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Abstract: To formulate the intrinsic metrics by using the code representations of the points on the classical fractals
is an important research area since these formulas help to prove many geometrical and structural properties of these
fractals. In various studies, the intrinsic metrics on the code set of the Sierpinski gasket, the Sierpinski tetrahedron, and
the Vicsek (box) fractal are explicitly formulated. However, in the literature, there are not many works on the intrinsic
metric that is obtained by the code representations of the points on fractals. Moreover, as seen in the studies on this
subject, the contraction coefficients of the associated iterated function systems (IFSs) are the same for each fractal. In
this paper, we define the intrinsic metric formula on the added Sierpinski triangle, whose IFS has different contraction
factors, by using the code representations of the points of it. Finally, we give several geometrical properties of this fractal
by using the intrinsic metric formula.
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1. Introduction
The Cantor set, Sierpinski gasket, Koch curve, Sierpinski carpet, Vicsek fractal, Sierpinski tetrahedron, and
Menger sponge are some of the fundamental examples of the classical fractals [2, 3, 8, 11, 14]. These sets have
strong self-similarity, which means that every neighborhood of any point contains a copy of the entire shape
(see Figure 1). There have been different ways to define the intrinsic metrics on the classical fractals such as
the classical Sierpinski Gasket, the discrete Sierpinski Gasket, the Sierpinski Carpet, and the Vicsek fractals in
the last two decades (for details see [5–7, 9, 13, 17, 24, 25]). Using the code representations of the points on the
classical Sierpinski gasket, the Vicsek fractal, the Sierpinski tetrahedron, and mod-3 Sierpinski gasket SG(3) ,
the intrinsic metric formulas are given explicitly in [1, 15, 16, 22]. Moreover, the intrinsic metric formulas on
isosceles and scalene Sierpinski triangles are defined in [19]. As a result, many geometrical and topological
properties are investigated in [18–20, 22]. For example, the code representations of the points on the Sierpinski
gasket according to the number of geodesics is also classified in [23]. Then the intrinsic metric formula is given
for the n -dimensional Sierpinski gasket and thus the number of geodesics on them are investigated in [10]. The
intrinsic metric formulas are reformulated on the code set of the equilateral Sierpinski propeller, which is self-
similar but not strong self-similar, in [12]. Furthermore, some dynamical systems on the Sierpinski gasket and
the Sierpinski tetrahedron are defined and whether these dynamical systems would be chaotic is investigated
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by using these intrinsic metrics in [1] and [21], respectively. As seen in these studies, these intrinsic formulas
help to show many properties of these fractals.

Figure 1. The Sierpinski gasket and the Sierpinski tetrahedron, respectively.

The main aim of the paper is to give the intrinsic metric formula for a different fractal, which we call
the added Sierpinski triangle. Note that the associated iterated function systems (IFSs) of fractals such as the
Sierpinski gasket, mod-3 Sierpinski gasket SG(3) , Sierpinski carpet, Sierpinski tetrahedron, and Box fractal
have the same contraction factors, but the contraction factors of the IFS of the added Sierpinski triangle are not
same. This paper will thus be the first work giving the intrinsic metric formula defined by the code representation
of points on a fractal whose IFS consists of different contraction factors. Because of the different contraction
coefficients, there are some difficulties in formulating the intrinsic metric on the code set of this fractal. For a
better understanding, we first the give the code representations of the points on the added Sierpinski triangle
in Proposition 2.1. Then we mention Cases 1, 2, 3, 4, 5, and 6, which include all states of the construction
of the intrinsic metric on this set. We thus formulate the intrinsic metric in Theorem 3.3. In Lemma 3.5, we
give a useful abbreviation for this formula. In Propositions 3.4, 3.6, and 3.8, we investigate some geometrical
properties of this fractal. Examples 3.9 and 3.10 also show how this formula is used in different cases.

In the following section, we first explain the construction of the added Sierpinski triangle and then
investigate the code representations of points on this set.

2. The code representations of the points and the construction of the added Sierpinski triangle

The construction of the added Sierpinski triangle is actually similar to the construction of the Sierpinski gasket.
The only difference is that smaller triangles are added instead of removed triangles in each step, which is the
reason why we call it the added Sierpinski triangle. For the construction of this fractal, we consider an equilateral
triangle (with edge length 1) as the initial set. We mark the midpoints of each edge of the triangle and obtain
four smaller triangles. Then we remove the middle triangle and mark the midpoints of the removed triangle.
Combining these points, we obtain a smaller triangle. Obviously, the middle triangle has edge length two times
smaller than the edge length of the remaining three triangles (see step 1 in Figure 2). We denote this structure

by T̃1 . In the second step, we repeat this process for each four new triangles and we get T̃2 . Continuing this
process infinitely, we get the added Sierpinski triangle (see the last step in Figure 2). We denote this fractal

by S̃ . Therefore, we have
∞∩
i=0

T̃i = S̃. This fractal can also be obtained as the attractor of an iterated function
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system (IFS). Let {R2; f0, f1, f2, f3} be an iterated function system where
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with the contraction factors 1
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2
, respectively. Since

F (S̃) =

3∪
i=0

fi(S̃) = S̃,

the attractor of the IFS above is the added Sierpinski triangle. This IFS satisfies the open set condition and
thus the unique real solution of the Moran equation,

1

4s
+

1

2s
+

1

2s
+

1

2s
= 1,

gives the fractal dimension of this set. Solving this equation, we compute the dimension s as

s =
ln( 3+

√
13

2 )

ln 2
.

Figure 2. The construction of the added Sierpinski triangle.

Now we show the code representations of the points on the added Sierpinski triangle and we constitute
the code sets thanks to these code representations. As seen in Figure 3, we denote the middle part of S̃ by
S̃0 (with purple color), the left-bottom part of S̃ by S̃1 (with green color), the right-bottom part of S̃ by S̃2

(with blue color), and the upper part of S̃ by S̃3 (with yellow color). Hence, we get

S̃ = S̃0 ∪ S̃1 ∪ S̃2 ∪ S̃3.

We similarly denote the middle part of S̃a1
by S̃a10 , the left-bottom part of S̃a1

by S̃a11 , the right-bottom

part of S̃a1 by S̃a12 , and the upper part of S̃a1 by S̃a13 where a1 ∈ {0, 1, 2, 3} . Therefore, we obtain

S̃a1
= S̃a10 ∪ S̃a11 ∪ S̃a12 ∪ S̃a13.
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Figure 3. The code sets of the added Sierpinski triangle.

Let σ = a1a2 . . . ak−1 where ai ∈ {0, 1, 2, 3} for i = 0, 1, 2, . . . , k − 1 . Generally, we express the middle

part of S̃σ by S̃σ0 , the left-bottom part of S̃σ by S̃σ1 , the right-bottom part of S̃σ by S̃σ2 , and the upper
part of S̃σ by S̃σ3 . We thus have

S̃σ = S̃σ0 ∪ S̃σ1 ∪ S̃σ2 ∪ S̃σ3

(see Figure 4).

Figure 4. The added Sierpinski subtriangle S̃σ .

Therefore, for the subtriangles S̃a1 , S̃a1a2 , S̃a1a2a3 , . . . , S̃a1a2a3...ak
, . . . of S̃ , we have S̃a1 ⊃ S̃a1a2 ⊃

S̃a1a2a3
⊃ . . . ⊃ S̃a1a2a3...ak

. . . ⊃ . . . . There exists a point A ∈ S̃ such that

∞∩
k=1

S̃a1a2a3...ak
= {A}

from the Cantor intersection theorem. The code representation of A is denoted by a1a2a3 . . . ak . . . . In the
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following proposition, we classify the points on S̃ according to their code representations:

Proposition 2.1 The number of the code representations of any point on the added Sierpinski triangle is either
1 , 2 , or 3 .

Proof First, we show the points that have three code representations as follows: i) Let A be the intersection
point of any two subtriangles in the same level of Sσ such that

S̃σ0 ∩ S̃σak
= {A},

where σ = a1a2 . . . ak−1 and ak ∈ {1, 2, 3}.

• If we choose ak = 1 , then we have

S̃σ0 ∩ S̃σ1 = S̃σ0 ∩ (S̃σ12 ∩ S̃σ13) = {A}.

We now consider three different nested sequences of sets as follows:

S̃σ0, S̃σ01, S̃σ011, . . . , S̃σ011...1, . . . ,

S̃σ1, S̃σ13, S̃σ132, . . . , S̃σ1322...2, . . . ,

S̃σ1, S̃σ12, S̃σ123, . . . , S̃σ1233...3, . . . .

From the Cantor intersection theorem, the code representations of A are σ0111 . . . , σ13222 . . . , and
σ12333 . . . , respectively (see A = Vσ in Figure 5).

Figure 5. The points Tσ , Vσ , and Wσ , which have three different code representations on S̃σ .

• Let ak = 2 . Since
S̃σ0 ∩ S̃σ2 = S̃σ0 ∩ (S̃σ21 ∩ S̃σ23) = {A},
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we have three different nested sequences of sets as follows:

S̃σ0, S̃σ02, S̃σ022, . . . , S̃σ022...2, . . .

S̃σ2, S̃σ21, S̃σ213, . . . , S̃σ2133...3, . . .

S̃σ2, S̃σ23, S̃σ231, . . . , S̃σ2311...1, . . . .

Thus, the code representations of A are σ0222 . . . , σ21333 . . . , and σ23111 . . . , respectively (see A = Wσ

in Figure 5).

• For ak = 3 , we have
S̃σ0 ∩ S̃σ3 = S̃σ0 ∩ (S̃σ31 ∩ S̃σ32) = {A}

and three different nested sequences of sets as follows:

S̃σ0, S̃σ03, S̃σ033, . . . , S̃σ033...3, . . . ,

S̃σ3, S̃σ31, S̃σ312, . . . , S̃σ3122...2, . . . ,

S̃σ3, S̃σ32, S̃σ321, . . . , S̃σ3211...1, . . . .

Then A has code representations such as σ0333 . . . , σ31222 . . . , and σ32111 . . . , respectively (see A = Tσ

in Figure 5).

Therefore, the vertices points Tσ , Vσ , and Wσ of S̃σ0 have three different code representations.

ii) Let A be the intersection point of any two subtriangles in the same level of Sσ such that

S̃σak
∩ S̃σbk = {A},

where σ = a1a2 . . . ak−1 and ak, bk ∈ {1, 2, 3} and ak ̸= bk. Hence, we get the nested sequence of sets
such that

S̃σak
, S̃σakbk , S̃σakbkbk , . . . , S̃σakbkbk...bk , . . . ,

S̃σbk , S̃σbkak
, S̃σbkakak

, . . . , S̃σbkakak...ak
, . . . .

The Cantor intersection theorem states that the code representations of A are σakbkbk . . . bk and
σbkakak . . . ak , respectively, and thus A has two different code representations. For example, the points
Mσ , Lσ , and Kσ in Figure 5 have two different code representations.

iii) If A is not the intersection point of any two subtriangles in the same level of Sσ , then A has a unique
code representation. That is, it is different from all code representations denoted by cases i and ii above.
To exemplify, the vertex points P , Q , and R of S̃ and many points such as 121212 . . . , 01230123 . . . ,
and nonrepeating forms have unique code representation.

Consequently, the code sets of the subtriangles S̃σ are expressed as

S̃σ = {σakak+1ak+2 . . . | ai ∈ {0, 1, 2, 3}, i = k, k + 1, k + 2, . . .}.

2
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3. The construction of the intrinsic metric on the code set of the added Sierpinski triangle

The intrinsic metric on a set K is expressed as follows:

d(x, y) = inf{δ | δ is the length of a rectifiable curve in K joining x and y} (3.1)

for x, y ∈ K (for details see [4]). The intrinsic metric on the code set of the equilateral Sierpinski gasket is also
defined in [22]:

Definition 3.1 Let a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . be two code representations of the points
A and B on the equilateral Sierpinski gasket, respectively, where ai = bi for i = 1, 2, . . . , k − 1 , ak ̸= bk and
ai, bi ∈ {0, 1, 2} for i = 1, 2, 3 . . . , . The intrinsic metric between code representations of the points A and B is
formulated as follows:

d(A,B) = min
{ ∞∑

i=k+1

αi + βi

2i
,
1

2k
+

∞∑
i=k+1

γi + δi
2i

}
, (3.2)

where

αi =

{
0, ai = bk
1, ai ̸= bk

, βi =

{
0, bi = ak
1, bi ̸= ak

,

γi =

{
0, ai ̸= ak and ai ̸= bk
1, otherwise , δi =

{
0, bi ̸= bk and bi ̸= ak
1, otherwise .

We now formulate the intrinsic metric by using the code representations of points on the added Sierpinski
triangle. Note that in each step there are middle triangles in the added Sierpinski triangle different from the
Sierpinski gasket. To formulate the intrinsic metric on S̃ seems quite complicated due to the different contraction
factors and the increase in shortest paths.

Now we express our first observations for this construction. We first need some notations and expressions
to define the intrinsic metric by using the code representation of points. Suppose that the code representations
of the different points A and B on S̃ are a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . , respectively, where
ai, bi ∈ {0, 1, 2, 3} . Let k = min{i | ai ̸= bi} and σ = a1a2 . . . ak−1 . Assume that the number of elements of
the set

κ = {i | ai = bi = 0, i < k}

is t . Moreover, let

M = {i+ 1 | ai = 0, i > k} = {m1,m2,m3, . . .},

L = {i+ 1 | bi = 0, i > k} = {l1, l2, l3, . . .},

such that m1 < m2 < m3 < . . . and l1 < l2 < l3 < . . . .

• Let ak ̸= 0 and bk ̸= 0. Then the shortest paths between the points A and B must pass through either the
point S̃σak

∩S̃σbk or the line segment (S̃σak
∩S̃σck)(S̃σbk∩S̃σck) or the line segment (S̃σak

∩S̃σ0)(S̃σbk∩S̃σ0)

(see Case 1, Case 2, and Case 3, respectively). Thus, these three paths should be taken into account and
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Figure 6. Three different cases for the shortest paths between A and B where ak = 1 and bk = 2 .

the minimum of the lengths of them should be taken for the calculation of the length of the shortest paths
(see Figure 6).

Case 1. The length of the shortest paths between A and S̃σak
∩ S̃σbk and the length of the shortest

paths between B and S̃σak
∩ S̃σbk are obtained by

A =

m1−1∑
i=k+1

αi

2i+t
+

1

2

m2−1∑
i=m1

αi

2i+t
+ · · ·+ 1

2r

mr+1−1∑
i=mr

αi

2i+t
+ · · · , (3.3)

B =

l1−1∑
i=k+1

βi

2i+t
+

1

2

l2−1∑
i=l1

βi

2i+t
+ · · ·+ 1

2p

lp+1−1∑
i=lp

βi

2i+t
+ · · · , (3.4)

respectively, where

αi =

{
0, ai = bk
1, ai ̸= bk

, βi =

{
0, bi = ak
1, bi ̸= ak

.

Thus, the length of the shortest paths between A and B passing through the point S̃σak
∩ S̃σbk equals

A+ B . If M = ∅ and L = ∅ , then this length is computed by

A+ B =

∞∑
i=k+1

αi + βi

2i+t
.

Case 2. Suppose that ck ̸= ak, ck ̸= bk, and ck ∈ {1, 2, 3}. The length of the shortest paths between

point A and point S̃σak
∩S̃σck and the length of the shortest paths between point B and point S̃σbk ∩S̃σck

are

A′ =

m1−1∑
i=k+1

γi

2i+t
+

1

2

m2−1∑
i=m1

γi

2i+t
+ · · ·+ 1

2r

mr+1−1∑
i=mr

γi

2i+t
+ · · · , (3.5)
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B′ =

l1−1∑
i=k+1

δi
2i+t

+
1

2

l2−1∑
i=l1

δi
2i+t

+ · · ·+ 1

2p

lp+1−1∑
i=lp

δi
2i+t

+ · · · , (3.6)

respectively, where

γi =

{
0, ai = ck
1, ai ̸= ck

, δi =

{
0, bi = ck
1, bi ̸= ck

.

Moreover, the length of the side (S̃σak
∩ S̃σck)(S̃σbk ∩ S̃σck) of the subtriangle S̃σck is 1

2t+k
. Hence,

the length of the shortest paths between the points A and B passing through the line segment (S̃σak
∩

S̃σck)(S̃σbk ∩ S̃σck) equals 1

2t+k
+A′ + B′. If M = ∅ and L = ∅ , then this length is obtained as

1

2t+k
+

∞∑
i=k+1

γi + δi
2i+t

.

Case 3. To compute the length of the shortest paths between points A and B passing through the line
segment (S̃σak

∩ S̃σ0)(S̃σbk ∩ S̃σ0) , which is an edge of S̃σ0 , we must take into account the following cases:

i) Let ak+1 ̸= ak and ak+1 ̸= 0 . For aµ ̸= ak+1, aµ ̸= ak, and aµ ̸= 0 , the length of the shortest

paths between points A and point S̃σak
∩ S̃σ0 is obtained by

A′′ =

m1−1∑
i=k+2

φi

2i+t
+

1

2

m2−1∑
i=m1

φi

2i+t
+ · · ·+ 1

2r

mr+1−1∑
i=mr

φi

2i+t
+ · · · , (3.7)

where

φi =

{
0, ai = aµ
1, otherwise .

ii) Suppose that ak+1 = 0 . For

r = min{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2},

this length is computed by

A′′ =
1

2k+t+2
+

1

2

m2−1∑
i=k+2

φi

2i+t
+

1

22

m3−1∑
i=m2

φi

2i+t
+ · · ·+ 1

2r

mr+1−1∑
i=mr

φi

2i+t
+ · · · , (3.8)

where

φi =

{
0, ai = ar
1, otherwise.

Note that we obtain φi = 1 for i = k + 2, k + 3, k + 4, . . . if

{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} = ∅.
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iii) There exist three different cases as follows:

a) Let ak = ak+1 = . . . = as−1 ̸= as ̸= 0 (s > k + 1) . We define

r = min{i | ai ̸= 0, ai ̸= ak, i > s}.

In this case, we obtain

φi =

{
0, ai = ar
1, otherwise

for i ̸= s and φs = 0 for i = s . If

{i | ai ̸= 0, ai ̸= ak, i > s} = ∅,

then we also get φi = 1 for i ̸= s and φs = 0 for i = s .
b) Let ak = ak+1 = . . . = as−1 and as = 0 (s > k + 1) . In this case, we get

φi =

{
0, ai = ar
1, otherwise

for i ̸= s and φs =
1

2
for i = s where r = min{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} . If

{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} = ∅,

then we obtain φi = 1 for i ̸= s and φs =
1

2
for i = s .

c) If ak = ak+1 = · · · = ai = · · · , then φi = 1 for i = k + 2, k + 3, k + 4, . . .

In cases a, b, and c the length of the shortest paths between points A and point S̃σak
∩ S̃σ0 is

computed by

A′′ =
1

2k+t+1
+

m1−1∑
i=k+2

φi

2i+t
+

1

2

m2−1∑
i=m1

φi

2i+t
+ · · ·+ 1

2r

mr+1−1∑
i=mr

φi

2i+t
+ · · · . (3.9)

Remark 3.2 Note that similar calculations are valid for the computation of the length of the shortest paths
between points B and point S̃σbk ∩S̃σ0 (in this case, we use θi instead of φi to avoid confusion). Since the

length of the side (S̃σak
∩ S̃σ0)(S̃σbk ∩ S̃σ0) of the subtriangle S̃σ0 is 1

2t+k+1
, we compute that the length

of the shortest paths between points A and B passing through the line segment (S̃σak
∩ S̃σ0)(S̃σbk ∩ S̃σ0)

equals 1

2t+k+1
+A′′ + B′′.

• Let ak ̸= 0 and bk = 0 . In this case, the shortest paths between points A and B must pass through one
of the vertices of the subadded Sierpinski triangle S̃σ0 . That is, the shortest paths must pass through
either point S̃σ0 ∩ S̃σak

or (S̃σ0 ∩ S̃σck) or (S̃σ0 ∩ S̃σb′k
) (see Case 4, Case 5, and Case 6, respectively).

These three paths should thus be taken into account and the minimum of the lengths of them should be
taken for the calculation of the length of the shortest paths (see Figure 7).
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Figure 7. Three different cases for the shortest paths between A and B where ak = 1 and bk = 0 .

Case 4. For the computation of the length of the shortest paths between points A and B passing through
point S̃σak

∩ S̃σ0 , we add the length of the shortest paths between points A and S̃σak
∩ S̃σ0 and the length

of the shortest paths between points B and S̃σak
∩ S̃σ0 . Note that we use the appropriate value A′′ given

in Case 3 to compute the length of the shortest paths between points A and S̃σak
∩ S̃σ0 . Moreover, we

obtain that the length of the shortest paths between points B and S̃σak
∩ S̃σ0 is

1

2

( l1−1∑
i=k+1

βi

2i+t
+

1

2

l2−1∑
i=l1

βi

2i+t
+ · · ·+ 1

2r

lp+1−1∑
i=lp

βi

2i+t
+ · · ·

)
=

1

2
B, (3.10)

where

βi =

{
0, bi = ak
1, bi ̸= ak

.

Thus, the sum of A′′ and 1
2B gives us the length of the shortest paths between points A and B passing

through the point S̃σak
∩ S̃σ0 .

Case 5. To compute the length of the shortest paths between points A and B passing through the line
segment (S̃σak

∩ S̃σck)(S̃σ0 ∩ S̃σck) , first we obtain the length of the shortest paths between points B and

S̃σ0 ∩ S̃σck :

1

2

( l1−1∑
i=k+1

δi
2i+t

+
1

2

l2−1∑
i=l1

δi
2i+t

+ · · ·+ 1

2r

lp+1−1∑
i=lp

δi
2i+t

+ · · ·
)
=

1

2
B′, (3.11)

where

δi =

{
0, bi = ck
1, bi ̸= ck

and ck ̸= ak for ck ∈ {1, 2, 3} . Also, to compute the length of the shortest paths between points A

and S̃σak
∩ S̃σck , we use the appropriate formula given in Case 2. Thus, the sum 1

2t+k+1
+ A′ +

1

2
B′

gives us the length of the shortest paths between points A and B passing through the line segment
(S̃σak

∩ S̃σck)(S̃σ0 ∩ S̃σck) .
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Case 6. For the computation of the length of the shortest paths between points A and B passing through
the line segment (S̃σak

∩ S̃σb′k
)(S̃σ0 ∩ S̃σb′k

) where b′k ̸= ak , b′k ̸= ck and b′k ∈ {1, 2, 3} , note that the

length of the shortest paths between points A and S̃σak
∩ S̃σb′k

equals the value A given in Case 1 (use
b′k instead of bk ). Moreover,

C =
1

2

( l1−1∑
i=k+1

β′
i

2i+t
+

1

2

l2−1∑
i=l1

β′
i

2i+t
+ · · ·+ 1

2p

lp+1−1∑
i=lp

β′
i

2i+t
+ · · ·

)
(3.12)

denotes the length of the shortest paths between points B and S̃σ0 ∩ S̃σb′k
where

β′
i =

{
0, bi = b′k
1, bi ̸= b′k

.

Hence, the sum 1

2t+k+1
+A+C gives us the length of the shortest paths between points A and B passing

through the line segment (S̃σak
∩ S̃σb′k

)(S̃σ0 ∩ S̃σb′k
) .

Theorem 3.3 Let a1a2 . . . ak−1akak+1 . . . and b1b2 . . . bk−1bkbk+1 . . . be two representations, respectively, of
points A and B on the added Sierpinski triangle such that ai = bi for i = 1, 2, . . . , k − 1 and ak ̸= bk and
ai, bi ∈ {0, 1, 2, 3}. If ak ̸= 0 ̸= bk , then the intrinsic metric between the code representations of points A and
B is formulated as

d(A,B) = min
{

A+ B, 1

2k+t
+A′ + B′,

1

2k+t+1
+A′′ + B′′

}
, (3.13)

and if ak ̸= 0, bk = 0 , then this formula is obtained as

d(A,B) = min
{
A′′ +

1

2
B, 1

2t+k+1
+A′ +

1

2
B′,

1

2t+k+1
+A+ C

}
(3.14)

such that A,A′,A′′,B,B′,B′′, C are defined in Cases 1, 2, 3, 4, 5, and 6.

Proof We only prove some special cases since the proof of all the cases is extremely long and tedious. Note
first that points A and B are in the same subadded Sierpinski triangles S̃a1a2...ai for i < k . Thus, if ai ̸= 0

for i = 1, 2, . . . , k− 1 , then the length of the shortest paths between these points is less than or equal to 1

2k−1
.

However, an edge length of the subtriangles S̃1, S̃2 and S̃3 is two times greater than an edge length of S̃0 .
For example, an edge length of the sub-triangle S̃123 is eight times greater than an edge length of S̃000 . If the
element number of the set {i | ai = bi = 0, i < k} is t , then the length of the shortest paths is less than or

equal to 1

2k+t−1
.

We now begin the proof of Case 3, which involves more complicated situations than Case 1 and Case 2.
The proofs of the other cases can also be done in a similar manner.

i) Let ak+1 ̸= ak and ak+1 ̸= 0 . We first compute the length of the shortest paths between A and

(S̃σak
∩S̃σ0). Since ai ∈ {0, 1, 2, 3} for i ≥ k+2 , there exists a unique number aµ such that aµ ̸= ak , aµ ̸= ak+1 ,
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and aµ ̸= 0 . If ak+2 ̸= aµ , then A is not contained by S̃σakak+1aµ or A = S̃σakak+1ak+2
∩ S̃σakak+1aµ . Thus,

the shortest paths must pass through S̃σakak+1ak+2
∩ S̃σakak+1aµ (that is, the length of the shortest paths is

greater than 1

2k+t+2
if A is not contained by S̃σakak+1aµ ). If A = S̃σakak+1ak+2

∩ S̃σakak+1aµ , then the length

of the shortest paths between A and (S̃σak
∩ S̃σ0) equals 1

2k+t+2
. If A is contained by S̃σakak+1aµ

(that is,

ak+2 = aµ ) and A ̸= S̃σakak+1ak+2
∩ S̃σakak+1aµ , then this length is less than 1

2k+t+2
. By applying a similar

method in the other steps, it is easily seen that if M = ∅ , then the length of the shortest paths between A and
(S̃σak

∩ S̃σ0) is obtained as

A′′ =

∞∑
i=k+2

φi

2i+t
(3.15)

such that

φi =

{
0, ai = aµ
1, otherwise .

However, if M ̸= ∅ , then calculations become a little more complicated. Suppose now that ai = 0 for at
least i ∈ {k + 2, k + 3, k + 4, . . .} and let

M = {i+ 1 | ai = 0, i > k + 1} = {m1,m2,m3, . . .}

such that m1 < m2 < m3 < . . . . In this case, point A is the element of the subtriangle S̃σak...am1−1am1
. Thus,

the length of the shortest paths between the points (S̃σakak+1ak+2...am1−1
∩ S̃σakak+1ak+2...aµ

) and (S̃σak
∩ S̃σ0)

is obtained as
m1−1∑
i=k+2

φi

2i+t
.

However, an edge length of the subtriangle S̃σak...am1−20 is two times less than an edge length of the sub-

triangles S̃σak...am1−21 , S̃σak...am1−22 and S̃σak...am1−23 . The length of the shortest paths between the points

(S̃σakak+1ak+2...am1
...am2−1 ∩ S̃σakak+1ak+2...am2−2aµ) , and (S̃σak

∩ S̃σ0) is obtained as

m1−1∑
i=k+2

φi

2i+t
+

1

2

m2−1∑
i=m1

φi

2i+t
,

and if we continue like this, then the length of the shortest paths between A and (S̃σak
∩ S̃σ0) is computed as

in Equation 3.7.

ii) Suppose that ak+1 = 0. In this case, the shortest paths between A and (S̃σak
∩ S̃σ0) are determined

by the first term (if available), which is different from zero and ak since there are two different options. That
is, if

r = min{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2},
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then one of the shortest paths must pass through the point (S̃σak0 ∩ S̃σakar ) . Note that the length of the

shortest path between (S̃σak0 ∩ S̃σakar ) and (S̃σak
∩ S̃σ0) is 1

2k+t+2
. Since ak+1 = 0 , we get m1 = k + 2 and

thus M is a nonempty set.

Suppose that A is not contained by S̃σak0ar . That means that ak+2 ̸= ar . It follows that the shortest

paths must pass through S̃σak0ak+2
∩ S̃σak0ar

and the length of the shortest paths between (S̃σak0 ∩ S̃σakar
)

and (S̃σak0ak+2
∩ S̃σak0ar ) is greater than 1

2k+t+3
. If A = S̃σak0ak+2

∩ S̃σak0ar , then the length of the shortest

paths between A and (S̃σak0 ∩ S̃σ0ar
) equals 1

2k+t+3
. If A is contained by S̃σak0ar

(that is, ak+2 = ar ),

then this length is less than 1

2k+t+3
. Following similar steps, the length of the shortest paths between A and

(S̃σak
∩ S̃σ0) is obtained as in Equation 3.8 where

φi =

{
0, ai = ar
1, otherwise .

Note that if

min{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} = ∅,

then for the computation the length of the shortest paths between A and (S̃σak
∩ S̃σ0) we add in each step the

edge lengths of the related subtriangles where the shortest paths pass through. In this case, we get φi = 1 for
i = k + 2, k + 3, k + 4, . . . .

iii) In cases a, b, and c, we certainly know that ak = ak+1. Thus, to compute the length of the shortest

paths between A and (S̃σak
∩ S̃σ0) , there are three different options. That is, the shortest paths must pass

through one of the points (S̃σakak
∩ S̃σakal

) where al ̸= ak and al ∈ {0, 1, 2, 3} . Note that the length of the

shortest paths between (S̃σakak
∩ S̃σakal

) and (S̃σak
∩ S̃σ0) is 1

2k+t+1
. If ak = ak+1 = ak+2 , then the shortest

paths must pass through one of the points (S̃σakakak
∩ S̃σakakal

) . Moreover, the length of the shortest paths

between (S̃σakak
∩ S̃σakal

) and (S̃σakakak
∩ S̃σakakal

) is 1

2k+t+2
. If ak+2 = as ̸= ak and as ̸= 0 , then there

are still two different options and the shortest paths must pass through one of the points (S̃σakak
∩ S̃σakas)

or (S̃σakak
∩ S̃σak0) . Notice that the index s only reduces the number of points that the shortest paths pass

through and does not generate an additional length. Moreover, the first term ar , which is different from ak

and 0 for i > s , determines the point where the shortest paths pass through. That means that the shortest
paths pass through the point (S̃σakak

∩ S̃σakas) if ar = as or the point (S̃σakak
∩ S̃σak0) if ar ̸= as. Similarly,

the index r only determines the point where the shortest paths pass through and does not add an additional
length. In the general case ak = ak+1 = . . . = as−1 ̸= as ̸= 0 (s > k + 1) , a similar way can be followed.
Taking into account that M is a nonempty set, we compute the length of the shortest paths between A and
(S̃σak

∩ S̃σ0) as in Equation 3.9 where

r = min{i | ai ̸= 0, ai ̸= ak, i > s},
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and

φi =

{
0, ai = ar
1, otherwise

for i ̸= s and φs = 0 for i = s . From the construction, it is clear that φi = 1 for i ̸= s and φs = 0 for i = s if

{i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} = ∅.

Let ak+2 = as = 0 . First, the shortest paths between A and (S̃σak
∩ S̃σ0) must pass through the point

(S̃σakak
∩ S̃σak0) . It is obvious that the length of the shortest paths between (S̃σak

∩ S̃σ0) and (S̃σakak
∩ S̃σak0)

is 1

2k+t+1
. However, there are still two different options and the shortest paths must pass through one of

the points (S̃σakak0 ∩ S̃σakakal
) where al ∈ {1, 2, 3} and al ̸= ak . Note that the length of the shortest paths

between (S̃σakak0 ∩ S̃σakakal
) and (S̃σakak

∩ S̃σak0) is 1

2k+t+3
. In this case, the first term ar , which is different

from ak and 0 for i > s , determines the point where the shortest paths pass through. That means that the
shortest path must pass through the points(S̃σakak0 ∩ S̃σakakar ) . Note that the index r only determines the
point where the shortest paths pass through and does not generate an additional length. Hence, generally if
ak = ak+1 = . . . = as−1 and as = 0 (s > k + 1) , then we get Equation 3.9 for the computation of the length
of the shortest paths where

φi =

{
0, ai = ar
1, otherwise

for i ̸= s and φs =
1

2
for i = s . It is clear that if {i | ai ̸= 0, ai ̸= ak, i ≥ k + 2} = ∅, then we obtain φi = 1

for i ̸= s and φs =
1

2
for i = s .

In the case ak = ak+1 = ak+2 = . . . , we add in each step the edge lengths of the related subtriangles
where the shortest paths pass. Thus, we obtain φi = 1 for i = k + 2, k + 3, k + 4, . . . . 2

Now we give some geometrical properties of S̃ by using the intrinsic metric formula given in Theorem 3.3.
In the following propositions and lemma, we consider the code representations of A,B,C as σakak+1ak+2 . . . ,
σbkbk+1bk+2 . . . , and σckck+1ck+2 . . . where ai, bi, ci ∈ {0, 1, 2, 3} for i = 1, 2, 3 . . . and σ = a1a2 . . . ak−1. Note

that if A is a vertex point of S̃σ , then this point has the code representation σakakak . . . where ak ∈ {1, 2, 3}.

Proposition 3.4 If A and B are the points on S̃σ , then d(A,B) ≤ 1

2k+t−1
. Furthermore, if ak = 0 or

bk = 0 , then d(A,B) ≤ 3

2k+t+1
.

Proof Let A and B be the points on S̃σ and let ak ̸= 0 and bk ̸= 0 . To obtain the maximum value of
A+B , it must be ak ̸= bk , M = L = ∅ , and αi = βi = 1 for i = k+1, k+2, k+3, . . . . Therefore, we compute

A + B =
1

2k+t
+

1

2k+t
=

1

2k+t−1
from formulas (3.3) and (3.4). This shows that d(A,B) ≤ 1

2k+t−1
owing to

the fact that

d(A,B) = min
{ 1

2k+t−1
,

1

2t+k
+A′ + B′,

1

2t+k+1
+A′′ + B′′

}
.

370



İKLİM ŞEN and SALTAN/Turk J Math

Suppose now that ak ̸= 0 and bk = 0 (the other case is done similarly). For the computation of the

maximum value of A′′ +
1

2
B , we must take into account that ak ̸= bk , M = L = ∅ , and φi = βi = 1 for

i = k + 1, k + 2, k + 3, . . . . Hence, we must use the formula given in Case 3-iii-c (see formula (3.9)) for the
maximum value of A′′ . This shows that

A′′ =
1

2k+t+1
+

∞∑
i=k+2

1

2i+t
=

1

2k+t+1
+

1

2k+t+1
=

1

2k+t
.

We also compute

1

2
B =

1

2

∞∑
i=k+1

1

2i+t
=

1

2k+t+1

from (3.10). Thus, we obtain the maximum value as A′′ +
1

2
B =

1

2k+t
+

1

2k+t+1
=

3

2k+t+1
. Since

d(A,B) = min
{

3

2k+t+1
,

1

2t+k+1
+A′ +

1

2
B′,

1

2t+k+1
+A+ C

}
,

we compute d(A,B) ≤ 3

2k+t+1
. 2

Lemma 3.5 Let A be a vertex point and B be any point of S̃σ , and let the code representation of these points
be σakakak . . . and σbkbk+1bk+2 . . . , respectively, where ak ∈ {1, 2, 3} , bi ∈ {0, 1, 2, 3} and ak ̸= bk .

a) If bk ̸= 0 , then d(A,B) = A+ B.

b) If bk = 0 , then d(A,B) = A′′ +
1

2
B.

Proof

a) We first know that A + B ≤ 1

2k+t−1
due to Proposition 3.4. We also get γi = 1 since ai = ak for

i = k + 1, k + 2, k + 3, . . . . In this case, we compute

A′ =

∞∑
i=k+1

1

2i+t
=

1

2k+t
.

This shows that
1

2k+t
+A′ + B′ =

1

2k+t
+

1

2k+t
+ B′ =

1

2k+t−1
+ B′ ≥ d(A,B).

Moreover, it is obvious that

A =

∞∑
i=k+1

1

2i+t
=

1

2k+t
= A′′ =

1

2k+t+1
+

∞∑
i=k+2

1

2i+t
.
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We now compute B and B′′ , respectively, and then we compare them. First suppose that bk+1 = ak. In
this case, we get βk+1 = 0 . This shows that

B =

l1−1∑
i=k+2

βi

2i+t
+

1

2

l2−1∑
i=l1

βi

2i+t
+ · · ·+ 1

2p

lp+1−1∑
i=lp

βi

2i+t
+ · · · ≤ 1

2k+t+1

and thus

B ≤ 1

2k+t+1
+ B′′.

It follows that A+ B ≤ 1

2k+t+1
+A′′ + B′′. Similar cases are also valid for bk+1 = bk and bk+1 = 0.

However, if bk+1 = ck , then A + B =
1

2k+t+1
+ A′′ + B′′. Since bµ equals ak , we have βi = θi

i = k + 2, k + 3, k + 4, . . . .

b) It is seen that A′′ +
1

2
B ≤ 3

2k+t+1
from Proposition 3.4. We also have αi = γi = 1 for i = k + 1, k +

2, k + 3, . . . and thus A = A′ =
1

2k+t
.

This shows that

1

2k+t+1
+A′ +

1

2
B′ ≥ 3

2k+t+1
and 1

2k+t+1
+A+

1

2
C ≥ 3

2k+t+1
.

This completes the proof. 2

Proposition 3.6 Let A,B,C be the vertices points of S̃σ . If X is any point of S̃σ , then

d(A,X) + d(B,X) + d(C,X) =
1

2k+t−2
.

Proof Let the code representation of X be σxkxk+1xk+2 . . . where xi ∈ {0, 1, 2, 3} for i = k, k+1, k+2, . . . .

There are two cases such that xk = 0 and xk ̸= 0. We give the proof of the first case (the other case is similarly

done). We use Case b given in Lemma 3.5 since the points A,B,C are the vertices points of S̃σ . Since ai = ak ,
bi = bk , and ci = ck for i = k + 1, k + 2, k + 3, . . . , each of A′′ s in d(A,X), d(B,X) , and d(C,X) equals
1

2k+t
and thus the sum of them is obtained as 3

2k+t
. We now compute the sum of B s in d(A,X), d(B,X) ,

and d(C,X) . Obviously, xk+1 equals one of the values ak , bk , ck , or 0 . Let i ≥ k + 1 . Note that if xi = 0 ,
then we obtain βi = 1 for the computation of each B s in d(A,X), d(B,X) , and d(C,X) . If xi = ak , then
we obtain βi = 0 for the computation B in d(A,X) and βi = 1 for the computation of each B in d(B,X)

and d(C,X) . That is, if xi ̸= 0 , one of the βi equals 0 and the other two equal 1 for the computation of B s
in d(A,X), d(B,X) , and d(C,X) . Therefore, the sum of B s in d(A,X), d(B,X) , and d(C,X) turns into the
form

1

2

( 1

2k+t
+

1

2k+t+1
+

1

2k+t+2
+ · · ·

)
=

1

2k+t
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in each case. Consequently, we obtain

d(A,X) + d(B,X) + d(C,X) =
3

2k+t
+

1

2k+t
=

1

2k+t−2
.

Therefore, the proof is completed. 2

Remark 3.7 Let the code representation of C be 000 . . . . We now consider the triangle T̃0 given as the initial
set in Figure 2. It is easily seen that the point C is the centroid of T̃0 .

Proposition 3.8 The distance between the vertex points of S̃σ and the points whose code representations are

σ000 . . . equals 1

3.2k+t−2
.

Proof The code representation of A is σakakak . . . where ak ∈ {1, 2, 3} since A is any vertex point of S̃σ .

We use the formula d(A,B) = A′′ +
1

2
B to compute the shortest distance between these points from Lemma

3.5. We first get

A′′ =
1

2k+t+1
+

∞∑
i=k+2

1

2i+t
=

1

2k+t+1
+

1

2k+t+1
=

1

2k+t
,

due to the fact that ak = ak+1 = ak+2 = . . . . Also, we compute

1

2
B =

1

2

( k+1∑
i=k+1

1

2i+t
+

1

2

k+2∑
i=k+2

1

2i+t
+ · · ·+ 1

2r

k+r+1∑
i=k+r+1

1

2i+t
+ · · ·

)
=

1

2

( 1

2k+t+1
+

1

2

1

2k+t+2
+ · · ·+ 1

2r
1

2k+r+t+1
+ · · ·

)
=

1

2k+t+2

(
1 +

1

22
+

1

24
+

1

26
+ · · ·

)
=

1

3

1

2k+t
,

since li = i+ 1 and βi = 1 for i = k + 1, k + 2, k + 3, . . . . This shows that

d(A,B) = A′′ +
1

2
B =

1

2k+t
+

1

3

1

2k+t
=

1

3

1

2k+t−2
.

2

3.1. Some instructive examples
Example 3.9 Suppose that the code representation of A is 1023111 . . . and the code representation of B is
200333 . . . . We now compute the length of the shortest paths and find one of the shortest paths.

First, we get k = 1 since k = min{i | ai ̸= bi} and a1 ̸= b1 . Also, we obtain t = 0 owing to the fact
that {i | ai = bi = 0, i < k} = ∅ . Moreover, we have

M = {i+ 1 | ai = 0, i > 1} = {3},

L = {i+ 1 | bi = 0, i > 1} = {3, 4},
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and we thus compute m1 = 3 , l1 = 3 , and l2 = 4 . Note that we consider the related formulas given in Cases
1, 2, and 3, respectively, since a1 ̸= 0 ̸= b1 . From Equations 3.3 and 3.4, we have

A =
1

22
+

1

2

( 0

23
+

1

24
+

1

25
+

1

26
· · ·

)
=

1

22
+

1

24
=

5

16
,

B =
1

22
+

1

2

1

23
+

1

22

( 1

24
+

1

25
+

1

26
+ · · ·

)
=

1

22
+

1

24
+

1

25
=

11

32
.

Thus, the length of the shortest paths passing through S̃ak
∩ S̃bk equals

A+ B =
5

16
+

11

32
=

21

32

(see blue path in Figure 8). From Equations 3.5 and 3.6, we obtain

A′ =
1

22
+

1

2

( 1

23
+

0

24
+

1

25
+

1

26
+

1

27
· · ·

)
=

1

22
+

1

24
+

1

25
=

11

32
,

B′ =
1

22
+

1

2

1

23
+

1

22

( 0

24
+

0

25
+

0

26
+ · · ·

)
=

1

22
+

1

24
=

5

16
,

since ck = 3 . Therefore, the length of the shortest paths passing through (S̃ak
∩ S̃ck)(S̃bk ∩ S̃ck) is computed as

1

2
+A′ + B′ =

1

2
+

11

32
+

5

16
=

37

32

(see yellow path in Figure 8). For the computation of A′′ and B′′ we get r as 3 and 4 , respectively. That is,
we have ar = 2 and br = 3. Then the following is obtained from Equation 3.8:

A′′ =
1

23
+

1

2

( 0

23
+

1

24
+

1

25
+

1

26
+ · · ·

)
=

1

23
+

1

24
=

3

16
,

B′′ =
1

23
+

1

2

( 1

23
+

0

24
+

0

25
+

0

26
· · ·

)
=

1

23
+

1

24
=

3

16
.

Therefore, the length of the shortest paths passing through (S̃ak
∩ S̃0)(S̃bk ∩ S̃0) is computed as

1

22
+A′′ + B′′ =

1

22
+

3

16
+

3

16
=

5

8

(see red path in Figure 8). Hence, we compute

d(A,B) = min
{21

32
,
37

32
,
5

8

}
=

5

8

and one of the shortest paths is the red path given in Figure 8.

Example 3.10 Let the code representation of A be 03301 = 0330111 . . . and let the code representation of B

be 002 = 0020202 . . . . We must use Formula 3.14 since a2 = 3 , b2 = 0 , k = 2 , and t = 1 . First, we compute
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Figure 8. Some of the paths that pass through the intersection points between A and B for a1 = 1 and b1 = 2 .

the length of the shortest paths between A and S̃03 ∩ S̃00 . Since a2 = a3 = 3 , we obtain as = 1 from Case
3-iii-b. Thus, we compute

A′′ =
1

22+1+1
+

1
2

24+1
+

1

2

( 0

25+1
+

0

26+1
+

0

27+1
+ · · ·

)
=

1

24
+

1

26
=

5

64
.

Moreover, the length of the shortest paths between the points B and S̃03 ∩ S̃00 is computed as

1

2
B =

1

2

[ 1

23+1
+

1

24+1
+

1

2

( 1

25+1
+

1

26+1

)
+

1

22

( 1

27+1
+

1

28+1

)
+ · · ·

]
=

3

56

(see Case 4). Now let us take c2 = 2. To compute the length of the shortest paths between A and B passing

through (S̃03 ∩ S̃02)(S̃00 ∩ S̃02) , we use Case 5 as follows:

A′ =
1

23+1
+

1

24+1
+

1

2

( 1

25+1
+

1

26+1
+

1

27+1
+ · · ·

)
=

1

24
+

1

25
+

1

26
=

7

64
.

Moreover, the length of the shortest paths between points B and S̃03 ∩ S̃00 is computed as

1

2
B′ =

1

2

[ 0

23+1
+

1

24+1
+

1

2

( 0

25+1
+

1

26+1

)
+

1

22

( 0

27+1
+

1

28+1

)
+ · · ·

]
=

1

56
.

We also get b′2 = 1 since a2 = 3 and c2 = 2 . For the computation of the length of the shortest paths

between A and B passing through (S̃03 ∩ S̃01)(S̃00 ∩ S̃01) , the lengths of the shortest paths between points A

and S̃03 ∩ S̃01 and between points B and S̃00 ∩ S̃01 are obtained:

A =
1

23+1
+

1

24+1
+

1

2

( 0

25+1
+

0

26+1
+

0

27+1
+ · · ·

)
=

1

24
+

1

25
=

3

32
,
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C =
1

2

[ 1

23+1
+

1

24+1
+

1

2

( 1

25+1
+

1

26+1

)
+

1

22

( 1

27+1
+

1

28+1

)
+ · · ·

]
=

3

56
,

respectively (see Case 6). It follows that

d(A,B) = min
{ 5

64
+

3

56
,
1

16
+

7

64
+

1

56
,
1

16
+

3

32
+

3

56

}
= min

{ 59

448
,
85

448
,
47

224

}
=

59

448
,

from Formula 3.14. In Figure 9, the red path is one of the shortest paths between A and B .

Figure 9. Some of the paths that pass through the intersection points between A and B for a2 = 3 and b2 = 0 .

4. Conclusion
The intrinsic metric formulas can be defined to examine the geometric properties of different fractals via the
code representations of points on them. However, as seen in this model, it is even more difficult to define the
intrinsic metric formula on the code set of fractals that have different contraction coefficients. This paper has a
different importance from other works given in the literature since it provides the first intrinsic metric formula
to be written using the code representations of points on a fractal set that has different contraction coefficients
of the related IFS. The formula is also very useful for proving different geometric properties of S̃ . Moreover,
this paper will be a guide for different works such as classifications of geodesics.
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