Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2020) 44: 553 - 560
© TÜBİTAK
doi:10.3906/mat-1910-41

Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers

Şahsene ALTINKAYA* ${ }^{(1)}$
Department of Mathamatics, Bursa Uludag University, Bursa, Turkey

$\begin{array}{llll}\text { Received: } 15.10 .2019 & \text { Accepted/Published Online: } 19.02 .2020 \quad \text { Final Version: } 17.03 .2020\end{array}$

Abstract

In this investigation, by using a relation of subordination, we define a new subclass of analytic bi-univalent functions associated with the Fibonacci numbers. Moreover, we survey the bounds of the coefficients for functions in this class.

Key words: Bi-univalent functions, Fibonacci numbers, subordination.

1. Introduction and background

Let \mathbb{C} be the complex plane and let $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$, the open unit disc. Further, by \mathcal{A} we represent the class of functions analytic in \mathbb{U}, satisfying the condition

$$
f(0)=f^{\prime}(0)-1=0
$$

Thus each function f in \mathcal{A} has a Taylor series representation

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1.1}
\end{equation*}
$$

and let \mathcal{S} be the subclass of \mathcal{A} consisting of functions univalent in \mathbb{U}. The Carathéodory class, consisting of the functions p analytic in \mathbb{U} satisfying $p(0)=1$ and $\Re p(z)>0$, is usually denoted by \mathcal{P}. Indeed, $p \in \mathcal{P}$ has a representation

$$
p(z)=1+x_{1} z+x_{2} z^{2}+x_{3} z^{3}+\cdots \quad\left(x_{1}>0\right)
$$

with coefficients satisfying $\left|x_{n}\right| \leq 2(n \in \mathbb{N})$ (see [13], [7]).
We now recall that the analytic function f is said to be subordinate to the analytic function g (indicated as $f \prec g$), if there exists a Schwarz function

$$
\varpi(z)=\sum_{n=1}^{\infty} \mathfrak{c}_{n} z^{n} \quad(\varpi(0)=0, \quad|\varpi(z)|<1),
$$

analytic in \mathbb{U} such that

$$
f(z)=g(\varpi(z)) \quad(z \in \mathbb{U})
$$

[^0]For the function $\varpi(z)$ we know that $\left|\mathfrak{c}_{n}\right|<1$ (see [6]).
We next turn to the Koebe-One Quarter Theorem which ensures that every univalent function $f \in \mathcal{A}$ has an inverse f^{-1} satisfying $f^{-1}(f(z))=z \quad(z \in \mathbb{U})$ and $f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; \quad r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{align*}
g(w)= & f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3} \\
& -\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{align*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1.1).

Bi-univalent functions have been studied since the mid-1990s, and thousands of research papers have been written about them (see e.g., $[4,11,12]$ and see also the references cited therein). After that, bounds for the first few coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ of various subclasses of bi-univalent functions have been obtained by a number of sequels to [15] including (among others) [1, 9, 10, 16]. However, in the literature, there are only a few works (by making use of the Faber polynomial expansions) determining the general coefficient bounds $\left|a_{n}\right|$ for bi-univalent functions $([2,3,8,14])$. Hence, determination of the bounds for each of

$$
\left|a_{n}\right| \quad(n \in \mathbb{N} \backslash\{1,2\} ; \quad \mathbb{N}=\{1,2,3, \ldots\})
$$

is still an open problem for functions in the class Σ.
By using a relation of subordination, we define a new subclass of bi-univalent functions associated with the Fibonacci numbers.

Definition 1.1 A function $f \in \Sigma$ is said to be in the class

$$
W_{\Sigma}(\mu, \rho ; \tilde{\mathfrak{p}}) \quad(\mu \geq 0, \rho \geq 0 ; \quad z, w \in \mathbb{U})
$$

if the following subordination relationships are satisfied:

$$
\left[(1-\mu+2 \rho) \frac{f(z)}{z}+(\mu-2 \rho) f^{\prime}(z)+\rho z f^{\prime \prime}(z)\right] \prec \widetilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

and

$$
\left[(1-\mu+2 \rho) \frac{g(w)}{w}+(\mu-2 \rho) g^{\prime}(w)+\rho w g^{\prime \prime}(w)\right] \prec \widetilde{\mathfrak{p}}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau w-\tau^{2} w^{2}}
$$

where $g=f^{-1}$ and $\tau=\frac{1-\sqrt{5}}{2} \approx-0.618$.
It is interesting to note that the special values of μ and ρ lead the class $W_{\Sigma}(\mu, \rho ; \widetilde{\mathfrak{p}})$ to various subclasses, we illustrate the following subclasses:

1. For $\mu=1+2 \rho$, we get the class $W_{\Sigma}(1+2 \rho, \rho ; \tilde{\mathfrak{p}})=W_{\Sigma}(\rho ; \widetilde{\mathfrak{p}})$. A function $f \in \Sigma$ is said to be in the class

$$
W_{\Sigma}(\rho ; \widetilde{\mathfrak{p}}) \quad(\rho \geq 0 ; z, w \in \mathbb{U})
$$

if the following subordinations are satisfied:

$$
\left[f^{\prime}(z)+\rho z f^{\prime \prime}(z)\right] \prec \tilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

ALTINKAYA/Turk J Math

and

$$
\left[g^{\prime}(w)+\rho w g^{\prime \prime}(w)\right] \prec \widetilde{\mathfrak{p}}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau w-\tau^{2} w^{2}}
$$

2. For $\rho=0$, we obtain the class $W_{\Sigma}(\mu, 0 ; \widetilde{\mathfrak{p}})=W_{\Sigma}(\mu ; \widetilde{\mathfrak{p}})$. A function $f \in \Sigma$ is said to be in the class

$$
W_{\Sigma}(\mu ; \widetilde{\mathfrak{p}}) \quad(\mu \geq 0 ; z, w \in \mathbb{U})
$$

if the following subordinations are satisfied:

$$
\left[(1-\mu) \frac{f(z)}{z}+\mu f^{\prime}(z)\right] \prec \widetilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

and

$$
\left[(1-\mu) \frac{g(w)}{w}+\mu g^{\prime}(w)\right] \prec \widetilde{\mathfrak{p}}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau w-\tau^{2} w^{2}}
$$

3. For $\rho=0$ and $\mu=1$, we get the class $W_{\Sigma}(1,0 ; \widetilde{\mathfrak{p}})=W_{\Sigma}(\widetilde{\mathfrak{p}})$. A function $f \in \Sigma$ is said to be in the class

$$
W_{\Sigma}(\widetilde{\mathfrak{p}}) \quad(z, w \in \mathbb{U})
$$

if the following subordinations are satisfied:

$$
f^{\prime}(z) \prec \tilde{\mathfrak{p}}(z)=\frac{1+\tau^{2} z^{2}}{1-\tau z-\tau^{2} z^{2}}
$$

and

$$
g^{\prime}(w) \prec \widetilde{\mathfrak{p}}(w)=\frac{1+\tau^{2} w^{2}}{1-\tau w-\tau^{2} w^{2}} .
$$

Remark 1.2 The function $\widetilde{\mathfrak{p}}(z)$ is not univalent in \mathbb{U}, it is univalent in the disc $|z|<\frac{3-\sqrt{5}}{2} \approx 0.38$. Observe that $\widetilde{\mathfrak{p}}(0)=\widetilde{\mathfrak{p}}\left(-\frac{1}{2 \tau}\right)$ and $\widetilde{\mathfrak{p}}\left(e^{ \pm i \arccos (1 / 4)}\right)=\frac{\sqrt{5}}{5}$. Also, it can be written as

$$
\frac{1}{|\tau|}=\frac{|\tau|}{1-|\tau|}
$$

which indicates that the number $|\tau|$ divides $[0,1]$ such that it fulfils the golden section (see for details [5, 17]).
Additionally, Dziok et al. [5] indicate a connection between the function $\widetilde{\mathfrak{p}}(z)$ and the Fibonacci numbers. Let $\left\{F_{n}\right\}$ be the sequence of Fibonacci numbers

$$
F_{n+2}=F_{n}+F_{n+1} \quad\left(n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}\right)
$$

with $F_{0}=0, F_{1}=1$, then

$$
F_{n}=\frac{(1-\tau)^{n}-\tau^{n}}{\sqrt{5}}, \quad \tau=\frac{1-\sqrt{5}}{2} .
$$

If we set

$$
\begin{aligned}
\widetilde{\mathfrak{p}}(z)= & 1+\sum_{n=1}^{\infty} \widetilde{\mathfrak{p}}_{n} z^{n}=1+\left(F_{0}+F_{2}\right) \tau z+\left(F_{1}+F_{3}\right) \tau^{2} z^{2} \\
& +\sum_{n=3}^{\infty}\left(F_{n-3}+F_{n-2}+F_{n-1}+F_{n}\right) \tau^{n} z^{n},
\end{aligned}
$$

then we arrive at

$$
\widetilde{\mathfrak{p}}_{n}= \begin{cases}\tau & (n=1) \tag{1.3}\\ 3 \tau^{2} & (n=2) \\ \tau \widetilde{\mathfrak{p}}_{n-1}+\tau^{2} \widetilde{\mathfrak{p}}_{n-2} & (n=3,4, \ldots)\end{cases}
$$

2. Inequalities for the Taylor-Maclaurin coefficients

In this part, we offer to get the upper bounds on the Taylor-Maclaurin coefficients and obtain the Fekete-Szegö inequalities for functions in the bi-univalent function class $W_{\Sigma}(\mu, \rho ; \widetilde{\mathfrak{p}})$.

Theorem 2.1 Let the function f given by (1.1) be in the class $W_{\Sigma}(\mu, \rho ; \widetilde{\mathfrak{p}})$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{\left|(1+\mu)^{2}+\left[(1+2 \mu+2 \rho)-3(1+\mu)^{2}\right] \tau\right|}} \\
\quad\left|a_{3}\right| \leq \frac{\tau^{2}}{(1+\mu)^{2}}+\frac{|\tau|}{1+2 \mu+2 \rho}
\end{gathered}
$$

for any real number η,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{|\tau|}{1+2 \mu+2 \rho}, & |\eta-1| \leq \frac{\left|(1+\mu)^{2}+\left[(1+2 \mu+2 \rho)-3(1+\mu)^{2}\right] \tau\right|}{(1+2 \mu+2 \rho)|\tau|} \\
\frac{|1-\eta| \tau^{2}}{\left|(1+\mu)^{2}+\left[(1+2 \mu+2 \rho)-3(1+\mu)^{2}\right] \tau\right|}, & |\eta-1| \geq \frac{\left|(1+\mu)^{2}+\left[(1+2 \mu+2 \rho)-3(1+\mu)^{2}\right] \tau\right|}{(1+2 \mu+2 \rho)|\tau|}
\end{array} .\right.
$$

Proof Suppose that $f \in W_{\Sigma}(\mu, \rho ; \widetilde{\mathfrak{p}})$. Firstly, let $p \prec \widetilde{\mathfrak{p}}$. Then, by the relation of subordination, for the analytic functions $\mathfrak{u}, \mathfrak{v}$ such that $\mathfrak{u}(0)=\mathfrak{v}(0)=0,|\mathfrak{u}(z)|<1,|\mathfrak{v}(w)|<1 \quad(z, w \in \mathbb{U})$, we can write

$$
\begin{equation*}
\left[(1-\mu+2 \rho) \frac{f(z)}{z}+(\mu-2 \rho) f^{\prime}(z)+\rho z f^{\prime \prime}(z)\right]=\widetilde{\mathfrak{p}}(\mathfrak{u}(z)) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\mu+2 \rho) \frac{g(w)}{w}+(\mu-2 \rho) g^{\prime}(w)+\rho w g^{\prime \prime}(w)\right]=\widetilde{\mathfrak{p}}(\mathfrak{v}(w)) \tag{2.2}
\end{equation*}
$$

Next, define the functions p_{1} and p_{2} by

$$
p_{1}(z)=\frac{1+\mathfrak{u}(z)}{1-\mathfrak{u}(z)}=1+x_{1} z+x_{2} z^{2}+\cdots
$$

$$
p_{2}(w)=\frac{1+\mathfrak{v}(w)}{1-\mathfrak{v}(w)}=1+y_{1} w+y_{2} w^{2}+\cdots
$$

Since \mathfrak{u} and \mathfrak{v} are Schwarz functions, p_{1} and p_{2} are analytic functions in \mathbb{U} (with $\left.p_{1}(0)=p_{2}(0)=1\right)$, we obtain the equations

$$
\begin{aligned}
& \mathfrak{u}(z)=\frac{p_{1}(z)-1}{p_{1}(z)+1}=\frac{1}{2}\left[x_{1} z+\left(x_{2}-\frac{x_{1}^{2}}{2}\right) z^{2}\right]+\cdots \\
& \mathfrak{v}(w)=\frac{p_{2}(w)-1}{p_{2}(w)+1}=\frac{1}{2}\left[y_{1} w+\left(y_{2}-\frac{y_{1}^{2}}{2}\right) w^{2}\right]+\cdots
\end{aligned}
$$

lead to

$$
\begin{aligned}
& \widetilde{\mathfrak{p}}(\mathfrak{u}(z))=1+\frac{\widetilde{\mathfrak{p}}_{1} x_{1}}{2} z+\left[\frac{1}{2}\left(x_{2}-\frac{x_{1}^{2}}{2}\right) \widetilde{\mathfrak{p}}_{1}+\frac{x_{1}^{2}}{4} \widetilde{\mathfrak{p}}_{2}\right] z^{2}+\cdots, \\
& \widetilde{\mathfrak{p}}(\mathfrak{v}(w))=1+\frac{\widetilde{\mathfrak{p}}_{1} y_{1}}{2} w+\left[\frac{1}{2}\left(y_{2}-\frac{y_{1}^{2}}{2}\right) \widetilde{\mathfrak{p}}_{1}+\frac{y_{1}^{2}}{4} \widetilde{\mathfrak{p}}_{2}\right] w^{2}+\cdots .
\end{aligned}
$$

Now, upon comparing the corresponding coefficients in (2.1) and (2.2), we get

$$
\begin{gather*}
(1+\mu) a_{2}=\frac{\tilde{\mathfrak{p}}_{1} x_{1}}{2} \tag{2.3}\\
(1+2 \mu+2 \rho) a_{3}=\frac{1}{2}\left(x_{2}-\frac{x_{1}^{2}}{2}\right) \widetilde{\mathfrak{p}}_{1}+\frac{x_{1}^{2}}{4} \widetilde{\mathfrak{p}}_{2}, \tag{2.4}\\
-(1+\mu) a_{2}=\frac{\widetilde{\mathfrak{p}}_{1} y_{1}}{2}, \tag{2.5}\\
(1+2 \mu+2 \rho)\left(2 a_{2}^{2}-a_{3}\right)=\frac{1}{2}\left(y_{2}-\frac{y_{1}^{2}}{2}\right) \widetilde{\mathfrak{p}}_{1}+\frac{y_{1}^{2}}{4} \widetilde{\mathfrak{p}}_{2} \tag{2.6}
\end{gather*}
$$

From equations (2.3) and (2.5), one can easily find that

$$
\begin{gather*}
x_{1}=-y_{1} \tag{2.7}\\
2(1+\mu)^{2} a_{2}^{2}=\frac{\widetilde{\mathfrak{p}}_{1}^{2}}{4}\left(x_{1}^{2}+y_{1}^{2}\right) \tag{2.8}
\end{gather*}
$$

If we add (2.4) to (2.6), we obtain

$$
\begin{equation*}
2(1+2 \mu+2 \rho) a_{2}^{2}=\frac{\widetilde{\mathfrak{p}}_{1}}{2}\left(x_{2}+y_{2}\right)+\frac{\left(\widetilde{\mathfrak{p}}_{2}-\widetilde{\mathfrak{p}}_{1}\right)}{4}\left(x_{1}^{2}+y_{1}^{2}\right) \tag{2.9}
\end{equation*}
$$

By making the use of (2.8) in (2.9), we have

$$
\begin{equation*}
a_{2}^{2}=\frac{\widetilde{\mathfrak{p}}_{1}^{3}\left(x_{2}+y_{2}\right)}{4\left\{(1+2 \mu+2 \rho) \widetilde{\mathfrak{p}}_{1}^{2}-(1+\mu)^{2}\left(\widetilde{\mathfrak{p}}_{2}-\widetilde{\mathfrak{p}}_{1}\right)\right\}} \tag{2.10}
\end{equation*}
$$

which yields

$$
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{\left|(1+\mu)^{2}+\left[(1+2 \mu+2 \rho)-3(1+\mu)^{2}\right] \tau\right|}}
$$

Next, if we subtract (2.6) from (2.4), we obtain

$$
\begin{equation*}
2(1+2 \mu+2 \rho)\left(a_{3}-a_{2}^{2}\right)=\frac{\widetilde{\mathfrak{p}}_{1}}{2}\left(x_{2}-y_{2}\right) \tag{2.11}
\end{equation*}
$$

Then, in view of (2.8), the equation (2.11) becomes

$$
a_{3}=\frac{\widetilde{\mathfrak{p}}_{1}^{2}\left(x_{1}^{2}+y_{1}^{2}\right)}{8(1+\mu)^{2}}+\frac{\widetilde{\mathfrak{p}}_{1}\left(x_{2}-y_{2}\right)}{4(1+2 \mu+2 \rho)}
$$

By using triangle inequality for the modulus, we obtain

$$
\left|a_{3}\right| \leq \frac{\tau^{2}}{(1+\mu)^{2}}+\frac{|\tau|}{1+2 \mu+2 \rho}
$$

Notice that from (2.10) and (2.11), we can compute that

$$
\begin{aligned}
a_{3}-\eta a_{2}^{2} & =\frac{(1-\eta)^{2} \widetilde{\mathfrak{p}}_{1}^{3}\left(x_{2}+y_{2}\right)}{4\left\{(1+2 \mu+2 \rho) \widetilde{\mathfrak{p}}_{1}^{2}-(1+\mu)^{2}\left(\widetilde{\mathfrak{p}}_{2}-\widetilde{\mathfrak{p}}_{1}\right)\right\}}+\frac{\widetilde{\mathfrak{p}}_{1}\left(x_{2}-y_{2}\right)}{4(1+2 \mu+2 \rho)} \\
& =\frac{\widetilde{\mathfrak{p}}_{1}}{4}\left[\left(h(\eta)+\frac{1}{1+2 \mu+2 \rho}\right) x_{2}+\left(h(\eta)-\frac{1}{1+2 \mu+2 \rho}\right) y_{2}\right]
\end{aligned}
$$

where

$$
h(\eta)=\frac{(1-\eta) \widetilde{\mathfrak{p}}_{1}^{2}}{(1+2 \mu+2 \rho) \widetilde{\mathfrak{p}}_{1}^{2}-(1+\mu)^{2}\left(\widetilde{\mathfrak{p}}_{2}-\widetilde{\mathfrak{p}}_{1}\right)}
$$

This enables us to conclude that

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{\left|\widetilde{\mathfrak{p}}_{1}\right|}{1+2 \mu+2 \rho}, & 0 \leq|h(\eta)| \leq \frac{1}{1+2 \mu+2 \rho} \\ |h(\eta)|\left|\widetilde{\mathfrak{p}}_{1}\right|, & |h(\eta)| \geq \frac{1}{1+2 \mu+2 \rho}\end{cases}
$$

Theorem 3 is proved.

3. Consequences and observations

In this investigation, we studied the analytic bi-univalent function class

$$
W_{\Sigma}(\mu, \rho ; \widetilde{\mathfrak{p}}) \quad(\mu \geq 0, \rho \geq 0 ; z, w \in \mathbb{U})
$$

associated with the Fibonacci numbers. For functions belonging to this class, we have derived Taylor-Maclaurin coefficient inequalities and the celebrated Fekete-Szegö problem. The geometric properties of the function class $W_{\Sigma}(\mu, \rho ; \tilde{p})$ vary according to the values according to the parameters included. This approach has been extended to find more examples of bi-univalent functions with the Fibonacci numbers.

ALTINKAYA/Turk J Math

Corollary 3.1 Let the function f given by (1.1) be in the class $W_{\Sigma}(\rho ; \widetilde{\mathfrak{p}})$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{\left|4(1+\rho)^{2}+3\left[(1+2 \rho)-4(1+\rho)^{2}\right] \tau\right|}} \\
\quad\left|a_{3}\right| \leq \frac{|\tau|}{3(1+2 \rho)}+\frac{\tau^{2}}{4(1+\rho)^{2}}
\end{gathered}
$$

for any real number η,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{3(1+2 \rho)}, & |\eta-1| \leq \frac{\left|4(1+\rho)^{2}+3\left[(1+2 \rho)-4(1+\rho)^{2}\right] \tau\right|}{3(1+2 \rho)|\tau|} \\ \frac{|1-\eta| \tau^{2}}{\left|4(1+\rho)^{2}+3\left[(1+2 \rho)-4(1+\rho)^{2}\right] \tau\right|}, & |\eta-1| \geq \frac{\left|4(1+\rho)^{2}+3\left[(1+2 \rho)-4(1+\rho)^{2}\right] \tau\right|}{3(1+2 \rho)|\tau|}\end{cases}
$$

Corollary 3.2 Let the function f given by (1.1) be in the class $W_{\Sigma}(\mu ; \widetilde{\mathfrak{p}})$. Then

$$
\begin{gathered}
\left|a_{2}\right| \leq \frac{|\tau|}{\sqrt{\left|(1+\mu)^{2}+\left[(1+2 \mu)-3(1+\mu)^{2}\right] \tau\right|}} \\
\qquad\left|a_{3}\right| \leq \frac{|\tau|}{1+2 \mu}+\frac{\tau^{2}}{(1+\mu)^{2}}
\end{gathered}
$$

for any real number η,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq \begin{cases}\frac{|\tau|}{1+2 \mu}, & |\eta-1| \leq \frac{\left|(1+\mu)^{2}+\left[(1+2 \mu)-3(1+\mu)^{2}\right] \tau\right|}{(1+2 \mu)|\tau|} \\ \frac{|1-\eta| \tau^{2}}{\left|(1+\mu)^{2}+\left[(1+2 \mu)-3(1+\mu)^{2}\right] \tau\right|}, & |\eta-1| \geq \frac{\left|(1+\mu)^{2}+\left[(1+2 \mu)-3(1+\mu)^{2}\right] \tau\right|}{(1+2 \mu)|\tau|}\end{cases}
$$

Corollary 3.3 Let the function f given by (1.1) be in the class $W_{\Sigma}(\widetilde{\mathfrak{p}})$. Then

$$
\begin{aligned}
\left|a_{2}\right| & \leq \frac{|\tau|}{\sqrt{|4-9 \tau|}} \\
\left|a_{3}\right| & \leq \frac{|\tau|}{3}+\frac{\tau^{2}}{4}
\end{aligned}
$$

for any real number η,

$$
\left|a_{3}-\eta a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
\frac{|\tau|}{3}, & |\eta-1| \leq \frac{|4-9 \tau|}{3|\tau|} \\
\frac{|1-\eta| \tau^{2}}{|4-9 \tau|}, & |\eta-1| \geq \frac{|4-9 \tau|}{3|\tau|}
\end{array} .\right.
$$

If we restrict our considerations for a given univalent function $\widetilde{\mathfrak{p}}(z)$ in \mathbb{U}, we can examine mapping problems for other regions of the complex z-plane. Thus, one can define different subclasses of the function class which we have studied in this paper.

ALTINKAYA/Turk J Math

Acknowledgment

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK 1002-Short Term R\&D Funding Program), Project Number: 118F543.

References

[1] Altınkaya Ş, Yalçın S. Estimate for initial MacLaurin of general subclasses of bi-univalent functions of complex order involving subordination. Honam Mathematical Journal 2018; 40: 391-400.
[2] Altınkaya Ş, Yalçın S. Faber polynomial coefficient estimates for bi-univalent functions of complex order based on subordinate conditions involving of the Jackson (p, q)-derivative operator. Miskolc Mathematical Notes 2017; 18 (2): 555-572.
[3] Altınkaya Ş, Yalçın S, Çakmak S. A Subclass of bi-univalent functions based on the Faber polynomial expansions and the Fibonacci Numbers. Mathematics 2019; 7(2): 1-9.
[4] Brannan DA, Taha TS. On some classes of bi-univalent functions. Studia Universitatis Babeş-Bolyai Mathematica 1986; 31: 70-77.
[5] Dziok J, Raina RK, Sokół J. On α-convex functions related to shell-like functions connected with Fibonacci numbers. Applied Mathematics and Computation 2011; 2018: 996-1002.
[6] Duren PL. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259, 1983.
[7] Grenander U, Szegö G. Toeplitz forms and their applications. California Monographs in Mathematical Sciences University, California Press, Berkeley, 1958.
[8] Hamidi SG, Jahangiri JM. Faber polynomial coefficients of bi-subordinate functions. Comptes Rendus des Séances de l'Académie des Sciences Série I Mathématique 2016; 354: 365-370.
[9] Hayami T, Owa S. Coefficient bounds for bi-univalent functions. Panamerican Mathematical Journal 2012; 22: 15-26.
[10] Güney HÖ, Murugusundaramoorthy G, Sokol J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Universitatis Sapientiae Mathematica 2018; 10: 70-84.
[11] Lewin M. On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society 1967; 18: 63-68.
[12] Netanyahu E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$. Archive for Rational Mechanics and Analysis 1969; 32: 100-112.
[13] Pommerenke C. Univalent Functions. Vandenhoeck \& Ruprecht, Göttingen, 1975.
[14] Srivastava HM, Sümer Eker S, Hamidi SG, Jahangiri JM. Faber polynomial coefficient estimates for Bi-univalent functions defined by the Tremblay fractional derivative operator. Bulletin of the Iranian Mathematical Society 2018; 44: 149-157.
[15] Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters 2010; 23: 1188-1192.
[16] Srivastava HM, Sakar FM, Güney HÖ. Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination. Filomat 2018; 32: 1313-1322.
[17] Yılmaz Özgür N, Sokół J. On starlike functions connected with k-Fibonacci numbers. Bulletin of the Malaysian Mathematical Sciences Society 2015; 38 (1): 249-258.

[^0]: *Correspondence: sahsenealtinkaya@gmail.com
 2010 AMS Mathematics Subject Classification: 30C45

