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Abstract: To formulate the intrinsic metrics by using the code representations of the points on the classical fractals
is an important research area since these formulas help to prove many geometrical and structural properties of these
fractals. In various studies, the intrinsic metrics on the code set of the Sierpinski gasket, the Sierpinski tetrahedron, and
the Vicsek (box) fractal are explicitly formulated. However, in the literature, there are not many works on the intrinsic
metric that is obtained by the code representations of the points on fractals. Moreover, as seen in the studies on this
subject, the contraction coefficients of the associated iterated function systems (IFSs) are the same for each fractal. In
this paper, we define the intrinsic metric formula on the added Sierpinski triangle, whose IFS has different contraction
factors, by using the code representations of the points of it. Finally, we give several geometrical properties of this fractal

by using the intrinsic metric formula.
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1. Introduction

The Cantor set, Sierpinski gasket, Koch curve, Sierpinski carpet, Vicsek fractal, Sierpinski tetrahedron, and
Menger sponge are some of the fundamental examples of the classical fractals [2, 3, 8, 11, 14]. These sets have
strong self-similarity, which means that every neighborhood of any point contains a copy of the entire shape
(see Figure 1). There have been different ways to define the intrinsic metrics on the classical fractals such as
the classical Sierpinski Gasket, the discrete Sierpinski Gasket, the Sierpinski Carpet, and the Vicsek fractals in
the last two decades (for details see [5-7, 9, 13, 17, 24, 25]). Using the code representations of the points on the
classical Sierpinski gasket, the Vicsek fractal, the Sierpinski tetrahedron, and mod-3 Sierpinski gasket SG(3),
the intrinsic metric formulas are given explicitly in [1, 15, 16, 22]. Moreover, the intrinsic metric formulas on
isosceles and scalene Sierpinski triangles are defined in [19]. As a result, many geometrical and topological
properties are investigated in [18-20, 22]. For example, the code representations of the points on the Sierpinski
gasket according to the number of geodesics is also classified in [23]. Then the intrinsic metric formula is given
for the n-dimensional Sierpinski gasket and thus the number of geodesics on them are investigated in [10]. The
intrinsic metric formulas are reformulated on the code set of the equilateral Sierpinski propeller, which is self-
similar but not strong self-similar, in [12]. Furthermore, some dynamical systems on the Sierpinski gasket and

the Sierpinski tetrahedron are defined and whether these dynamical systems would be chaotic is investigated
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by using these intrinsic metrics in [1] and [21], respectively. As seen in these studies, these intrinsic formulas

help to show many properties of these fractals.

Figure 1. The Sierpinski gasket and the Sierpinski tetrahedron, respectively.

The main aim of the paper is to give the intrinsic metric formula for a different fractal, which we call
the added Sierpinski triangle. Note that the associated iterated function systems (IFSs) of fractals such as the
Sierpinski gasket, mod-3 Sierpinski gasket SG(3), Sierpinski carpet, Sierpinski tetrahedron, and Box fractal
have the same contraction factors, but the contraction factors of the IF'S of the added Sierpinski triangle are not
same. This paper will thus be the first work giving the intrinsic metric formula defined by the code representation
of points on a fractal whose IFS consists of different contraction factors. Because of the different contraction
coefficients, there are some difficulties in formulating the intrinsic metric on the code set of this fractal. For a
better understanding, we first the give the code representations of the points on the added Sierpinski triangle
in Proposition 2.1. Then we mention Cases 1, 2, 3, 4, 5, and 6, which include all states of the construction
of the intrinsic metric on this set. We thus formulate the intrinsic metric in Theorem 3.3. In Lemma 3.5, we
give a useful abbreviation for this formula. In Propositions 3.4, 3.6, and 3.8, we investigate some geometrical
properties of this fractal. Examples 3.9 and 3.10 also show how this formula is used in different cases.

In the following section, we first explain the construction of the added Sierpinski triangle and then

investigate the code representations of points on this set.

2. The code representations of the points and the construction of the added Sierpinski triangle

The construction of the added Sierpinski triangle is actually similar to the construction of the Sierpinski gasket.
The only difference is that smaller triangles are added instead of removed triangles in each step, which is the
reason why we call it the added Sierpinski triangle. For the construction of this fractal, we consider an equilateral
triangle (with edge length 1) as the initial set. We mark the midpoints of each edge of the triangle and obtain
four smaller triangles. Then we remove the middle triangle and mark the midpoints of the removed triangle.
Combining these points, we obtain a smaller triangle. Obviously, the middle triangle has edge length two times

smaller than the edge length of the remaining three triangles (see step 1 in Figure 2). We denote this structure

by i In the second step, we repeat this process for each four new triangles and we get il\’; Continuing this

process infinitely, we get the added Sierpinski triangle (see the last step in Figure 2). We denote this fractal

o0
by S. Therefore, we have m T; = S. This fractal can also be obtained as the attractor of an iterated function
i=0
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system (IFS). Let {R?; fo, f1, f2, f3} be an iterated function system where

- zr 3y V3
Jo(z,y) = (Z+§a1+?),
T
f1($7y) = (57%)7
z 1wy
f2(:177y) - (§+§7§>7
r 1wy \/§
fa(z,y) = (54'1,5‘*‘7);
. . 111 1 . .
with the contraction factors 17373 and 3 respectively. Since

3
P& = s =5,

the attractor of the IFS above is the added Sierpinski triangle. This IFS satisfies the open set condition and

thus the unique real solution of the Moran equation,

gives the fractal dimension of this set. Solving this equation, we compute the dimension s as

ln(3+g/ﬁ)
In2

S =

The initial set Step 1 Step 2 The added Sierpinski Triangle

Figure 2. The construction of the added Sierpinski triangle.

Now we show the code representations of the points on the added Sierpinski triangle and we constitute
the code sets thanks to these code representations. As seen in Figure 3, we denote the middle part of S by
So (with purple color), the left-bottom part of S by Si (with green color), the right-bottom part of S by So
(with blue color), and the upper part of S by Ss (with yellow color). Hence, we get

§:5’0U§1U§2U§3.
We similarly denote the middle part of 5’,11 by Salo , the left-bottom part of Sal by gall , the right-bottom
part of §a1 by §a12, and the upper part of §a1 by §a13 where ay € {0,1,2,3}. Therefore, we obtain

Sa1 = Sa10 U Sa11 U Sa12 U Sa13~
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U

Figure 3. The code sets of the added Sierpinski triangle.

Let 0 = ajas...ap—1 where a; € {0,1,2,3} for i =0,1,2,...,k — 1. Generally, we express the middle

part of S, by 500, the left-bottom part of S, by 501, the right-bottom part of S, by 502, and the upper
part of §g by 5,,3. We thus have

Se = ~o’O U §(71 U §02 U §(73
(see Figure 4).

Figure 4. The added Sierpinski subtriangle S, .

Therefore, for the subtriangles §a17§a1a2,§a1a2a37 ~w§a1a2a3..‘ak7~' of §, we have §a1 D Sajay O

Sarazas D - D §a1a2a3mak ... D .... There exists a point A € S such that

) Sarasas..ar = {A}
k=1

from the Cantor intersection theorem. The code representation of A is denoted by ajasas...a.... In the
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following proposition, we classify the points on S according to their code representations:

Proposition 2.1 The number of the code representations of any point on the added Sierpinski triangle is either

1,2, or 3.

Proof First, we show the points that have three code representations as follows: i) Let A be the intersection

point of any two subtriangles in the same level of S, such that
§o’0 N goak = {A},
where 0 = ajas...ax—1 and ax € {1,2,3}.
o If we choose ap = 1, then we have

S50 N Sp1 = Sy0 N (Sp12 N Sy13) = {A}.

We now consider three different nested sequences of sets as follows:

S50+ Sa01, So011s -+ s So011.1s - -
501;50'137501327---;501322...27'-'7
50'1;5012750'123a~~';§¢71233...37~-~~
From the Cantor intersection theorem, the code representations of A are c0111..., ¢13222...; and

012333. .., respectively (see A =V, in Figure 5).

R,

7o)
)
w

0.

eL,

(9511

o0

218
At

al g2

P, Q;

=
Q

Figure 5. The points T,, V., and W, , which have three different code representations on S’U.

e Let ap = 2. Since

SUO N S17'2 = §00 N (50'21 N S;0'23) = {A}a
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we have three different nested sequences of sets as follows:

SUO? 80023 500223 ceey 517022...27 ce.
So2, 5021, 55213, - -+, 952133..3, - - -
So2, 5523, 55231, - -+, 95231115 - - - -

Thus, the code representations of A are 00222..., 021333..., and 023111..., respectively (see A =W,
in Figure 5).

e For ap = 3, we have
Se0 N Se3 = S0 N (§o31 N §o32) = {A}

and three different nested sequences of sets as follows:

S605 5503555083, - - -, 95033..3, -+ - 5
SaSa 50317 503127 sy 503122‘..27 ey
SUS; 50327 50'321, ey 503211...17 ceee

Then A has code representations such as ¢0333..., 031222..., and ¢32111.. ., respectively (see A =T,

in Figure 5).
Therefore, the vertices points T, V., and W, of §0'O have three different code representations.

ii) Let A be the intersection point of any two subtriangles in the same level of S, such that
Saak N Sabk = {A}a

where 0 = ajas...a-1 and ag, b, € {1,2,3} and aj # bg. Hence, we get the nested sequence of sets
such that

Saawsaakbkvsoakbkbk: ctt Saakbkbk...bka M

So‘bkaso‘bkakasabkakaka ) Sa’bkakak...aka s

The Cantor intersection theorem states that the code representations of A are ocapbibi...br and
obgagay ... ay, respectively, and thus A has two different code representations. For example, the points

My, Ly, and K, in Figure 5 have two different code representations.

iii) If A is not the intersection point of any two subtriangles in the same level of S, then A has a unique

code representation. That is, it is different from all code representations denoted by cases i and ii above.

To exemplify, the vertex points P, @, and R of S and many points such as 121212..., 01230123...,

and nonrepeating forms have unique code representation.

Consequently, the code sets of the subtriangles §U are expressed as

Sy = {oagagiiak42... | a; €4{0,1,2,3}, i=k,k+1,k+2,...}.
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3. The construction of the intrinsic metric on the code set of the added Sierpinski triangle

The intrinsic metric on a set K is expressed as follows:
d(z,y) = inf{d | ¢ is the length of a rectifiable curve in K joining x and y} (3.1)

for z,y € K (for details see [4]). The intrinsic metric on the code set of the equilateral Sierpinski gasket is also
defined in [22]:

Definition 3.1 Let ajas...ax—1ax05+1 .. and bibs ... bg_1bibii1 ... be two code representations of the points
A and B on the equilateral Sierpinski gasket, respectively, where a; = b; for i =1,2,...,k—1, ay # b and
ai,b; € {0,1,2} fori=1,2,3...,. The intrinsic metric between code representations of the points A and B is
formulated as follows:

. — a;+5 1 — i+
d(A, B) = min { ‘ Z 50 ok + Z 9 , (3.2)
i=k+1 i=k+1
where
o 0, (Zi:bk 5_ 0, bi:ak
@i = 17 ai#bk ’ v 17 bl#a’k ’
] 0, a;#ar and a; # by 5 — 0, b;#by andb; # ay
Vi = 1, otherwise ’ | 1, otherwise

We now formulate the intrinsic metric by using the code representations of points on the added Sierpinski

triangle. Note that in each step there are middle triangles in the added Sierpinski triangle different from the

Sierpinski gasket. To formulate the intrinsic metric on S seems quite complicated due to the different contraction
factors and the increase in shortest paths.

Now we express our first observations for this construction. We first need some notations and expressions
to define the intrinsic metric by using the code representation of points. Suppose that the code representations
of the different points A and B on S are ajas. .. Gj—1aKAk+1 - .. and bibs ... bg_1bibk41 . . ., respectively, where
a;, b; € {0,1,2,3}. Let k = min{i | a; # b;} and o0 = ajas...ap—1. Assume that the number of elements of
the set

k={i]a;=b=0,i <k}

is t. Moreover, let

M = {i+1]a;=0,i>k}={mi,me,ms,...},
L = {7:—|—1|bi:0,i>k}:{l1,l2,l3,...},

such that my <mo <mg < ... and [ <ly <l3 < ....

e Let ay # 0 and b # 0. Then the shortest paths between the points A and B must pass through either the
point gaak ﬂgobk or the line segment (ggak ﬁggck)(ggbk ﬂggck) or the line segment (g(mk ﬂggo)(ggbk ﬂggo)

(see Case 1, Case 2, and Case 3, respectively). Thus, these three paths should be taken into account and
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Figure 6. Three different cases for the shortest paths between A and B where ar =1 and by = 2.

the minimum of the lengths of them should be taken for the calculation of the length of the shortest paths
(see Figure 6).

Case 1. The length of the shortest paths between A and §gak N gobk and the length of the shortest
paths between B and g(mk N §gbk are obtained by

mi—1 mz 1 1 Mpp1—1 o
i
A= Z 21+t Z 21+t ot o Z it T (33)
i=k+1 1=m1 i=m,
-1 lg 1 p+1—1
B= Z 21+t Z 21+t o Z 21+t (34)
i=k+1 i=ly

respectively, where

Jp— 0’
o = 1

ai:bk
a; # by’

bi:ak
b; # ax

@z{%

Thus, the length of the shortest paths between A and B passing through the point §Mk N §gbk equals
A+ B. If M =0 and L =0, then this length is computed by

Case 2. Suppose that ¢, # ag, ¢ # b, and

AL B— i Oéifi'ﬂi'

2z+t
i=k+1

¢k € {1,2,3}. The length of the shortest paths between

point A and point §,mk ﬁgﬂk and the length of the shortest paths between point B and point §gb,€ ﬂggck

are

1m2 1 - 1 mpqp1—1 -
i i
D) Qi+t R or Z Qi+t
1=mi =My

- (3.5)
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Lol o 1=l s 1 lpr1—1 5.
! — ? ¢ PR — ? PR
i=k+1 i=ly i=l,
respectively, where
- 07 a; = Ck §: = 07 bi:Ck
TV, ata L bi#Fe

Moreover, the length of the side (ggak N ggck)(ggbk N §Jck_) of the subtriangle §ng is Hence,

ot+k -’

the length of the shortest paths between the points A and B passing through the line segment (Syq, N

§Uck)(§ﬂbk n ggck) equals + A +B.If M =0 and L =0, then this length is obtained as

ot+k

2t+k i+t
i=k+1

Case 3. To compute the length of the shortest paths between points A and B passing through the line

segment (ggak N :Sv'go)(ggbk N §ao), which is an edge of §00 , we must take into account the following cases:

i) Let apy1 # ar and  apy1 # 0. For a, # ary1, a, # ag, and a, # 0, the length of the shortest

paths between points A and point ggak N 5’00 is obtained by

mlfl 80 1 mgfl 80 1 ()0
" f ¢ —_ ¢ DY —_— ¢ DY
AT = ' i+t + 2 i+t + + or Z i+t + ’ (3'7)
i=k+2 i=mi i=m,
where
o 0, a;=a,
wi= 1, otherwise
ii) Suppose that axy; = 0. For
r = min{i|a; #0, a; #ag, i > k+2},
this length is computed by
1 1 mo—1 i 1 msz—1 i 1 myy1—1 i
" = —— d ¢ DY —_— L ...
AT = k+t+2 + 92 s Qi+t ?l — Qi+t + + 9r e 9i+t + ) (3-8)
1= =ma2 =My
where
o 0, a;=ar
Yi = 1, otherwise.

Note that we obtain ¢; =1 for i =k +2,k+ 3,k +4,... if

{i|a;#0, a; #£ag, i >k+2} =0.
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iii) There exist three different cases as follows:
a) Let ay =agy1=...=as_1#as#0 (s>k+1). We define
r = min{i|a; #0, a; # ag, © > s}.
In this case, we obtain

. 07 a; = Qr
wi= 1, otherwise

for i # s and s =0 for i =s. If
{i|a; #0, a;j#ag, i>s}=0,

then we also get ¢; =1 for i # s and s =0 for i =s.

b) Let ay = ag+1 =...=as—1 and as =0 (s >k+1). In this case, we get
o 0, a;=ay,
wi= 1, otherwise

1
for i # s and vs =3 for i = s where r =min{i | a; #0, a; # ag, i > k+2}. If
{i|a;#0, a; £ag, i >k+2} =0,

1
then we obtain ¢; =1 for i # s and s = 3 for i =s.

c) far=axy1=--=a;=---,then p;=1for i=k+2,k+3,k+4,...
In cases a, b, and c the length of the shortest paths between points A and point §(mk N §ao is
computed by

i 1" o
2 K2
2itt ' 9 it T T o gt T (3.9)

i=k+2 1=m =M,

1 mi1—1 . 1 mo—1
A = S + ©i

Remark 3.2 Note that similar calculations are valid for the computation of the length of the shortest paths

between points B and point §U;,k ﬂggo (in this case, we use 0; instead of @; to avoid confusion). Since the

length of the side (ggak N gao)(ggbk N ggo) of the subtriangle §ao 18 we compute that the length

2t+k+1 ’

of the shortest paths between points A and B passing through the line segment (§mk n 500)(§gbk N ggo)

1
equals ST T A"+ B".

Let ar # 0 and bx, = 0. In this case, the shortest paths between points A and B must pass through one
of the vertices of the subadded Sierpinski triangle S,0. That is, the shortest paths must pass through
either point ggg N §,mk or (gao N §mk) or (§UO N §,,b;€) (see Case 4, Case 5, and Case 6, respectively).
These three paths should thus be taken into account and the minimum of the lengths of them should be
taken for the calculation of the length of the shortest paths (see Figure 7).
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Figure 7. Three different cases for the shortest paths between A and B where ar =1 and by = 0.

Case 4. For the computation of the length of the shortest paths between points A and B passing through
point §<mk ﬂggo, we add the length of the shortest paths between points A and §,mk, N §00 and the length
of the shortest paths between points B and ggak N §00- Note that we use the appropriate value A” given
in Case 3 to compute the length of the shortest paths between points A and gaak N ggo. Moreover, we
obtain that the length of the shortest paths between points B and gaak N ga'() is

11—1 12 1 lpp1—1

( Z 21+t Z 21+t Z 21+t ) = %B, (3.10)

1=k-+1 1=l

where
)0, bi=ax
/Bi B { 1u b’L 7é ag
Thus, the sum of A” and %B gives us the length of the shortest paths between points A and B passing
through the point 50% N 500.

Case 5. To compute the length of the shortest paths between points A and B passing through the line
segment (Sya, NSy, )(Se0 N Sye, ), first we obtain the length of the shortest paths between points B and

§JO N g(fck :
llfl lzfl lp+1 1
5( Z 2i+t+522i+t+ Jr? Z 2i+t+"'):§B’ (3.11)
i=k+1 i=l i=l,
where

§: — 0, bizck
A T

and ¢ # ay for ¢ € {1,2,3}. Also, to compute the length of the shortest paths between points A
~ - 1
and Syq, N Sec, , We use the appropriate formula given in Case 2. Thus, the sum SITETT + A + B/

gives us the length of the shortest paths between points A and B passing through the line segment
(S;aa;C N S;ack.)(gcro n gack) .
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Case 6. For the computation of the length of the shortest paths between points A and B passing through
the line segment (Syq, N ggb;)(ggo N gﬂbﬁc) where b}, # ay, b # ¢, and b} € {1,2,3}, note that the
length of the shortest paths between points A and ggak N g{,b;@ equals the value A given in Case 1 (use

b}, instead of by ). Moreover,

1 lhi—1 ﬂ/ l2 1 ﬁ/ p+1 1 ﬂ,
25( > vt T Z give T Z it T ) (3.12)

i=k+1

i=lp
denotes the length of the shortest paths between points B and 50'0 N 50% where
;o { 0, b =0
L, b #
Hence, the sum ! + A+ C gives us the length of the shortest paths between points A and B passing

2t+k+1

through the line segment (S,q, N ggb;)(ggo N §Ub;€).

Theorem 3.3 Let ajas...ax—1050k+1 ... and biby... bg_1bpbiy1 ... be two representations, respectively, of
points A and B on the added Sierpinski triangle such that a; = b; for i = 1,2,...,k —1 and ap # by and
a;,b; € {0,1,2,3}. If ap, # 0 # by, then the intrinsic metric between the code representations of points A and

B is formulated as

1 1
d(A, B) :min{ A+B, g + A B G +A”+B”} (3.13)

and if ax # 0, b =0, then this formula is obtained as

. 1 1 1
d(A,B):mm{A”—i—2B 2t+k+1+¢4’+ B’ 2t+k+1+A+C} (3.14)

such that A, A", A", B,B',B",C are defined in Cases 1, 2, 3, 4, 5, and 6.

Proof We only prove some special cases since the proof of all the cases is extremely long and tedious. Note

first that points A and B are in the same subadded Sierpinski triangles §a1a2mai for ¢ < k. Thus, if a; # 0

1
for i =1,2,...,k—1, then the length of the shortest paths between these points is less than or equal to o1
However, an edge length of the subtriangles §1,§2 and S is two times greater than an edge length of So.
For example, an edge length of the sub-triangle 5123 is eight times greater than an edge length of §000. If the

element number of the set {i | a; = b; = 0,4 < k} is ¢, then the length of the shortest paths is less than or

equal to ShTET

We now begin the proof of Case 3, which involves more complicated situations than Case 1 and Case 2.
The proofs of the other cases can also be done in a similar manner.

i) Let agy1 # ar and ags1 # 0. We first compute the length of the shortest paths between A and

(ggakﬂggo). Since a; € {0,1,2,3} for ¢ > k+2, there exists a unique number a,, such that a,, # ax, a, # art1,
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ﬁ‘gaakak+lap'

or A =S,

O0KQKk4+10K+42

and a, # 0. If agyo # a,, then A is not contained by Sy Thus,

ApQk+10y,

the shortest paths must pass through §aakak+1ak+2 n §aakak+1a# (that is, the length of the shortest paths is

1 ~ ~ ~
greater than SkFiTE if A is not contained by Sya,ay 14, ) I A= Ssaariianis N Soarapyia, » then the length

If A is contained by ggakakﬂa“ (that is,

- - 1
of the shortest paths between A and (Sq, N Seo) equals Pl

apy2 = a, ) and A # ggakak+1ak+2 N gaakak+1aw then this length is less than prE=E By applying a similar

method in the other steps, it is easily seen that if M = (), then the length of the shortest paths between A and
(§,mk N ggo) is obtained as

"o__ Pi
A=y (3.15)
i=k+2

such that

o 0, a;=a,
Yi= 1, otherwise

However, if M # ), then calculations become a little more complicated. Suppose now that a; = 0 for at
least i € {k +2,k+3,k+4,...} and let

M:{z+l|aZ:0,z>k+1}:{m1,m2,m3,}

such that m1 < mo < mg3 < .... In this case, point A is the element of the subtriangle gaak. . Thus,

<Qmq —1Amy

the length of the shortest paths between the points (§0'akak+1ak+2-~»am1—l N gaakak“akn---a“) and (g'gak N ggo)

is obtained as

mi—1
Pi
i+t '

i=k+2

However, an edge length of the subtriangle ggak,__aml,zo is two times less than an edge length of the sub-

triangles ggak__lamlle, Soay...am, »2 and S‘Vgakmamrzg. The length of the shortest paths between the points

(Soakak+1ak+2...aml...a,nz,l N SaakakJrlakJrz.“amZ,gaM% and (Soak. N SO'O) is obtained as

1 @4 11%271 @4
7 7
Qi+t T 2 Z Qi+t’
i=k+2 =m

mi1—

and if we continue like this, then the length of the shortest paths between A and (Syq, N Se0) is computed as
in Equation 3.7.

ii) Suppose that ar+1 = 0. In this case, the shortest paths between A and (50% N ggo) are determined
by the first term (if available), which is different from zero and aj since there are two different options. That

is, if
r = min{i | a; #0, a; # ag, i > k+2},
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then one of the shortest paths must pass through the point (gaako N g«mkar)~ Note that the length of the

shortest path between (§aako N S’Vgakw) and (Svmk N ggo) is Since ap+1 =0, we get m; =k + 2 and

1
2k+t+2 :
thus M is a nonempty set.

Suppose that A is not contained by gmk()ar. That means that apio # a,. It follows that the shortest

paths must pass through §0 N §aak0ar and the length of the shortest paths between (gaako N §,mkaT)

ag 0ak+2

and (§00k00k+2 N gaakoar) is greater than If A= §0'ak0ak+2 N ggakow, then the length of the shortest

ok+t+3 "

paths between A and (gaako N ga()ar) equals If A is contained by gaakom (that is, agy2 = a),

1
ok+t+3

then this length is less than Following similar steps, the length of the shortest paths between A and

Qk+t+3

(§Uak N gao) is obtained as in Equation 3.8 where

o Oa a; = Qr
vi = 1, otherwise

Note that if

min{i | a; # 0, a; # ax, 1 > k+2} =0,

then for the computation the length of the shortest paths between A and (gcmk N ggo) we add in each step the
edge lengths of the related subtriangles where the shortest paths pass through. In this case, we get ¢; = 1 for
t=k+2,k+3,k+4,....

iii) In cases a, b, and ¢, we certainly know that a = ag41. Thus, to compute the length of the shortest

paths between A and (g(mk N §go), there are three different options. That is, the shortest paths must pass
through one of the points (50%% N §oakal) where a; # ar and a; € {0,1,2,3}. Note that the length of the

shortest paths between (ggakak N §Mkal) and (ggak N ggo) is If ay = agx+1 = ag42, then the shortest

2k+t+1 :

paths must pass through one of the points (§Uakakak N §mkakal). Moreover, the length of the shortest paths

between (§mkak N §mkal) and (ggakakak N g,mkakal) is If agio = as # ap and as # 0, then there

ok+t+2
are still two different options and the shortest paths must pass through one of the points (g,mkak N 50%%)

or (&mkak N 50%0). Notice that the index s only reduces the number of points that the shortest paths pass
through and does not generate an additional length. Moreover, the first term a,, which is different from ay
and 0 for i > s, determines the point where the shortest paths pass through. That means that the shortest
paths pass through the point (§gakak N 50%%) if a, = a, or the point (§Uakak N ggako) if a, # a,. Similarly,
the index r only determines the point where the shortest paths pass through and does not add an additional
length. In the general case ar = ag41 = ... = as-1 # as # 0 (s > k+ 1), a similar way can be followed.

Taking into account that M is a nonempty set, we compute the length of the shortest paths between A and

(g(mk N §JU) as in Equation 3.9 where
r = min{i|a; #0, a; # ag, i > s},
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and

R Oa a; = Qr
wi= 1, otherwise

for i # s and s = 0 for i = s. From the construction, it is clear that ¢; =1 for i # s and @, =0 for i = s if
{ila;#0, a; #ar, i > k+2}=0.

Let agyo = as = 0. First, the shortest paths between A and (§[mk N g,,o) must pass through the point

(§[mkak N ggako). It is obvious that the length of the shortest paths between (ggak N ggo) and (§[mkak N §mk0)

1

SR However, there are still two different options and the shortest paths must pass through one of

is
the points (§mkako N §0_akakal) where a; € {1,2,3} and a; # a;. Note that the length of the shortest paths

between (ggakako N ggakakal) and (ggakak N §gak0) is In this case, the first term a.., which is different

ok+t+3
from ag and O for i > s, determines the point where the shortest paths pass through. That means that the
shortest path must pass through the points(ggakako N §,mkakar). Note that the index 7 only determines the
point where the shortest paths pass through and does not generate an additional length. Hence, generally if

ap =ag41 =...=as—1 and as=0 (s> k+1), then we get Equation 3.9 for the computation of the length

o 0, a;,=a,
wi= 1, otherwise

of the shortest paths where

1
for i #s and ps = 3 for i = s. It is clear that if {i | a; #0, a; # ag, @ > k+ 2} = ), then we obtain ¢; =1
1
for i # s and Ys =35 for i = s.
In the case ap = agy1 = apy2 = ..., we add in each step the edge lengths of the related subtriangles
where the shortest paths pass. Thus, we obtain ¢, =1 for i=k+2,k+3,k+4,.... O

Now we give some geometrical properties of S by using the intrinsic metric formula given in Theorem 3.3.
In the following propositions and lemma, we consider the code representations of A, B,C as caxax110k+2 - - -,

obibr41bk42 - .., and ockcr1Crta ... where a;,b;,¢; € {0,1,2,3} for i =1,2,3... and 0 = ajas...ar—1. Note

that if A is a vertex point of §0, then this point has the code representation cagagay, ... where a € {1,2,3}.

Proposition 3.4 If A and B are the points on gg, then d(A,B) < SR Furthermore, if ap = 0 or
3
bk = 0, then d(A, B) § W

Proof Let A and B be the points on §0 and let ar # 0 and by # 0. To obtain the maximum value of
A+B,it must be ap, b, M=L=0,and a; =8; =1 for i =k+1,k+2,k+3,.... Therefore, we compute

1 1 1
A+ B = S + ST = R from formulas (3.3) and (3.4). This shows that d(4, B) < SRFT owing to
the fact that
. 1 / / " /!
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Suppose now that ar # 0 and by = 0 (the other case is done similarly). For the computation of the

1
maximum value of A" + 5[3, we must take into account that ap # by, M = L = 0, and ¢; = 8; = 1 for

i=k+1,k+2k+3,.... Hence, we must use the formula given in Case 3-iii-c (see formula (3.9)) for the

maximum value of A4”. This shows that

1 > 1 1 1 1
A" = g + i = + =
T 9k+t+1 i+t Qk+t41 ok+t+1 T Qk+t”
i=k
We also compute
1 I« 1 1
58 D) Z Qi+t oktt+l
i=k+1
1 1 1 3
from (3.10). Thus, we obtain the maximum value as A" + 5[3 = Shrt T o R Since
d(A, B) = mi 5 + A+ H +A+C
)= MM SF T bRt L t+kt1
3
we compute d(A4,B) < SR O

Lemma 3.5 Let A be a vertex point and B be any point of §g , and let the code representation of these points

be cagagay ... and obpbgy1bpio ..., respectively, where ayp € {1,2,3}, b; € {0,1,2,3} and ay # by .
a) If by, # 0, then d(A,B) = A+ B.

1
b) If by =0, then d(A,B) = A" + S B.

Proof

a) We first know that A+ B < due to Proposition 3.4. We also get v; = 1 since a; = a for

1
oktt—1
i=k+1,k+2,k+3,.... In this case, we compute

1 1
r_ _
A = Z i+t Qk+t’
i=k+1
This shows that
1 "+ B = L L B = L B >d(A,B
2k+t +A+ ok+t + 9k+t + 2k+t 1 + ( )
Moreover, it is obvious that
A= = =A" = 1 3 !
Z 2z+t - 2k+t - T 9kttt + Z 2itt’
i=k+1 i=k+2
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We now compute B and B, respectively, and then we compare them. First suppose that by11 = ai. In

this case, we get Sr+1 = 0. This shows that

lll l21 l

1 1 8, 1
7
B= Z 21+t Z 21+t g gt TS Ere
i=k+2 i=l1 i=l,

and thus

1 /!
B < ok+t+1 + 5"

It follows that A+ B < + A” + B”. Similar cases are also valid for by, 1 = by and bg,1 = 0.

2k:+t+1

1
However, if by = cg, then A+ B = it + A" + B"”. Since b, equals ay, we have 3; = 0;

i=k+2,k+3,k+4,....

b) It is seen that A" + B < 3 from Proposition 3.4. We also have a; =~; =1 for i = k+ 1,k +

ok+i+1
1
2,k+3,... and thus A=A = Skt -
This shows that
1 , , 3 1 3
ok+t+1 +A B = oktt+l and ok+t+1 + A+ C Z ok+t+1"
This completes the proof. O

Proposition 3.6 Let A, B,C be the vertices points of S, . If X is any point of Sy , then

1

Proof Let the code representation of X be oxyxpi12k42 ... where x; € {0,1,2,3} for i = k,k+1,k+2,....
There are two cases such that z; = 0 and zj # 0. We give the proof of the first case (the other case is similarly

done). We use Case b given in Lemma 3.5 since the points A, B, C' are the vertices points of §g. Since a; = ayg,
b = by, and ¢; = ¢ for i = k+ 1,k +2,k+3,..., each of A”s in d(A, X),d(B,X), and d(C,X) equals

Y and thus the sum of them is obtained as % We now compute the sum of Bs in d(A4, X),d(B, X),

and d(C,X). Obviously, xxy1 equals one of the values ay, bg, cg, or 0. Let ¢ > k+ 1. Note that if z; =0,
then we obtain 8; = 1 for the computation of each Bs in d(A, X),d(B,X), and d(C,X). If x; = ai, then
we obtain 3; = 0 for the computation B in d(A,X) and §; = 1 for the computation of each B in d(B,X)
and d(C, X). That is, if ; # 0, one of the §; equals 0 and the other two equal 1 for the computation of Bs
in d(A,X),d(B,X), and d(C,X). Therefore, the sum of Bs in d(A4,X),d(B, X), and d(C,X) turns into the

form

1,1 1 1 1
§<2k+t T ok+t+1 T ok+t+2 T ) T okt
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in each case. Consequently, we obtain

3 1 1
d(A,X) +d(B,X) +d(C, X) = 55 + 305 = givia

Therefore, the proof is completed. O

Remark 3.7 Let the code representation of C' be 000.... We now consider the triangle To given as the initial

set in Figure 2. It is easily seen that the point C' is the centroid of To.

Proposition 3.8 The distance between the vertex points of gg and the points whose code representations are

0000... equals 3Rtz

Proof The code representation of A is cagagay ... where ap € {1,2,3} since A is any vertex point of §U.

1
We use the formula d(A, B) = A" + 58 to compute the shortest distance between these points from Lemma
3.5. We first get

a1 = 1 1 11
A" = ok+t+1 + Z i+t~ Qk+t41 + ok+t+1 — 9k+t’
i=k+2
due to the fact that ap = agy1 = agy2 = .... Also, we compute
k+1 k+2 k+r+1
1 1 1 1 1 1 1
§B - 5(2 2i+t+§z gt Tt o Z 2i+t+”')
i=k+1 i=k+2 i=k+r+1

1,01 11 11
- 2(%k+t+1+%2k+t+2+"'+2r2k+r+t+1+'”)

1

3 2k+t
since l; =i+ 1and B;=1fori=k+1,k+2,k+3,.... This shows that

1 11 1 1
ok+t T 39k+t ~ 3 9k+t—2"

d(A,B) = A" + %B -

3.1. Some instructive examples

Example 3.9 Suppose that the code representation of A is 1023111... and the code representation of B is
200333.... We now compute the length of the shortest paths and find one of the shortest paths.

First, we get k =1 since k = min{i | a; # b;} and a1 # by. Also, we obtain t = 0 owing to the fact
that {i | a; =b; =0,i < k} =0. Moreover, we have
M = {i+1 | a=0,i>1}={3},
L = {i+1 | b;i=0,i>1}={3,4},
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and we thus compute m1 = 3, Iy = 3, and ly = 4. Note that we consider the related formulas given in Cases

1, 2, and 3, respectively, since a3 # 0 # by. From Equations 3.3 and 3.4, we have

1 1,0 1 1 1 1 1 5

A= grymtatete)mtao

B = i+1i+i<l+i+i+...):i+i+i;£_
22 223 22\24 25 26 22 24 25 32

Thus, the length of the shortest paths passing through gak N gbk equals

5 11 21
A+B_E+372_372

(see blue path in Figure 8). From Equations 3.5 and 5.6, we obtain

A = i+l(i+g+i+i+i):i+i+i:2
22 2\23 24 25 26 27 22 24 25 32’
B = i+1i+i(£+2+g+...):i+i:£
22 223 22\24 25 26 22 24 16’

since ¢, = 3. Therefore, the length of the shortest paths passing through (§ak N gck)(gbk N §Ck) is computed as

1 ;o 111 5 37
2+A+B_2+32+16_32

(see yellow path in Figure 8). For the computation of A" and B" we get v as 3 and 4, respectively. That is,
we have a, =2 and b, = 3. Then the following is obtained from Equation 3.8:

"o - I = il 7 - - =
AT = 23+2 23+24+25+26 23+24 16’

1 1,1 0 0 0 1 1 3

/! _ _ B _ _ - ... —_ _ = —
B = 23+2(23+24+25+26 ) 23+24 16°

1 1,0 1 1 1 1 1 3
( )

Therefore, the length of the shortest paths passing through (S, N So)(Se, N So) is computed as

1 P | 3.3 5
22+A +B ’22+16+16*8

(see red path in Figure 8). Hence, we compute

8

d(A7B):min{21 37 5} )

32'32°8)

and one of the shortest paths is the red path given in Figure 8.

Example 3.10 Let the code representation of A be 03301 = 0330111 ... and let the code representation of B
be 002 = 0020202.... We must use Formula 5.1/ since ao =3, bo =0, k=2, and t = 1. First, we compute
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Figure 8. Some of the paths that pass through the intersection points between A and B for a1 =1 and b; = 2.

the length of the shortest paths between A and §03 N 500. Since as = az = 3, we obtain as = 1 from Case

3-1ii-b. Thus, we compute

P S L
T 924141 24+1 2

0 0 0 ) 1 1 5

25+1 T 96+1 T 97+1 =it 3% T e

Moreover, the length of the shortest paths between the points B and 503 N §00 is computed as

13 11 1 1 1 1 1 1 1 3
92 - 9 23+1+24+1+§(25+1+26+1)+272(27+1+28+1)+'”}_%

(see Case 4). Now let us take co = 2. To compute the length of the shortest paths between A and B passing
through (§03 N §02)(§00 N §02) , we use Case 5 as follows:

1 1 1<1 1 1 )_1+1+1 7
T4 95 T 96 T 64”

r_
A = 23+1 + 24+1 + 9\ 95+1 + 96+1 + 97T+1

Moreover, the length of the shortest paths between points B and §03 N §00 is computed as
18' 170 1 1/ 0 1 1 0 1 1
B = alemrEtiem ) telEmre) vl m
We also get by, =1 since az = 3 and co = 2. For the computation of the length of the shortest paths
between A and B passing through (§03 N §01)(§00 N §01), the lengths of the shortest paths between points A
and 503 N §01 and between points B and §00 N 501 are obtained:

24+1 2

1 1 1<0 0 0 .”)_1 13

A = ﬁ*’ 95+1 | 96+1 | 97+l _ﬂ+¥:372’
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c — 1r 1 1 1 1 1 1 1 1 3
= sl tamtalEm ) te(E ) =5

respectively (see Case 6). It follows that

T 448’

3 1 7 1 1 3 3}_min{59 85 47} 59
- 448’ 448° 224

5
dAB) =min{ >+ — 4+ L4 2422
(4, B) mm{64+56’16+64+56’16+32+56

from Formula 3.1/. In Figure 9, the red path is one of the shortest paths between A and B.

88

E
bl

Figure 9. Some of the paths that pass through the intersection points between A and B for as = 3 and by = 0.

4. Conclusion

The intrinsic metric formulas can be defined to examine the geometric properties of different fractals via the
code representations of points on them. However, as seen in this model, it is even more difficult to define the
intrinsic metric formula on the code set of fractals that have different contraction coefficients. This paper has a
different importance from other works given in the literature since it provides the first intrinsic metric formula

to be written using the code representations of points on a fractal set that has different contraction coefficients

of the related IFS. The formula is also very useful for proving different geometric properties of S. Moreover,

this paper will be a guide for different works such as classifications of geodesics.
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