
Turk J Math
(2020) 44: 378 – 388
© TÜBİTAK
doi:10.3906/mat-1908-15

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Prolongations of isometric actions to vector bundles

Hülya KADIOĞLU∗

Department of Mathematics and Science Education, Faculty of Education, Yıldız Technical University,
İstanbul, Turkey

Received: 06.08.2019 • Accepted/Published Online: 08.01.2020 • Final Version: 17.03.2020

Abstract: In this paper, we define an isometry on a total space of a vector bundle E by using a given isometry on the
base manifold M . For this definition, we assume that the total space of the bundle is equipped with a special metric
which has been introduced in one of our previous papers. We prove that the set of these derived isometries on E form

an imbedded Lie subgroup G̃ of the isometry group I(E) . Using this new subgroup, we construct two different principal

bundle structures based one on E and the other on the orbit space E/G̃ .
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1. Introduction
The theory of vector bundles is an important tool used in the field of differential and algebraic geometry. A
vector bundle can be thought of as a vector space, varying continuously along a given manifold. Thus, a vector
bundle represents ”linearization” of nonlinear structure of manifolds. Therefore, they are in many ways much
easier to work with than the base manifolds. In algebraic geometry, vector bundles are used to provide functions
over algebraic varieties. They are referred as rank 2 stable vector bundles on the complex projective space P 3

[8]. Several other approaches of vector bundles can be found in [3–5, 13, 15]. In this study, we illustrate an
application of vector bundles by prolonging isometric actions from a manifold (base manifold) to another by
using a vector bundle structure. Since the isometric actions require the detailed study of isometric groups, we
would like to mention a few studies in the literature in this regard.

The study of isometry groups is a productive field due to its close relation with symmetric groups and
with the proper actions of Riemannian manifolds [2]. There are various studies regarding the theory of isometry
groups such as isometry groups of compact manifolds [1, 18], homogeneous manifolds [19], classifications of
isometry groups [7, 12, 14], determining the dimension of the isometry group of a finite dimensional Riemannian
manifold [9, 16] etc.

The study of isometry groups is often preferred because an isometry group of a Riemannian manifold
carries both geometric, and therefore topologic, and algebraic structures. Namely, if (M, g) is an n -dimensional
Riemannian manifold, then we recall that Myers and Steenrod [17] showed that the isometry group I(M) of a
Riemannian manifold M is a Lie group acting on M as a Lie transformation group. This group is compact if
the manifold is compact. The topology on I(M) is the compact-open topology which was introduced by Ralph
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Fox [6] as follows:

Definition 1.1 The compact-open topology is a topology that is defined on the set of continuous maps between
two topological spaces M and N . Let C(M,N) be the set of all continuous maps between M and N . Given
a compact subset K ⊂ M and an open subset U ⊂ N , let C(M,N) be the set of all functions f ∈ C(M,N)

such that f(K) ⊂ U . Then the collection of all such V (K,U) is a sub-base for the compact open topology on
C(M,N) .

Therefore, throughout this paper, we use above topology on the group of isometries of any manifold.
Now we would like to mention the special metric (induced metric) on the vector bundle (E, π,M) , which is
constructed by using the Riemannian structure of the base manifold and the notion of partitions of unity, given
by the following [10]:

g̃(V̄ , W̄ ) = g(π∗(V̄ ), π∗(W̄ )) + gE(γ∗(V̄ ), γ∗(W̄ )) (1.1)

where g is a Riemannian metric defined on M , gE is the usual metric on the vector space TE = E×E ,
and γ = pr2 ◦Φ where Φ represents the local trivialization of the bundle. In Section 2, we redefine this metric
considering our newly introduced prolongation. We also define an isometry preserving map between isometry
groups of M to E . Using this map, we construct an imbedded Lie subgroup G̃ ⊂ I(E) . In Section 3, we give
two applications of the newly proposed actions of G̃ . First we introduce a principal bundle based on E with
the structure group G̃ ⊂ I(E) . Secondly, we obtain another principal bundle based on the orbit space E/G̃ by
using free isometric actions I(M) on M .

In this work, all manifolds are considered as Hausdorff, second countable, and connected.

2. Metric structure
In this section, we give the metric structure that we plan to use throughout this paper but before that, we start
with defining how to fix a trivialization of a given bundle:

2.1. Countable set of trivializations
Suppose that (E, π,M) be a (fiber) bundle. Now consider the following remark:

Remark 2.1 Since the base manifold M is second countable, one can always find a countable family {Uα}α∈N of
open domains of local coordinates, which are simultaneously domains of the local trivializations. One needs only
to observe that the restriction of a local trivialization is again a trivialization and use the Steenrod-Construction
of Bundles to create the given bundle (E, π,M) . Therefore, without loss of generality, we use a countable set of
local trivializations (π−1(Uα),Φα) on the given vector bundle (E, π,M) .

Using above remark, one can always fix a countable set of trivializations B of a given bundle as the
following:

B = {Φα| Φα : π−1(Uα) → Uα × E}α∈I , (2.1)

where I is a subset of N . Using this, we define

τ : E → I (2.2)
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with τ(x) = min{i ∈ I| x ∈ Ui} . In the following proposition, we prove that τ is well-defined.

Proposition 2.2 The relation τ given by the Equation (2.2) is well defined.

Proof Suppose that x1 = x2 , and τ(x1) = α and τ(x2) = β .Then x1 ∈ Uβ and x2 ∈ Uα .
Since τ(x2) = β and x2 ∈ Uα , then from definition of τ , β ≤ α . On the other hand since τ(x1) = α

and x1 ∈ Uβ then from definition of τ , α ≤ β . Therefore, α = β . This finishes the proof. 2

Now we redefine the induced metric given by Equation (1.1).

Definition 2.3 Let π : E → M be a vector bundle, and (Uτ(x), E,Φτ(x)) be a local fiber bundle trivialization
of E with h ∈ π−1(Uτ(x)) and identify TE with E × E . Then by Theorem 3 in [10], there exists an induced
Riemannian metric g̃ on E as follows:

g̃(Vh,Wh) = g((π)∗(V ), (π)∗(W )) +Q((pr2 ◦ Φτ(x))∗(V ), (pr2 ◦ Φτ(x)))∗(W )) (2.3)

where Q is the usual metric on the vector space TE = E × E .

Since (E, π,M) is a vector bundle, then there always exists (global) zero section on this bundle, with

π ◦O = idM (2.4)

where idM represents the identity map.

Remark 2.4 Zero section O : (M, g) → (E, g̃) is a distance preserving map.

Proof
Let pr2 ◦ Φτ(x) ◦ O = O2 . Then for all x ∈ M , O2(x) = (pr2 ◦ Φτ(x))(0x) , where 0x denotes the zero

vector in π−1{x} . Then we have

O2(x) = pr2(Φτ(x)(0x)) = pr2(x, 0) = 0,

which implies the following:

(O2) = 0 (2.5)

Now let vx, wx ∈ TxM . By Equations (2.3) and (2.5) we have

g̃(O∗(vx),O∗(wx)) = g(π∗(O∗(vx)), π∗(O∗(wx))) +Q((O2)∗(vx), (O
2)∗(wx))

= g((π ◦O)∗(vx), (π ◦O)∗(wx))

= g(vx, wx)

which completes the proof.
2

So far we have seen that for any given bundle (E, π,M) , we can fix a countable set of trivializations B .
Also, by the above proposition, we show that one can choose a specific trivialization in the Φi where a given x

belongs to the image of the domains of trivializations under the bundle projection map π . Now we are ready
to define a prolonged map F .
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Suppose that we fix a countable local trivialization set B for the bundle (E, π,M) . Now we define
F : E → E as follows:

F (h) = Φ−1
τ(f(x))(f ◦ π, pr2 ◦ Φτ(x))(h),

where h ∈ π−1{x} , and f is an isometry on M .

Theorem 2.5 The relation F is a function.

Proof
Given f ∈ I(M) , let h1 = h2 , where h1, h2 ∈ π−1(x) then

(f ◦ π, pr2 ◦ Φτ(x))(h1) = (f ◦ π, pr2 ◦ Φτ(x))(h2). (2.6)

Expressions in both left and right side of the equation are elements of {f(x)} × E ; therefore, we use the same
fixed local trivialization for f(x) and denote it by Φτ(f(x)) . Using this local trivialization, we have

Φ−1
τ(f(x))(f ◦ π, pr2 ◦ Φτ(x))(h1) = Φ−1

τ(f(x))(f ◦ π, pr2 ◦ Φτ(x))(h2) (2.7)

Therefore, Φ−1
τ(f(x))(f ◦ π, pr2 ◦ Φτ(x)) is well defined, and can be expressed as a function from E to itself. 2

Remark 2.6 F is a fiber preserving map.

Proof
Since Φ−1

τ(f(x)) is a trivialization, pr1 ◦ Φ−1
τ(f(x)) = π where pr1 stands for the first projection map.

Therefore,

π ◦ Φ−1
τ(f(x)) = pr1. (2.8)

On the other hand, we recall that the function F is defined by the following:

F = Φ−1
τ(f(x))(f ◦ π, pr2 ◦ Φτ(x)).

Using definition of F together with Equation (2.8), we have

(π ◦ F )(h) = (π ◦ Φ−1
τ(f(x)))((f ◦ π)(h), (pr2 ◦ Φτ(x))(h))

= pr1((f ◦ π)(h), (pr2 ◦ Φτ(x))(h))

= (f ◦ π)(h),

which implies
π ◦ F = f ◦ π. (2.9)

This completes the proof. 2

Lemma 2.7 For all x ∈ M , (pr2 ◦ Φτ(f(x)) ◦ F ) = pr2 ◦ Φx .

381



KADIOĞLU/Turk J Math

Proof
For all x ∈ M , we have

(pr2 ◦ Φτ(f(x)) ◦ F ) = (pr2 ◦ Φτ(f(x)))(Φ
−1
τ(f(x))(f ◦ π, pr2 ◦ Φτ(x))

= pr2 ◦ (f ◦ π, pr2 ◦ Φτ(x))

= pr2 ◦ Φτ(x)

which finishes the proof.
2

Theorem 2.8 F is an isometry with respect to g̃ .

Proof
We begin the proof by showing that the function F is a bijection:

Suppose that F (h) = F (h′) for any h, h′ ∈ E . Then (π ◦ F )(h) = (π ◦ F )(h′) , which implies
(f ◦ π)(h) = (f ◦ π)(h′) . Since f is one-to-one, π(h) = π(h′) . Thus, h, h′ belongs to the same fiber.

Suppose that h, h′ ∈ π−1{x} . Note that we work on the fixed trivialization set B . Therefore, we have
Φτ(x) and Φτ(f(x)) as in Equation (2.7). Since Φτ(f(x)) is a diffeomorphism, then

(Φτ(f(x)) ◦ F )(h) = (Φτ(f(x)) ◦ F )(h′).

This implies

((f ◦ π)(h), (pr2 ◦ Φτ(x))(h)) = ((f ◦ π)(h′), (pr2 ◦ Φτ(x))(h
′))

⇒ π(h) = π(h′) and (pr2 ◦ Φτ(x))(h)) = (pr2 ◦ Φτ(x))(h
′))

Therefore, we have

Φτ(x)(h) = (π(h), (pr2 ◦ Φτ(x))(h)) = (π(h′), (pr2 ◦ Φτ(x))(h
′)) = Φτ(x)(h

′)

⇒ h = h′.

This implies that F is an injection. We note that we use f being an isometry (f is an injection) on the
third line of above equations.

To show that F is a surjective map, suppose that F (h′) = h for an arbitrary element h ∈ E . Then

h = Φ−1
τ(f(x))(f ◦ π, pr2 ◦ Φτ(x))(h

′)

⇒ Φτ(f(x))(h) = (f ◦ π, pr2 ◦ Φτ(x))(h
′),

which implies

(π(h), (pr2 ◦ Φτ(f(x)))(h)) = ((f ◦ π)(h′), (pr2 ◦ Φτ(x))(h
′))

⇒ π(h) = (f ◦ π)(h′) and (pr2 ◦ Φτ(f(x)))(h) = (pr2 ◦ Φτ(x))(h
′)

⇒ f−1(π(h)) = π(h′) and (pr2 ◦ Φτ(f(x)))(h) = (pr2 ◦ Φτ(x))(h
′).
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Using the above equations, we have

Φτ(x)(h
′) = (π(h′), (pr2 ◦ Φτ(x))(h

′))

= (f−1(π(h)), (pr2 ◦ Φτ(f(x)))(h)).

Therefore, h′ = Φ−1
τ(x)(f

−1(π(h)), (pr2 ◦ Φτ(f(x)))(h)) . F is a surjective map. Moreover, inverse function

is F−1(h) = Φ−1
τ(x)(f

−1(π(h)), (pr2 ◦ Φτ(f(x)))(h)) , which is a smooth function. Since both F and F−1 are
smooth functions, then F is a diffeomorphism.

To finish the proof, we need to show that F∗ preserves the Riemannian metric g̃ .
Since F = Φ−1

τ(f(x))(f ◦ π, pr2 ◦ Φτ(x)) , by chain rule we have

F∗ = (Φτ(f(x)))
−1
∗ ((f ◦ π)∗, (pr2 ◦ Φτ(x))∗).

Let V,W ∈ TEh , and h ∈ E .

g̃E(F∗h
(V ), F∗h

(W ))

= g(π∗(F∗h
(V )), π∗(F∗h

(W ))) +Q((pr2 ◦ Φτ(x))∗(F∗h
(V )), (pr2 ◦ Φτ(x))∗(F∗h

(W )))

= g((π ◦ F )∗h
(V ), (π ◦ F )∗h

(W )) +Q((pr2 ◦ Φτ(f(x)) ◦ F )∗h
(V ), (pr2 ◦ Φτ(f(x)) ◦ F )∗h

(W ))

= g((f ◦ π)∗h
(V ), (f ◦ π)∗h

(W )) +Q((pr2 ◦ Φτ(x))∗(V ), (pr2 ◦ Φτ(x))∗(W )) (2.10)

= g(π∗(V ), π∗(W )) +Q((pr2 ◦ Φτ(x))∗(V ), (pr2 ◦ Φτ(x))∗(W ))

= g̃E(V,W )

which finishes the proof. Please note that we use the Lemma (2.7) for Equation (2.10). 2

2.2. A map between isometry groups

Definition 2.9 Now we define a map between isometry groups of M and E respectively as follows

Ω : I(M) → I(E)

f → F : E → E

h → F (h) = Φ−1
τ(f(x))((f ◦ π)(h), (pr2 ◦ Φτ(x))(h))

such that for each f ∈ I(M) , we choose trivializations Φτ(x) and Φτ(f(x)) as in Equation (2.7).

Lemma 2.10 Ω is a one-to-one group homomorphism

Proof
For all x ∈ M , let h ∈ π−1, {x} . We choose trivializations Φτ(x) and Φτ(f(x)) as in Equation (2.7).

Assume that Ω(f1) = Ω(f2) . Then
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(Ω(f1))(h) = (Ω(f2))(h)

⇒ π((Ω(f1))(h)) = π((Ω(f2))(h))

⇒ (f1 ◦ π)(h) = (f2 ◦ π)(h)

⇒ f1(x) = f2(x)

⇒ f1 = f2

which shows that Ω is one-to-one. Now we show that Ω is a homomorphism.

Suppose that f1, f2 ∈ I(M) . For all h ∈ π−1{x} , we use fixed trivializations Φτ(f1(x)) for f1 and
Φτ(f2(x)) for f2 as in Equation (2.7). Using definition of Ω , we have

(Ω(f2))(h) = Φ−1
τ(f2(x))

((f2 ◦ π)(h), (pr2 ◦ Φτ(x))(h)).

Let h′ = Ω(f2)(h) . Then Φτ(f2(x))(h
′) = ((f2 ◦ π)(h), (pr2 ◦ Φτ(x))(h)) . Thus, π(h′) = (f2 ◦ π)(h) , and

(pr2 ◦ Φτ(f2(x)))(h
′) = (pr2 ◦ Φτ(x))(h) . Then

(Ω(f1) ◦ Ω(f2))(h) = (Ω(f1))(h
′) = Φ−1

τ(f1(x))
(f1(π(h

′)), (pr2 ◦ Φτ(f2(x)))(h
′))

= Φ−1
f1(x)

((f1(f2 ◦ π)(h), (pr2 ◦ Φτ(x))(h))

= (Ω(f1 ◦ f2))(h)

which implies that Ω is a homomorphism. 2

Theorem 2.11 Ω is a smooth function.

Proof
Denote G = I(M) and the image Im(Ω) = G̃ . Since Ω is a one-to-one group homomorphism, then G̃

which is defined as

G̃ = {F ∈ I(E)| F (h) = Φ−1
τ(f(x))(f ◦ π, pr2 ◦ Φτ(x))(h), h ∈ π−1{x}, f ∈ G}

is a subgroup of I(E) .

Let B̃ be a subbase of I(E) which consists of function sets V (K̃, Ũ) ∈ B̃ . Since π is both continuous
and open function, then π(Ũ) is open set and π(K̃) is compact. Suppose that Ṽ (K̃, Ũ) ∈ B̃ , and let
f ∈ Ω−1(Ṽ (K̃, Ũ)) . Then F = Ω(f) ∈ Ṽ (K̃, Ũ) . Therefore, F (K̃) ⊂ Ũ , which implies (π◦F )(K̃) ⊂ π(Ũ) = U .
Since (F, f) is a fiber preserving map, we have (f ◦ π)(K̃) ⊂ U , which shows that f(K) ⊂ U , with compact
set K , and open set U . This implies that Ω is a continuous function.

Since Ω is continuous, then from (Theorem 3.39 in [20]), Ω is smooth function. 2

Theorem 2.12 G̃ is a Lie subgroup of I(E) .
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Proof From Lemma (2.10), G̃ is a subgroup of I(E) . Now, we need to show that G̃ is a closed subset.

Suppose that (Fk) is a convergent sequence in G̃ such that Fk → F . By the definition of G̃ , there exists
(fk) ⊂ I(M) such that Ω(fk) = Fk . Since π is continuous, then (π ◦ Fk) → (π ◦ F ) . From Equation (2.9), we
have (fk ◦ π) → (π ◦ F ) .

Suppose that d̃ and d represent the distance functions corresponding to Riemannian metrics g̃ and g

respectively. Then for all ϵ > 0 , there exists N0 ∈ N such that ∀k ≥ N0 ,

d((π ◦ Fk)(h), (π ◦ F )(h)) < ϵ (2.11)

Therefore, for all x ∈ M , with h = O(x) , Equation (2.11) holds, i.e. ∀ϵ > 0 , and ∀k ≥ N0

d(fk(x), (π ◦ F ◦O)(x)) = d((fk ◦ π ◦O)(x), (π ◦ F ◦O)(x))

= d((fk ◦ π)(h), (π ◦ F )(h)) < ϵ

which implies fk → π ◦ F ◦O . Let f = π ◦ F ◦O . Since (fk) ⊂ I(M) , then f ∈ I(M) . By Theorem (2.11), Ω

is continuous, then Ω(fk) → Ω(f) thus Fk → Ω(f) . By the uniqueness of the limit, Ω(f) = F . Then F ∈ G̃ ,
which finishes the proof. 2

Corollary 2.13 The function Ω|Ω−1(G̃) is a Lie group isomorphism.

Proof By Lemma (2.10) and Theorem (2.11), the function Ω|Ω−1(G̃) is a smooth bijection. For any section

(for example zero section O),

Ω−1(F ) = π ◦ F ◦O. (2.12)

Let B and B̃ be subbases of I(M) and I(E) respectively, which we define in Definition 1.1, and V (K,U) ∈ B .
Set O(K) = K̃ ⊂ E , and π−1(U) = Ũ . Since O and π are continuous, then K̃ is compact, and Ũ ⊂ E is
open. Suppose that f ∈ V (K,U) , and Ω(f) = F . Then

f(K) ⊂ U ⇔ f(π(K̃)) ⊂ U

⇔ (π ◦ F )(K̃) ⊂ U

⇔ F (K̃) ⊂ Ũ

which shows that Ω(V (K,U)) = V (K̃, Ũ) ◦ G̃ , where V (K̃, Ũ) ∈ B̃ . From Theorem (2.12), the topology on

G̃ is the relative topology such that the family of the sets V (K̃, Ũ) ∩ G̃ forms a subbase for G̃ . Thus, Ω−1

is continuous (therefore smooth), which concludes that Ω : I(M) → G̃ is a diffeomorphism. Since Ω is a Lie
group homomorphism, then it is a Lie group isomorphism. 2

So far we have shown the existence of a Lie subgroup G̃ of I(E) . In the next section, we construct two

different principal G̃ -bundle structures.
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3. Applications

In this section, we present two principal bundles with the structure group G̃ as two applications of the
prolongation of the isometric actions.

3.1. Induced principal bundle on the total space

Now suppose that τ : P → M a principal bundle with structure group I(M) , and transition functions ζαβ on
Uα ∩ Uβ , where α, β belongs to the index set I . Now we define smooth functions ζ̃αβ on π−1(Uα) ∩ π−1(Uβ)

as ζ̃αβ = Ω ◦ ζαβ ◦ π . In the following proposition, we construct a principal bundle based on E .

Lemma 3.1 ζ̃αβ satisfies Steenrod construction relations.

Proof Suppose that h ∈ π−1(Uα) ∩ π−1(Uβ) ∩ π−1(Uθ) . Since Ω is a homomorphism, we have

ζ̃αβ(h)ζ̃βθ(h) = Ω((ζαβ ◦ π)(h))Ω((ζβθ ◦ π)(h))

= Ω((ζαβ(π(h))(ζβθ(π(h)))

= Ω((ζαθ(π(h)))

= ζ̃αθ(h).

2

Let us regard the indexing set I for the covering {π−1(Uα)} as a topological space with the discrete

topology. By (Proposition 5.2 in [11]), Lemma (3.1) implies that there exists a principal bundle (P̃ , τ̃ ,E, G̃)

with the transition functions ζ̃βα such that the bundle projection τ̃ , and the local trivializations φ̃α are given
by the following:

Let Xα = π−1(Uα)× G̃ for each index α , and let X =
∪

α Xα the topological sum of Xα ; each element
of X is a triple (α, h, F ) ∈ {α} ×Xα . We introduce an equivalence relation ∼ on X as

(α, h, F ) ∼ (β, h′, F ′) ⇔ h = h′ ∈ π−1(Uα) ∩ π−1(Uβ), F ′ = ζβα(h) ◦ F. (3.1)

We define P̃ = X/G̃ quotient space of X by the relation ∼ , which makes P̃ a smooth manifold with

P̃/G̃ = E . The projection τ̃ : P̃ → E as
τ̃([(α, h, F )]) = h, (3.2)

and the local trivializations φ̃α : τ̃−1(π−1(Uα)) → π−1(Uα)× G̃ as

φ̃([(α, h, F )]) = (h, F ), (3.3)

which make (P̃ , τ̃ ,E, G̃) a principal fiber bundle.

3.2. Induced bundle on the orbit space

Let µ be the canonical action of I(M) on M . Then the canonical G̃ action on E is defined in a usual way as
follows:

µ̃(F, h) = F (h), (3.4)
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where F ∈ G̃ . We will call this action as the induced action on E .

Proposition 3.2 Suppose that I(M) acts freely on M . Then the orbit space E/G̃ of the induced action

µ̃ admits a smooth structure in such a way that (E, ρ,E/G̃, G̃) is a (smooth) principal fiber bundle, where

ρ : E → E/G̃ is the canonical projection.

Proof
Suppose that for some h ∈ E , F (h) = h where F ∈ G̃ . Suppose that h ∈ π−1{x} . From Equation (2.2),

Φ−1
τ(f(x))((f ◦ π)(h), (pr2 ◦ Φτ(x))(h)) = h

which implies
π(h) = (pr1 ◦ Φτ(x))(h) = pr1((f ◦ π)(h), (pr2 ◦ Φτ(x))(h)) = (f ◦ π)(h). (3.5)

Since µ is a free action, then f = idI(M) . Because Ω is a homomorphism, then it maps the identity of I(M) to

the identity of I(E) , which implies that F = idG̃ . Since for any h ∈ E , and F ∈ G̃ , F (h) = h implies F = id ,
then µ̃ is a free action.

On the other hand, by Theorem (2.12), G̃ is an imbedded Lie subgroup of I(E) . Then from Proposition

3.62 in [2], the induced action µ̃ : G̃×E → E is proper. Since µ̃ is a proper free action on E , by Theorem 3.34

in [2] the orbit space E/G̃ admits a smooth structure such that (E, ρ̃,E/G̃, G̃) is a principal bundle, where the

bundle projection map ρ̃ : E → E/G̃ is the quotient map.
2

Corollary 3.3 By the Proposition (3.2), if the canonical action of the isometry group I(M) is free, then the
total space of every vector bundle based on M can be written as a total space of a principal bundle.
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