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Abstract: In this investigation, by using a relation of subordination, we define a new subclass of analytic bi-univalent
functions associated with the Fibonacci numbers. Moreover, we survey the bounds of the coefficients for functions in

this class.
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1. Introduction and background

Let C be the complex plane and let U = {z:z € C and |z| < 1}, the open unit disc. Further, by A we

represent the class of functions analytic in U, satisfying the condition

Thus each function f in A has a Taylor series representation
f(z) =24 a22® +azz®>+--- (1.1)

and let S be the subclass of A consisting of functions univalent in U. The Carathéodory class, consisting of
the functions p analytic in U satisfying p(0) = 1 and R p(z) > 0, is usually denoted by P. Indeed, p € P has

a representation

p(2) =14+ w2+ 202 +a32° +--- (21 >0)

with coefficients satisfying |z,| <2 (n € N) (see [13], [7]).
We now recall that the analytic function f is said to be subordinate to the analytic function g

(indicated as f < g), if there exists a Schwarz function

@(z) =Y 2" (@(0) =0, |w(z)| < 1),

analytic in U such that
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For the function w (z) we know that |c,| < 1 (see [6]).
We next turn to the Koebe-One Quarter Theorem which ensures that every univalent function f € A has
an inverse f~! satisfying f~! (f(2)) =2z (2 €U) and f(f~'(w)) =w (Jw|<ro(f); ro(f)>1), where

— 4

g(w) = f~1(w) =w — asw? + (2a% — a3) w3
(1.2)
- (5a§ 75a2a3+a4)w4+~~ .

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U. Let X denote the class
of bi-univalent functions in U given by (1.1).

Bi-univalent functions have been studied since the mid-1990s, and thousands of research papers have
been written about them (see e.g., [4, 11, 12] and see also the references cited therein). After that, bounds
for the first few coefficients |as|, |as| of various subclasses of bi-univalent functions have been obtained by a
number of sequels to [15] including (among others) [1, 9, 10, 16]. However, in the literature, there are only a
few works (by making use of the Faber polynomial expansions) determining the general coefficient bounds |a,|

for bi-univalent functions (]2, 3, 8, 14]). Hence, determination of the bounds for each of
lan]  (neN\{1,2}; N={1,2,3,..})

is still an open problem for functions in the class X.
By using a relation of subordination, we define a new subclass of bi-univalent functions associated with

the Fibonacci numbers.
Definition 1.1 A function f € X is said to be in the class

Ws (. pip)  (0>0,p>0; z,w e U)
if the following subordination relationships are satisfied:

f(2)

(020 2 ) )| <50 = 2

1—72z— 7222

and
~ 1+ 72w?

g(w) 5 (w)

st 207 G 2 w) 4 g )| <

w 1 — 7w — 72w?’

where g = f~ and T = 1_2—‘/5 ~ —0.618.

It is interesting to note that the special values of u and p lead the class Wy (u, 0; ﬁ) to various subclasses,

we illustrate the following subclasses:

1. For p =1+ 2p, we get the class Wy (1 + 2p,p;§) = Wx (p;ﬁ). A function f € ¥ is said to be in the
class
Ws (p;p)  (p>0; z,w e )

if the following subordinations are satisfied:

- 1+ 7222

[f'(2) + pzf"(2)] < b (2) =

1—72—7222
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and

~ 1+ 72w?
' (w) + pwg"(w)] <P (w) = T———5 -

2. For p =0, we obtain the class Wy (u, 0;5) =Ws (M;E) . A function f € ¥ is said to be in the class
Ws (1:9) (1> 0; 2,w e )
if the following subordinations are satisfied:

1+ 7222

T )| < - 2220

1—7z— 71222

-

and

=02 )] <) =

3. For p=0 and u =1, we get the class Wy (17 0;}5) =Wx (5) A function f € X is said to be in the class
WE (5) (Z7 w € [U)
if the following subordinations are satisfied:

- 1+ 7222

f'(z2) <p(2)

1—72z— 17222

and

~ 1+ 72w?

! —
gw) <p(w)=g——75 .

Remark 1.2 The function p (2) is not univalent in U, it is univalent in the disc |z| < 372\/5 ~ 0.38. Observe

that p(0) =p (—5) and p (eFiarccos(l/1)) = % Also, it can be written as

1 7]

Il 1=

which indicates that the number || divides [0,1] such that it fulfils the golden section (see for details [5, 17]).

Additionally, Dziok et al. [5] indicate a connection between the function p (z) and the Fibonacci numbers.

Let {F,} be the sequence of Fibonacci numbers
Fn+2:Fn+Fn+1 (n€N0:{071,2,...})

with FQ = 0, F1 = ]., then
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If we set

P2 = 14 b =1+ (Fo+ Fo)7z + (Fi + Fy)rs
n=1

[eS)
+Z(Fn—3 + Fn—2 + Fn—l + Fn)Tnzna

n=3

then we arrive at
T (n=1)

pn =< 372 (n=2) . (1.3)
TPt +7°Pn2 (n=3,4,...)
2. Inequalities for the Taylor—Maclaurin coefficients

In this part, we offer to get the upper bounds on the Taylor—-Maclaurin coefficients and obtain the Fekete—Szego

inequalities for functions in the bi-univalent function class Wy (u, p;E) .

Theorem 2.1 Let the function f given by (1.1) be in the class Wy (p,p;ﬁ) . Then
7|

|az| <
\/‘(1+M)2+ {(1+2u+2p)—3(1+u)2} 7-’

)

’ 7]

az| < )
las] < (T+p)?2  142u+2p

for any real number n,

(141)*+[(1+2p+2p) —3(1+p)?] 7|

|
: =1 < TF2at2p[7]

(14p)*+[(1+2p+2p) —3(1+p)?] 7|

1=l |
In—1]= (A+2u+2p)[7]

[+ +[(1+2p+2p)—3(1+p)2] 7|

Proof Suppose that f € Wy (u,p;ﬁ). Firstly, let p < p. Then, by the relation of subordination, for the
analytic functions u, v such that u(0) =v(0) =0, |u(z)| < 1,|o(w)| <1 (z,w € U), we can write

= nt 20T 2007+ 07| =B i) (2.)
and ]
(=420 8 4 200 ) + g (0)| = 5 (0(). (22
Next, define the functions p; and py by
pi(z) = 11—:‘&2 =14z +:22%+-- -,
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_ 1+o(w)

=_ "\ 1 24 ...
l—t)(w) + 1w + Yow” +

p2(w)

Since u and v are Schwarz functions, p; and po are analytic functions in U (with p;(0) = p2(0) = 1), we

obtain the equations

lead to

~ ] 1 2\ . 2_
) =14 Bt 5 (22— G ) Bt S| 2

~ [ 1 2\ 2
Bloco) = 1+ 20+ 5 (1= ) Bt 2?4

(1 + )y = P (2.3)
1 2\ ~ 3
(14 2u+2p)az = 3 (172 - 21> p1+ lem (2.4)
—(1+paz = p12y17 (2.5)
1 2\ ~ .
(1+ 20+ 2p) (205 —a3) = 3 <y2 - y21> p1+ %Pz- (2.6)
From equations (2.3) and (2.5), one can easily find that
1 = —Y1, (27)
22 P2 o
201+ p)7a; = Z(ml +y1)- (2.8)
If we add (2.4) to (2.6), we obtain
2(1+ 21+ 2p)a; = %1 (T2 +y2) + @ (27 + ). (2.9)

By making the use of (2.8) in (2.9), we have

a2 = P} (z2 +y2)
27y {(X+ 20+ 20)p3 — (L + p)2(p2 — 1)} (2.10)
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which yields

il

\/‘(1+u)2+ [+ 20+20) =31+ p)’] T"

las| <

Next, if we subtract (2.6) from (2.4), we obtain

=Py — ).

2(1+2p+ 2p) (az — a3) 5

Then, in view of (2.8), the equation (2.11) becomes

pi(el +u7) p1 (22 — y2)
8(1+p)2  A(l+2u+2p)

az =

By using triangle inequality for the modulus, we obtain

? 7]

T+p)?  1+2u+2p

las| <
(
Notice that from (2.10) and (2.11), we can compute that

(1 —n)?p} (22 4 y2) p1 (22 — 1)

ag — a2 = = s =
TR T U 2t 20087 - (L )2 Ge — p1)) AL+ 20+ 2p)

_n 1 -t
T 1 {(h(n)jL 1+2N+2ﬂ) T2t (h(n) 1+2u+2p) yQ]’
where
h(n) = A—mpt
(T4 2p+2p)pT — (1+ p2)2(p2 — p1)
This enables us to conclude that
1] 1
P o< ——
, Trout2y CShOls o
lag —na3| <
- 1
h . ) > ———
|h ()] |p1 | <n)|_1+2,u+2p

Theorem 3 is proved.

3. Consequences and observations

In this investigation, we studied the analytic bi-univalent function class

Ws (1, p59)  (0>0,p>0; z,w e U)

(2.11)

associated with the Fibonacci numbers. For functions belonging to this class, we have derived Taylor—Maclaurin

coefficient inequalities and the celebrated Fekete—Szegd problem. The geometric properties of the function class

Wx (,u, 0; ﬁ) vary according to the values according to the parameters included. This approach has been extended

to find more examples of bi-univalent functions with the Fibonacci numbers.
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Corollary 3.1 Let the function [ given by (1.1) be in the class Wy (p;ﬁ) . Then
7|

\/‘4(1+p)2+3 (1+2/’)—4(1+p)2} T‘

las| <

)

2

P T
3(142p)  4(1+p)?

for any real number n,

7]

1+4p)24+3[(14+2p)—4(1+p)?] 7|
3(1+2p)’

|4(
=1l =< B2

2
as — 77@2| <
[1—n|r?

: o 1= [4(14p)*+3[(14+2p) —4(1+p)*] 7|
[4(1+p)2+3[(14+2p) - 4(1+p)?] 7]

3(1+2p)|7]

Corollary 3.2 Let the function f given by (1.1) be in the class Wy, (11;p) . Then

|a2| S |T| )
\/’(1 +p)* + [(1 +2u) —3(1 +u)2] 7"
las| < |7] n 72
a 7
U= Tdou T (T4 p)?
for any real number n,
|7 |12 +[(1420) 3142 7|

T+ 20 In—1| < aAr2m)r]

as — 77a§| <
(1+)°+[(1+2p)=3(1+p)%] 7|

|1—n|r? |
=1/ = Eemi

| 4p)2+[(142p) —3(1+p)2 ]|

Corollary 3.3 Let the function [ given by (1.1) be in the class Wy (ﬁ) . Then

il

V04 =97]

las| <

2

las| < m_i_L,
3 4
for any real number n,
I7] 14— 97|
) 1<
az —na3| < ,
1—n|7 4 — 97
| . | =1l |
|4 — 97| 37|

If we restrict our considerations for a given univalent function p(z) in U, we can examine mapping
problems for other regions of the complex z-plane. Thus, one can define different subclasses of the function
class which we have studied in this paper.
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