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Abstract: In this study, using only the dominance relation, we propose a set defining inconsistent elements in the decision
table. Then, we show the accuracy of our proposition with an example. We also express the computational complexity
comparisons of the proposed method with general method in terms of the number of set intersection operations and the
real number comparison operations.
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1. Introduction
As is known, the algebra of sets is the basis of mathematics. The classic definition of a set is ”a collection
of objects”. The objects are elements of the set. That is, the membership of an element in a set is crisp.
However, definitions of fuzzy, rough and soft sets are different because in these sets, an element could have
partial membership in a set [7, 9, 13]. Fuzzy, rough, and soft sets become popular in engineering, economics,
and many other fields as in mathematics [6, 10].

Rough set theory is an approximation which is based on mathematical foundations for expressing un-
certainty and vagueness. The rough set theory, introduced for the first time by Pawlak [8] in the 1980s, has
been extended to information systems. A special equivalence relation constitutes the basis of classical rough
set approximation (CRSA). This equivalence relation is called the indiscernibility relation. With this relation,
partitions of the universe set are formed. When any subset of the universe set is given, the characteristics of the
subsets are determined by the approximation operator. By means of these operators, classification and decision
rules can be extracted. Identifying inconsistent elements in decision tables is an extremely important issue
[11]. CRSA cannot deal with inconsistency caused by the principle of dominance, whereas dominance-based
rough set approximation (DRSA) can handle this problem. First introduced by Greco et al.[2, 3], DRSA is an
extensions, and preserves the good properties of CRSA. The most fundamental difference between CRSA and
DRSA is that DRSA is an approach based on the dominance principle instead of the indiscernibility relation
in CRSA [5]. The goal of the current work is to obtain a set that consists of inconsistent elements by using
dominance relation in decision table. There are other methods for finding inconsistent elements in literature
[2, 4].
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However, in our proposed method, inconsistent elements can be obtained with less computational com-
plexity by using only the dominance relation without the use of approximation operators.

In this study, the basic definitions of DRSA are given in the second section. In the third section, we present
the proposition describing the inconsistent elements set in the decision table based on the DRSA. Subsequently,
we proof the proposition and express the computational complexity comparisons of the proposed method with
general method in terms of the number of set intersection operations and the real number comparison operations.

2. Dominance-based rough set approximation (rough sets Greco et al.)

In classification problems using CRSA, preference orders of variables and the values they have taken cannot
be made. Since CRSA cannot eliminate the inconsistency resulting from the dominance principle, some
methodological changes have been proposed. One of these is the Dominance-Based Rough Set Approximation
(DRSA) proposed by Greco et al.[1]. This approximation is an expansion of classical rough set theory based on
the dominance principle.

In DRSA, a decision table is defined as an information system BS = {E,A, V, f} where E is a finite set
of objects (universe), A = C ∪D and the set C is a finite set of condition variables (attributes), D is a finite
set of decision variables, Va is the domain of the variables, V =

∪
a∈A Va , f : E × A → V is a information

function. The preference-ordered attributes (variables) are called criteria. For the sake of simplicity in the
following definitions, we employ a singleton as the set of decision variables, i.e. D = {d} . Thus, we denote the
information system as BS = {E,A = C ∪ {d}, V, f} .

Definition 2.1 The notion of outranking relation (preference relation) ≽a is a pre-order relation in the domain
of variables a ∈ A . For any xi, xj ∈ E , xi ≽a xj implies that ”xi is at least as good as xj ”, with respect to
the variable a ∈ A = C ∪ {d} .

If the domain of variables a is a subset of real numbers (Va ⊆ R) , the outranking relation is a simple
ordered relation in real numbers. In this case, the following relation is provided for ”the more, the better” type
criteria:

xi ≽a xj ⇐⇒ f(xi, a) ≥ f(xj , a)

Definition 2.2 Let M = {1, ....., r} . The decision criterion d containing r criteria values partitions E into
r classes Cl = {Clm,m ∈ M} , where Clm = {xi ∈ E : f (xi, d) = m} . In other words, each element xi ∈ E

belongs to one and only one class Clm.

Definition 2.3 Let d be a decision criterion and ≽d be an outranking relation on E . The classes are called
preference-ordered if xi ≽d xj for all t > s , xi ∈ Clt and xj ∈ Cls .

Definition 2.4 Upward and downward unions of classes are described by unions of decision class by means of
the concepts ’at least’ and ’at most’, respectively as follows:

Cl≥m =
∪

n≥m

Cln, Cl≤m =
∪

n≤m

Cln

Definition 2.5 Let xi and xj be two elements of E. It is said that xi p-dominates xj if ”xi is at least as
good as xj ” for all c ∈ P ⊆ C , is denoted by xiDpxj .
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Proposition 2.6 The dominance relation Dp is a partial preorder relation.

Definition 2.7 Given an element xi ∈ E and P ⊆ C . The P-dominating set and P-dominated set are defined
respectively, as follows:

D+
p (xi) = {xj ∈ E|xjDPxi} ,

D−
p (xi) = {xj ∈ E|xiDPxj} .

Definition 2.8 The P-lower approximations of Cl≥m and Cl≤m are defined follows, respectively.

P
(
Cl≥m

)
=

{
xi ∈ E|D+

p (xi) ⊆ Cl≥m
}

for m = 2, ..., r,

P
(
Cl≤m

)
=

{
xi ∈ E|D−

p (xi) ⊆ Cl≤m
}

for m = 1, 2, ..., r − 1.

Definition 2.9 The P-upper approximations of Cl≥m and Cl≤m are defined follows, respectively.

P
(
Cl≥m

)
=

{
xi ∈ E|D−

p (xi)
∩

Cl≥m ̸= ∅

}
for m = 2, ..., r,

P
(
Cl≤m

)
=

{
xi ∈ E|D+

p (xi)
∩

Cl≤m ̸= ∅

}
for m = 1, 2, ..., r − 1.

Definition 2.10 The P-boundaries of Cl≥m and Cl≤m , denoted as BP( Cl≥m ) and BP( Cl≤m ), respectively, are
defined in terms of P-lower and P-upper approximations of Cl≥m and Cl≤m as follows:

BP
(
Cl≥m

)
= P

(
Cl≥m

)
− P

(
Cl≥m

)
,

BP
(
Cl≤m

)
= P

(
Cl≤m

)
− P

(
Cl≤m

)
.

Theorem 2.11 Let BS be an information system in which P⊆ C. Then some properties of the lower and upper
approximations are as follows [12]:

i. P
(
Cl≥m

)
⊆ Cl≥m ⊆ P

(
Cl≥m

)
,

ii. P
(
Cl≤m

)
⊆ Cl≤m ⊆ P

(
Cl≤m

)
,

iii. P
(
Cl≥m

)
= E − P

(
Cl≤m−1

)
(m = 2, ...., r) ,

iv. P
(
Cl≤m

)
= E − P

(
Cl≥m+1

)
(m = 1, ...., r − 1) ,

v. P
(
Cl≥m

)
= E − P

(
Cl≤m−1

)
(m = 2, ...., r) ,
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vi. P
(
Cl≤m

)
= E − P

(
Cl≥m+1

)
(m = 1, ...., r − 1) ,

vii. BP
(
Cl≥m

)
= BP

(
Cl≤m−1

)
(m = 2, ...., r) ,

viii. BP
(
Cl≤m

)
= BP

(
Cl≥m+1

)
(m = 1, ...., r − 1) .

Definition 2.12 Let c ∈ P ⊆ C and d be condition criteria and decision criterion, respectively. Then
i) The decision table is called p-consistent if xi ≽c xj then xi ≽d xj , for all c ∈ P .
ii) The decision table is called p-inconsistent if xi ≽c xj then xj ≽d xi , for all c ∈ P .

3. On inconsistency in decision tables

The information corresponding to distinct elements is stored in the rows of data tables where the columns
represent different variables(attributes). Values taken by the elements for each related variable are in the
intersections of the rows and columns [6].

Proposition 3.1 Let BS = (E,C ∪ {d} , V, f) be a decision table and Cl = {Clm,m ∈ M} , where
M = {1, ....., r} and Clm = {xi ∈ E : f (xi, d) = m} is a partition of E with respect to a decision variable.

Thus, the set
∪

i,j∈I

(
D+

p (xj)
∩

D−
p (xi)

)
consists of inconsistent elements of the decision table, where

xi ∈ Cls , xj ∈ Clt and s < t .

Proof As is known, the set of inconsistent elements is associated with
∪r

t=2 BP
(
Cl≥t

)
and

∪r−1
s=1 BP

(
Cl≤s

)
in [11]. Thus, it must be shown that the elements of the set defined in the proposition belong to union of
boundary sets.

Let us assume that xk ∈
∪

i̸=j

(
D+

p (xj)
∩

D−
p (xi)

)
.

By considering set theory, it is clear that xk are elements of both D+
p (xj0) and D−

p (xi0) , that is,
xk ∈ D+

p (xj0) and xk ∈ D−
p (xi0) for ∃ i0, j0 ∈ I ).

By the reflexivity of dominance principle, we have

xk ∈ D+
p (xj0) ⇒ xj0 ∈ D−

p (xk) , (3.1)

xk ∈ D−
p (xi0) ⇒ xi0 ∈ D+

p (xk) . (3.2)

By definition of the upward and downward unions of classes, we have

xi0 ∈ Cl≤s and xi0 /∈ Cl≥t , (3.3)

xj0 /∈ Cl≤s and xj0 ∈ Cl≥t . (3.4)

As a consequence of (3.1), (3.2), (3.3) and (3.4), it can be seen that xk /∈ P
(
Cl≤s

)
and xk /∈ P

(
Cl≥t

)
from the definition of the P-lower approximation of Cl≤s and Cl≥t .
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Additionally, from (3.1), (3.2), (3.3) and (3.4), D+
p (xk)

∩
Cl≤s and D−

p (xk)
∩

Cl≥t contain at least one

element each, called xi0 and xj0 , respectively. It means that these sets are not empty. Thus, xk ∈ P
(
Cl≤s

)
and xk ∈ P

(
Cl≥t

)
are valid for the definition of the P-upper approximation of Cl≤s and Cl≥t :

xk /∈ P
(
Cl≤s

)
and xk ∈ P

(
Cl≤s

)
⇒ xk ∈ BP

(
Cl≤s

)
,

xk /∈ P
(
Cl≥t

)
and xk ∈ P

(
Cl≥t

)
⇒ xk ∈ BP

(
Cl≥t

)
,

by using the definition of the P-boundaries of Cl≤s and Cl≥t .

Hence, we get xk ∈
∪

i,j∈I

(
D+

p (xj)
∩

D−
p (xi)

)
⇒ xk ∈

∪r
t=2 BP

(
Cl≥t

)
and xk ∈

∪r−1
s=1 BP

(
Cl≤s

)
.

On the other hand, assume that xk ∈ BP
(
Cl≥t

)
and xk ∈ BP

(
Cl≤s

)
for s < t.

The following statements are covered by the definition of the P-boundaries of Cl≤s and Cl≥t .

xk ∈ P
(
Cl≥t

)
and xk ∈ P

(
Cl≤s

)
By using the P-upper approximation definition

D−
p (xk)

∩
Cl≥t ̸= ∅ and D+

p (xk)
∩

Cl≤s ̸= ∅. (3.5)

By considering (3.5), we can say

(
xj0 ∈ Cl≥t

) (
xj0 ∈ D−

p (xk)
)

for ∃ xj0 ,(
xi0 ∈ Cl≤s

) (
xi0 ∈ D+

p (xk)
)

for ∃ xi0 .

Applying the reflexivity principle, we have

xk ∈ D+
p (xj0) and xk ∈ D−

p (xi0) for ∃ xi0 , xj0 .

2

The above expression implies that xk ∈
∪

i,j∈I

(
D+

p (xj)
∩

D−
p (xi)

)
.

Example: In Table, conditional variables and decision variable are pre-ordered and the candidates are
classified as A (Accept) or R (Reject) with respect to the conditional variables which are defined as follows
based on pre-order relations.

a1 : Level of Piano (↑)
a2 : Level of Violin (↑)
a3 : Level of Trumpet (↑)
a4 : Level of Guitar (↑)
(The symbol (↑ ) means that the preference order increases with the value taken by the variable.)
Cl1 = ClR = {x4, x7} and Cl2 = ClA = {x1, x2, x3, x5, x6} are partitions of E= {x1, x2, x3, x4, x5, x6, x7}
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Table . Decision table for candidate selection to music high school [14].

objects a1 a2 a3 a4 d
x1 4 4 3 4 A
x2 5 5 2 4 A
x3 4 4 2 4 A
x4 4 4 2 4 R
x5 5 5 2 4 A
x6 4 4 2 3 A
x7 4 3 2 3 R

P-Dominating or P-Dominated sets of some candidates(elements) are identified, where P is the set of all
conditional variables.

D+
p (x1) = {x1} D−

p (x4) = {x3, x4, x6, x7}

D+
p (x2) = {x2, x5} D−

p (x7) = {x7}

D+
p (x3) = {x1, x2, x3, x4, x5}

D+
p (x5) = {x2, x5}

D+
p (x6) = {x1, x2, x3, x4, x5, x6}

The inconsistent elements set is determined as follows:
D+

p (x1)
∩

D−
p (x4) = ∅ D+

p (x3)
∩

D−
p (x4) = {x3, x4} D+

p (x6)
∩

D−
p (x4) = {x3, x4, x6}

D+
p (x1)

∩
D−

p (x7) = ∅ D+
p (x3)

∩
D−

p (x7) = ∅ D+
p (x6)

∩
D−

p (x7) = ∅

D+
p (x2)

∩
D−

p (x4) = ∅ D+
p (x5)

∩
D−

p (x4) = ∅

D+
p (x2)

∩
D−

p (x7) = ∅ D+
p (x5)

∩
D−

p (x7) = ∅

The union of all the sets written above consists of inconsistent elements, i.e. {x3, x4, x6}) is the set of
inconsistent elements in the music high school decision table. Indeed, this result has been obtained by means
of calculating the lower and upper approximations in [14].

3.1. Computational complexity analysis

Let there be k classes and let P be the set of attributes. To simplify the analysis, let us further assume that
each class has n

k elements for a total of n elements.
We express the computational complexity comparisons of the proposed method with general method in

terms of the number of set intersection operations and the real number comparison operations.

1. Since the D+
p (x) is not computed for Cl1 and D−

p (x) is not computed for Clk in the proposed method,
the savings in number of real number comparisons may be expressed as

∆comp(D
+
p ) + ∆comp(D

−
p ),

where

∆comp(D
+
p ) = ∆comp(D

−
p ) =

n

k
(n− 1)|P |,
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and |.| is the cardinality of set.

Additionally, there is a complexity savings of

∆AND(D+
p ) + ∆AND(D−

p ) =
n

k
(n− 1),

in the number of logical AND’s. The savings advantage increases (decreases) if more (fewer) than average
number of elements reside in Cl1 and Clk , but is always greater than zero.

2. Set intersection operations: We first note that the complexities of set intersection and subset check op-
erations are equivalent and are O(n) when efficiently performed by a hash table lookup. Indeed, the
subset check operations in the P-lower approximations may be performed by a set intersection. Hence,
the complexity savings in the set intersection operations due to employing the proposed method in place
of the general method may be expressed as

∆∩ = 4nk − k(k − 1)

2

[
n2

k2

]
.

We note that the proposed method requires fewer set intersection operations than the general method for
small n

k . For instance, for k = 2 and n = 16 , ∆∩ = 64 whereas for k = 2 and n = 32 , ∆∩ = 0 . On the
other hand, as k grows with fixed n

k , the complexity savings of the proposed method increases, e.g. for
k = 4 and n = 32 , ∆∩ = 128 and for k = 8 and n = 64 , ∆∩ = 256 .
The complexity advantage of the proposed method in the number of comparisons is more significant
since a comparison typicaly takes substantially more CPU time (cycles/instruction) than a table look up
operation for performing set intersection or subset check operations.

4. Conclusion
The problem on finding inconsistent elements in a decision tables plays an important role on information systems.
In this paper, we present a new proposition on finding inconsistent elements in a decision table on dominance
principle. Then, we prove that our proposition is simpler and more understandable than previous methods.
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