfills the lower frame condition.

Lemma 3.3 Let Φ = {φi}i∈I and Ψ = {ψi}i∈I be two Bessel sequences and m ∈ ℓ∞ .

1. If Mm,Φ,Ψ = K , then Φ and Ψ are K - frame and K∗ -frame, respectively. In particular, if M1,Φ,Ψ = K ,
then Ψ is a K -dual of Φ .

2. If Mm,Φ,Ψ has a K -right (resp. K -left) inverse, then Φ (resp. Ψ) is K -frame (resp. K∗ -frame).

Proof (1) Let Mm,Φ,Ψ = K . Then

∥K∗f∥4 = |⟨Mm,Φ,ΨK
∗f, f⟩|2

=

∣∣∣∣∣∑
i∈I

mi ⟨K∗f, ψi⟩ ⟨φi, f⟩

∣∣∣∣∣
2

≤ sup
i∈I

|mi|∥K∗f∥2BΨ

∑
i∈I

|⟨φi, f⟩|2 ,
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for every f ∈ H . Therefore, Φ is K -frame. Similarly, Ψ is a K∗ -frame. In fact,

∥Kf∥4 =
∣∣⟨M∗

m,Φ,ΨKf, f
⟩∣∣2

=

∣∣∣∣∣∑
i∈I

mi⟨Kf,φi⟩⟨ψi, f⟩

∣∣∣∣∣
2

≤ sup
i∈I

|mi|∥Kf∥2BΦ

∑
i∈I

|⟨ψi, f⟩|2 .

In particular,

Kf =
∑
i∈I

⟨f, ψi⟩φi

=
∑
i∈I

⟨f, ψi⟩πR(K)φi.

(2) Let R be a K -right inverse of Mm,Φ,Ψ . Then

∥K∗f∥2 = ∥R∗M∗
m,Φ,Ψf∥2

= ∥R∗Mm,Ψ,Φf∥2

≤ ∥R∗∥2
∥∥∥∥∥∑
i∈I

mi⟨f, φi⟩ψi

∥∥∥∥∥
2

≤ sup
i∈I

|mi| ∥R∥2BΨ

∑
i∈I

|⟨f, φi⟩|2;

The other case is similar. 2

In what follows, we discuss K -left and K -right invertibility of a multiplier.

Theorem 3.4 Let Φ = {φi}i∈I and Ψ = {ψi}i∈I be two Bessel sequences. Moreover, let L (resp. R) be a
K -left (resp. K -right) inverse of M1,πR(K)Φ,Ψ (resp. M1,Φ,πR(K∗)Ψ ). Then LK (resp. KR) is in the form of
multipliers.

Proof It is obvious to check that LΦ is a Bessel sequence. Moreover, note that Ψ is a K -dual of LπR(K)Φ .
Indeed,

Kf = LM1,πR(K)Φ,Ψf

=
∑
i∈I

⟨f, ψi⟩ LπR(K)φi

=
∑
i∈I

⟨f, ψi⟩πR(K)LπR(K)φi, (f ∈ H).
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Now, if Φ† is any K -dual of Φ , then

M1,LπR(K)Φ,Φ†f =
∑
i∈I

⟨
f, φ†

i

⟩
LπR(K)φi

= L
∑
i∈I

⟨
f, φ†

i

⟩
πR(K)φi = LKf,

for all f ∈ H . For the statement for R we have

K∗f = R∗M∗
1,Φ,πR(K∗)Ψ

f

= R∗M1,πR(K∗)Ψ,Φf

=
∑
i∈I

⟨f, φi⟩R∗πR(K∗)ψi

=
∑
i∈I

⟨f, φi⟩πR(K∗)R∗πR(K∗)ψi.

Therefore, Φ is a K∗ -dual of R∗πR(K∗)Ψ . Furthermore, every K∗ -dual Ψd of Ψ yields

M1,Ψd,R∗πR(K∗ )Ψf =
∑
i∈I

⟨
f,R∗πR(K∗)ψi

⟩
ψd
i

=
∑
i∈I

⟨
Rf, πR(K∗)ψi

⟩
ψd
i

= (K∗)
∗ Rf = KRf.

2

A sequence F = {fi}i∈I of H is called a minimal K -frame whenever it is a K -frame and for each {ci}i∈I ∈ ℓ2

such that
∑

i∈I cifi = 0 then ci = 0 for all i ∈ I . A minimal K -frame and its canonical K -dual are not
biorthogonal in general. To see this, let H = C4 and {ei}4i=1 be the standard orthonormal basis of H . Define
K : H → H by

K

4∑
i=1

ciei = c1e1 + c1e2 + c2e3.

Then K ∈ B(H) and the sequence F = {e1, e2, e3} is a minimal K -frame with the bounds A = 1
8 and B = 1 .

It is easy to see that F̃ = {e1, e1, e2} is the canonical K -dual of F and ⟨f1, f̃2⟩ ̸= 0 . However, every minimal
Bessel sequence; therefore, every minimal K -frame has a biorthogonal sequence in H by Lemma 5.5.3 of [16].
It is worthwhile to mention that a minimal K -frame may have more than one biorthogonal sequence in H , but
it is unique in spani∈I{fi} .

Let Φ = {φi}i∈I be a K -frame and Ψ = {ψi}i∈I a minimal K∗ -frame. Then M1,πR(K)Φ,Ψ (resp.
M1,Ψ,πR(K)Φ ) has a K -right inverse (resp. K∗ -left inverse ) in the form of multipliers. Indeed, if G := {gi}i∈I
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is a biorthogonal sequence for minimal K∗ -frame Ψ , then

M1,πR(K)Φ,ΨM1,G,Φ̃f =
∑
i,j∈I

⟨f, φ̃i⟩⟨gi, ψj⟩πR(K)φj

=
∑
i∈I

⟨f, φ̃i⟩πR(K)φi = Kf,

for all f ∈ H . Similarly,

M1,Φ̃,GM1,Ψ,πR(K)Φf =
∑
i,j∈I

⟨
f, πR(K)φi

⟩
⟨ψi, gj⟩ φ̃j

=
∑
i∈I

⟨
f, πR(K)φi

⟩
φ̃i = K∗f.

We use the following lemma for the invertibility of operators, whose proof is left to the reader.

Lemma 3.5 Let H1 and H2 be two Hilbert spaces and T ∈ B(H1,H2) be invertible. Suppose U ∈ B(H1,H2)

such that ∥T − U∥ < ∥T−1∥−1 . Then U is also invertible.

In the rest of this section we state a sufficient condition for the K -right invertibility of Mm,Ψ,Φ , whenever Ψ

is a perturbation of Φ .

Theorem 3.6 Let Φ = {φi}i∈I be a K -frame with bounds A and B , respectively, and Ψ = {ψi}i∈I be a
Bessel sequence such that

(∑
i∈I

|⟨f, ψi − φi⟩|2
) 1

2

<
aA

b
√
B∥K†∥2

∥f∥, (f ∈ R(K)), (3.1)

where m = {mi}i∈I is a seminormalized sequence with bounds a and b , respectively. Then

1. The sequence Ψ has a K -dual. In particular, it is a K -frame.

2. Mm,Ψ,Φ has a K -right inverse in the form of multipliers.

Proof (1) Obviously Φd := {√miφi}i∈I is a K -frame for H with bounds aA and bB , respectively. Denote

its frame operator by SΦd . Due to (2.2) we obtain
∥∥S−1

Φd

∥∥ ≤ ∥K†∥2

aA . Moreover, (3.1) follows that

∥Mm,Φ,Ψf − SΦdf∥ =

∥∥∥∥∥∑
i∈I

mi ⟨f, ψi − φi⟩φi

∥∥∥∥∥
≤ b

(∑
i∈I

|⟨f, ψi − φi⟩|2
) 1

2 √
B

<
aA

∥K†∥2
∥f∥

<
1∥∥S−1
Φd

∥∥∥f∥,
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for all f ∈ R(K) . Then Mm,Φ,Ψ has an inverse on R(K) , denoted by M−1 , by using Lemma 3.5. Moreover,
for Mm,Φ,Ψ on R(K) we have

⟨(Mm,Φ,Ψ)
∗f, g⟩ =

⟨
f,Mm,Φ,ΨπR(K)g

⟩
=

⟨
f,
∑
i∈I

mi

⟨
πR(K)g, ψi

⟩
φi

⟩

=

⟨
f,
∑
i∈I

mi

⟨
g, πR(K)ψi

⟩
φi

⟩

=

⟨∑
i∈I

mi ⟨f, φi⟩πR(K)ψi, g

⟩
,

for all f ∈ Mm,Φ,Ψ(R(K)) and g ∈ R(K) . Using this fact, we obtain that

Kf = (M−1Mm,Φ,Ψ)
∗Kf

= M∗
m,Φ,ΨπMm,Φ,Ψ(R(K))(M−1)∗Kf

=
∑
i∈I

mi

⟨
πMm,Φ,Ψ(R(K))(M−1)∗Kf,φi

⟩
πR(K)ψi

=
∑
i∈I

⟨
f,K∗M−1πMm,Φ,Ψ(R(K))miφi

⟩
πR(K)ψi.

Hence, {K∗M−1
m,Φ,ΨπMm,Φ,Ψ(R(K))miφi}i∈I is a K -dual of Ψ := {ψi}i∈I .

(2) The above computations shows that (M−1)∗K is a K -right inverse of Mm,Ψ,Φ . Indeed,

Kf = (M−1Mm,Φ,Ψ)
∗Kf

= M∗
m,Φ,Ψ(M−1)∗Kf = Mm,Ψ,Φ(M−1)∗Kf.

On the other hand, for every K -dual Φd of Φ we have

M1,(M−1)∗πR(K)Φ,Φdf =
∑
i∈I

⟨
f, φd

i

⟩
(M−1)∗πR(K)φi

= (M−1)∗Kf,

for all f ∈ H . This completes the proof. 2

The next theorem determines a class of multipliers which are K -right invertible and whose K -right
inverse can be written as a multiplier.

Theorem 3.7 Let Ψ = {ψi}i∈I be a K -frame and Φ = {φi}i∈I a K∗ -frame. Then the following assertions
hold.

1. If R(T ∗
Ψ) ⊆ R(T ∗

ΦK
∗) , then M1,πR(K)Ψ,KΦ has a K -right inverse in the form of multipliers.

2. If R(T ∗
ΦK

∗) ⊆ R(T ∗
Ψ) , then M1,πR(K)Ψ,KΦ has a K∗ -left inverse in the form of multipliers.
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3. If R(T ∗
ΦK

∗) = R(T ∗
Ψ) , then M1,πR(K)Ψ,KΦ has K -right inverse and K∗ -left inverse in the form of

multipliers.

Proof
(1) One can see that the sequence (K†)∗S−1

Φ πSΦR(K∗)Φ denoted by Φ† is a Bessel sequence. Then for
all f ∈ H we have

M1,Φ†,Ψ̃f =
∑
i∈I

⟨
f,K∗S−1

Ψ πSΨR(K)ψi

⟩
(K†)∗S−1

Φ πSΦR(K∗)φi

= (K†)∗S−1
Φ πSΦR(K∗)

∑
i∈I

⟨
(S−1

Ψ )∗Kf,ψi

⟩
φi

= (K†)∗S−1
Φ πSΦR(K∗)TΦT

∗
Ψ(S

−1
Ψ )∗Kf.

Applying Proposition 1.1, there exists X ∈ B(H) so that T ∗
Ψ = T ∗

ΦK
∗X . Since Φ is a K∗ -frame we obtain

S−1
Φ πSΦR(K∗)SΦK

∗ = S−1
Φ SΦK

∗ = K∗.

Moreover, KK†K = K and (2.4) follow that

M1,πR(K)Ψ,KΦM1,Φ†,Ψ̃ = πR(K)TΨT
∗
ΦK

∗(K†)∗S−1
Φ πSΦR(K∗)TΦT

∗
Ψ(S

−1
Ψ )∗K

= πR(K)TΨT
∗
ΦK

∗(K†)∗S−1
Φ πSΦR(K∗)TΦT

∗
ΦK

∗X(S−1
Ψ )∗K

= πR(K)TΨT
∗
ΦK

∗(K†)∗K∗X(S−1
Ψ )∗K

= πR(K)TΨTΨ(S
−1
Ψ )∗K

=
(
SΨ|R(K)

)∗
(S−1

Ψ )∗K = K.

(2) One can see that S−1
Φ πSΦR(K∗)Φ and S−1

Ψ πSΨR(K)Ψ denoted by Φ‡ and Ψ‡ , respectively, are Bessel
sequences in H . Thus, for all f ∈ R(K) we obtain

M1,Φ‡,Ψ‡f = S−1
Φ πSΦR(K∗)TΦT

∗
Ψ

(
S−1
Ψ

)∗
f.

There is an operator X ∈ B(H) such that T ∗
ΦK

∗ = T ∗
ΨX by Proposition 1.1. Therefore,

M1,Φ‡,Ψ‡M1,πR(K)Ψ,KΦ = S−1
Φ πSΦR(K∗)TΦT

∗
Ψ

(
S−1
Ψ

)∗
πR(K)TΨT

∗
ΦK

∗

= S−1
Φ πSΦR(K∗)TΦT

∗
Ψ

(
S−1
Ψ

)∗
πR(K)TΨT

∗
ΨX

= S−1
Φ πSΦR(K∗)TΦT

∗
Ψ

(
S−1
Ψ

)∗ (
SΨ|R(K)

)∗
X

= S−1
Φ πSΦR(K∗)TΦT

∗
ΨX

= S−1
Φ πSΦR(K∗)TΦT

∗
ΦK

∗

= S−1
Φ πSΦR(K∗)SΦK

∗ = K∗.

2
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