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Abstract: In this work, the maximal convergence properties of partial sums of Faber—Laurent series in the variable
exponent Smirnov classes of analytic functions defined on a doubly connected domain of the complex plane are investi-

gated.
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1. Introduction and main results
Let K be a bounded continuum of the complex plane C with the complementary C\K, consisting of two
simple connected domains G and B. We assume that B is bounded and G is unbounded component of this
complementary. Without loss of generality, we assume that 0 € B. Moreover, let D := {w e C: |w| < 1},
D :={weC:|w|>1}, and T :=9D.

We denote by w = ¢1 (2) the conformal mapping of G onto D~ normalized by the conditions

1 (00) =00, lim L(Z)>O

z—00 z

and by 1 the inverse mapping of ;.

We also denote by w = @2 (2) the conformal mapping of B onto D~ normalized by the conditions
p2(0) =00, lim 25 (2) > 0

and by 1) the inverse mapping of ¢s.

Since the Laurent expansion of ¢ in some neighborhood of the infinity has the form
1 2
e1(2) =1z +70+ T+ 5+

we have

n—1
[4,01 (Z)]n = ,Ynzn =+ Z 'Yn,k:zk + Z fYn,kzk~
k=0 k<0
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The polynomial

n—1
), (2) ==7"2"+ Y k2"
k=0
is called the Faber polynomial of order n for continuum K. Let E! (z) := — > k<o SARTLE

The function @9 has an expansion in some neighborhood of the origin:

P2 (2) = g +Bo+ Prz+ ...+ Brzt...

Raising this function to the power n, we obtain
[o2 (2)]" = @ (1/2) = E; (2), z€B (1.1)

where ®2 (1/2) denotes the polynomial of negative powers of z and the term E2 (z) contains nonnegative

powers of z; hence, this is an analytic function in the domain B.

Note that the polynomials ®.and ®2 can be found also as the Taylor coefficients of the series represen-

tations
1/)1%)@2?:2% (2)%7 lt| > Ri>1,2€ K (1.2)
and
w:_éqﬁ(l/z)ﬁil, [t| > Ry>1,2€ K (1.3)
respectively.

Let p(-) : I' = R* :=[0,00) be a Lebesgue measurable function defined on the Jordan rectifiable curve
I' ¢ C, such that

1 <p_ :=essinfp (z) <esssupp (z) := py < o0. (1.4)
zel’ zel

Definition 1.1 We say that p(-) € Py (I'), if p(-) satisfies the conditions (1.4) and for some constant ¢y > 0

the inequality
Co
| <
log ([T /|21 — z2|)

Ip(21) — p(22)  Va,z el

holds, where |T'| is the Lebesque measure of T.

For a given exponent p(-) we define the variable exponent Lebesgue spaces ) (T") as the set of Lebesgue

measurable functions f defined on T' such that [.|f (2)[" (*)dz| < co. Equipped with the norm

1o = inf{A >0 / 1 (2) /AP Jdz] < 1} <0,
I

it becomes a Banach space, which in the case of [0,27] is the variable exponent Lebesgue space LP() ([0, 27]),

investigated in [3, 5, 19].
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Let us take the level lines
FRI = {Z : ‘301 (Z)| =R > 1}’

Lr, :={z:]p2(2)| = B2 > 1}
and let Gg, = intl'r,, Gy, := extl'r,, Br, := intLg,, By, = extLg,. Moreover, let Gg, r, be a doubly-
connected domain bounded by the curves I'p, and Lg,.

Let E? (GRr, Rr,), p > 1, be a classical Smirnov class of analytic functions in the doubly-connected domain

GR,.r,- We mention [6] that f € E? (Gg, r,), iff f isanalyticin Gg, r, and there exists a sequence (A,)7"

v=1"
A, C Gg, g, of domains A, whose boundaries (T',))~; consist of two rectifiable Jordan curves, such that the

domain A, contains each compact subset G* of Gg, g, for every n > ng for some ng € N and

vV—00

limsup/ If (2)|F |dz| < oo
r,

Definition 1.2 Let p; (-) and pa (+) be the Lebesgue measurable functions defined on I'g, and L, , respectively.
The set

EP10)p20) (GRDRZ) = {f e E! (GRl’Rz) 1 fe 28 (FRI) N L=t (LR2>}
is called the variable exponent Smirnov class of analytic functions in Gg, R, -

Since LP() (T) is noninvariant with respect to the usual shift operator, we consider the mean value
operator: op, : f = opf = %foh f (we) dt, w € T, 0 < h < 7, which is bounded[4] in LPU) (T), p(-) € Py (T).

Using this operator we define the modulus of smoothness as following.
Definition 1.3 Let f € LPC)(T), p(:) € Py (T). The function Q(f, p(y,r +[0,00) = [0,00) defined by
Qf,), \m:i= su -0 .
(f )p( ),T 0<h26 ILf nfll L )(T)

is called the modulus of smoothness of f in LPC) (T).

If f(z) € EY(Gr,,r, ) is an analytic function in the doubly-connected domain G, r,, then it has the

integral representation[20, pp. 256]:

o) = 1/F f(OdCI/L f(C)dC, e K

T 2mi (—=z 21 (—=z

Let
1
e s =g [ T
1 1 (w)

= = f (1 (w)) dw , (1.5)

270 gy 1 (w) — 2
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fa o= [ T
1 ¥4 (w)

= [ ({2 (w)) dw.

2mi lwl=r, Y2 (W) — 2

(1.6)

Combining (1.5) and (1.6) with the series representations (1.2) and (1.3), respectively we can write

o0

f]J-‘grl (Z) ~ Zak (f;l) (I)11€ (Z)’ z € GRl’

k=0

Fry (2) ~ > bi (fr,) @ (1/2), z€ By,
k=0

where

1 @)

ak (f;l’:l) - % Tr, [@1 (Z)}k+1
1 fE (W (w))dw
- 27 |w|=Ry wk’“ ’

() = o [ mUed

20 Jon, [ ()]

Let us introduce the value

R (2 f) - =f(Z)—{Zak(f§1)<I>i(Z)
k=0

OYAALIE]
k=1
and the best approximation numbers

En (fu GRl)pl(-) = lanf - pn“Lm(‘)(FRl) for f € Epl(.) (GR1) )

En(f,Br,) ) = 0EIf = all oo r,,)  for f € E”0 (Bg,),

where inf is taken over the polynomials p, (z) and ¢, (1/z), respectively.

Since I'p, and Lp, are analytic curves, the following lemmas are true[14]:
Lemma 1.4 If f € Lpl(.) (FR1)7 p1 () € PO (FRl)’ then f}-iz_l (Z) € Epl(.) (GRl) .
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Lemma 1.5 If f € L”*) (Lg,), p2(-) € Po (Lr,), then Ir, (2) € Er2() (Bg,) -

By ¢(-), e1 (), ¢c2(:),..., we denote the constants depending in general of parameters given in the

brackets.
Our main results are as follows:

Theorem 1.6 Let py (-) € Py (Tr,), pa(-) € Po(Lr,). If f € EP*O)P20) (G, g,), Ri, Ry > 1, then there is
a constant ¢ (p1,p2) > 0 such that for Vz € K

By, (fENGRl)Pl(') En (f};?’BI;?)Pz(')

Ry, (2, f)] < ,p2) Vil +
| (Z f)‘—c(pl p2) ninn R;hLl(Rl—l) R;L+1(R2_1)

Theorem 1.6 is new also for the simple connected domains. When G is a simple connected domain, we have
Corollary 1.7 Let p(-) € Py (Tr). If f € EPO) (GR), R > 1, then there is a constant c(p) > 0 such that

E?’L (f;a GR)p()

|Ru (2, )| < ¢(p) Vninn R (R, - 1)

, z€ K,
where

Ry (2, f) = f(2) = > an (f1) @} (2).
k=0

We denote by w = 1 (z) the conformal mapping of Gy, onto D™ and by gofl the inverse mapping

of ¢1. Moreover, we denote by w = ¢ (z) the conformal mapping of Bg, onto D~ and by ¢35 1 the inverse

mapping of ys. It is easy to see that

p1(2) = and 7! (w) =9 (Riw),

o2(2)= P22 and g () = o (Bow)

Let
fi(w) = f(o7" (w)) and 1y (w) :==p1 (7" (w)),

fo(w):=f (<p2_1 (w)) and pa2 (W) 1= py (<p2_1 (w)) .

The following theorem gives a qualitative estimation for the error of maximal convergence:

Theorem 1.8 Let p1 (-) € Po(Tr,), p2(-) € Po(Lg,). If f € EP*O)»20)(GR Rr,), Ri,Ry > 1, then there

exists a constant ¢ (p1,p2) > 0 such that

Q(fla]-/n)le()I Q(fQ,]-/n)Pza(')vT
RUH(Ry — 1) Ry (Ry — 1)

IRy (2, f)| < c(p1,p2) Vnlnn
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When p(-) = const > 1, different versions of Theorems 1.6 and 1.8 in the classical Smirnov, Smirnov—Orlicz
classes of analytic functions defined on the simple connected domains can be found in the monograph [20,

chapter X] and also in [8-12]. In the case of variable exponent p (-) similar problems were investigated in [1, 2,
7,13-17, 22.

2. Auxiliary results

For fixed Ry, Rz > 1 the level curves I'p, and Lp, are analytic curves and hence by [21] there exist the positive
constants ¢; >0, ¢ =1,2,...,8, such that

0<ci <l|p)(2)] <ca<oo, z€Tlg,

0<e3 <[y (w)] <ea<oo, |wl =Ry (2.1)

0<cs <l|ph(2)] <cg <00, z€Lpg,,
0<cr < |y (w)] <cg <oo, |w| =Ry (2.2)
The proof of the following Lemma goes by a similar way to the proof of Lemma 1 in [14].
Lemma 2.1 The following equivalences are true
p1(-) €Po(lr) & pra(r) €Po(T), p2() € Po(Lr,) < p22(:) € Po(T),
ferlrO (Tg) e fL e LPO(T),  feLP20) (Lg,) < fo e LP220)(T).
We mention that if I' is a rectifiable Jordan curve and f € L' (T'), then the limit

) [ Hac

S @)=t [ [ g L

e—027i (—=z 271

where T' (z,¢) :={¢ €T : | — 2| < e}, existing for almost all z € T is called the Cauchy singular integral of f
at zeT.

For a given f € L' (I') we associate the singular integral Sr (f) taking the value Sr (f)(z) a.e. on T'.
The linear operator St defined in such way is called the Cauchy singular operator. By [18] it is a bounded

linear operator from LP(") (T") to et 1.
If feLPO(T), p(-) € Py (T), then the functions

1 f(©) .
f+(2) = o FC*ZdQ z € intl,
= [T et

_% FC_Z

are analytic in intl" and extI', respectively. According to Privalov’s theorem they have nontangential limits
a.e. on I' and the relations

£ ()= 50 (F) () + 37 (2) and [~ ()= Sc () (2) ~ 3/ () (23)

394



ISRAFILOV and GURSEL/Turk J Math

are valid a.e. on I'. Hence,
fR) =)~ f (2
holds a.e. on T.

Lemma 2.2 If f € LPO)(T), p(-) € Py (T), then Q (St (f), Dpiy @ Q) -

Proof Let 6 € (0,7), h < and w € T. By Fubini’s theorem

on (2 (f) (w) = (1/h) / Sr(f) (we't) dt

_ (1/h)/O %(P.V.) (/T W) dt

h it

h
h

271 T —Ww
_ %(p.v.) /T Lﬁ )U(f)dr
= Sr(on(f) (w))

and hence using the boundedness of singular operator St in LP() (T), we have that

ISt (f) — on (ST(f))||LP(~)(11‘) = |Sc(f—on (f))HLp(-)('Jl‘)
< cOIf —on (Hllpor -

N

which implies the desired relation Q (St (f), -)p(.) <c(p)Q(f, -)p(.).

O

In [14] were proved some direct theorems of approximation theory in the variable exponent Smirnov

classes of analytic functions which in our terms can be formulated as follows:

Theorem 2.3 If f € E"C)(Ggr,), p1(-) € Po(Tr,), then for ¥n € N there is an algebraic polynomial

pn (2, f) such that for some constant ¢ (p1) > 0 the inequality
”f — Pn ('7 f)”Lm(-)(rRl) <c (pl) Q (fh 1/71);01,1(’)7,]1,

holds.

Theorem 2.4 If f e EP2() (BIEQ), p2(-) € Po(Lg,), then for ¥n € N there is an algebraic polynomial

pn (1/2, f) such that for some constant ¢ (p2) > 0 the inequality
1f—=pn (- f)||Lp2<»>(LR2) < c(p2) Q(f2, 1/”)1;2,2(4),?

holds.

The following theorem also will be used.
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Theorem 2.5 If r; > 1 and |w| >r > 1, i = 1,2, then the inequality

)

Ui (t) 1
oy s ey e e L=

|t|=ri

holds.

Note that Theorem 2.5 in the case of ¢ = 1 was proved in [20, pp. 174], and in the case of ¢ = 2 the
proof goes by a similar way.
Using (1.7) and (1.8) in (1.11), for z € K we obtain

Ry (2, f Zak le q)k Z fRz (1)2 (1/2)

’ n

n

:f;zrl( + fr, (2 Z le D (2) — Zbk(fgz)q)i(l/z)
k=1

< |fz,(2) Zak ()8 () [+ |fr, (2) = Y bl fr,)27(1/2)]
k=1

= Z a (fz,) Pk (2) Z be (fr,) @i (1/2)
k=n+1 k=n+1
= B (2 f5) [+ B (2 fR,) | (2.5)
It is clear that
R, (=fh) = Y a(ff)ei(2)
k=n+1
1 = D (2)

and

R (2 fr,) = O be(fr,)®(1/2)

k=n-+1
1 , = B2 (1/2)
= — t —EA T2 gt 2.
77 i, T (02 ))k;+1 T (27)
If p, is a polynomial of degree at most n, then
B Si) = o [ Uk @) —pan )] Y %D (28)
nAT 2mi Jit|=r, f ! k=n+1 tert .
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Since
0} (2) =1 ()" + B (2), z€K,

we have

= L(z = 1(z k = L (2
Z (I?Z+(1) - Z [@tkgl)} T Z EikJEl)'

k=n-+1 k=n+1 k=n-+1

Hence, from (2.8), taking into account (2.10), for z = 91 (w) we get

R (= )] < = £ ( ol 3 2
B R < 5 [, VR @) =m0 3 G|
1 - 1
1 g, T @O = 1O 30 B () g
Similarly, using (1.1) we obtain
9 _ 1 _ = wk
B2 (= S| < 5 /| o R 2 0) = (/2 ) ; |
_ o~ Bp (42 ()
27 Juyen, | Fry (2 (1)) = pn (1/92 (1)) k:zn;i-l — |t
We shall also use the relations [20, pp. 63]:
i (e () = —— g2 , -
E; (¢ (w)) = 5] /Tln TF; (ryw)dr, |wl>r;>1, i=1,2
where
F; (1,w) vi () - . T > 1, Jw] > 1.

3. Proof of main results

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

Proof [Proof of Theorem 1.6] Let z € T',,, 1 <7y < Ry and p, be the best approximating polynomial of

degree at most n to f;l € EP0) (Gg,). Denoting

1 Zoo wh
ho= o [t|=R1 |f1¥1 (V1 (8) = pn (1 (t))| k=n+1 thtl el
1 S 71
I g M O = ]| 5 B ) 0

by virtue of (2.11), we see that
|Ri (Z,fglﬂ S Il +IQ
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Using relations (2.1), (1.12) and applying Holder’s inequality [3, pp. 27], we have

o k
ho= g 1 ©-m) kglm 4 (Q)11dg
o 10 - = o) |,
< /I‘Rl |.fR1 (C) DPn (C)’ kzzn;l [(p1 (C)]kJrl | <|
< @I © =2 oy | 2 2EL
S e Q) L0 (Try)
e + 1 ()" o I
< a(p) En (f5,Gri), () 1 ON=Ter G|y
ca (py) it
< mpm oy UG @2
Now, we estimate the integral . By (2.13) we have
Eo= [ I -mee)| Y B,
ltl=Fa k=n+1
= i Y - 3 i T T,w)dT 1
T . {1le (%1 (1) = pn (41 (1)) kgl[m /|T RE) (1, 0) dT) e }|dt
1 1 © Lk
< % )on {|f$1 (W1 (1) = pn (1 (1)) 27r/|T_m k;ﬂ | 1P (s w)||dr|}|dt|
- — + - L | \R () i
= 5 |t—R1{{le (W1 (1)) =P (V1 ()] 5 /|T =y ’|F1 )| |d }|dt

By Fubini’s theorem

pe A [ ARG = Uk ) = )] 2
T, - n T
ERRPLICTAR ME 2m Jyyp, T P =]

and then changing the variables and using Hoélder’s inequality we obtain

it 1 4 e Ollagl |,
L < mnﬂ/ﬂ_n{'Fl(“"”)'%/rm 75,0 = 0 1,552 mn}'d'
¢s (p1) ™! ¢4 (€)
< R}’f“/ﬂ— |Fy (7, w) {Hfz;:1 pn(C)HLm(-)(FRl) GEO) qu(')(FRl)}|dT|
n+1
<

ce (1) 1Y / +
Fy (1,w)| Ey, .G dr|.
Rn+1 (Rl _ rl) i) | 1 (T w)| (fR1 Rl)pl(A) | Tl
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From this, by using (2.4), we have that

n+1 2 2

cr (p1) 7] +
L <"1 Fp ,GR,
2= RTY(R — 1) (Fho Gy

ri—1 72 -1

Now, the inequalities (3.1)—(3.3) imply that

cs (p1) i En (fIJ%rwGRl)pl(.) r? r?

In .
Ry (Ry — 1) ri—17 i1

R (2 1, ) | <

Consequently, setting z € K and r, =1+ % in this estimate, we obtain the inequality

co (p1) En (fEl ) GR1)

by virtue of (2.12), we see that

Using (2.2) and Holder’s inequality, we have

Iy

IN

IN

IN

Pl(') /
}RE:L (Z7f]¥1)|§ R?+1(R1_1) nlnn
with ¢g (p1) > 0. Now, let z € T',,, 1 <ry < Ry. Denoting
(o] wk
o= gr [ VR @ @) =p 0/ 0)]| 3 G|
t|=Rz k=n+1
oo 2 w
= [ @) —pe ()| S Bl g,
2T Jjt=rs et
|R2 (2. fr)| < It + I3
1 _ i wk d
5 S, |, (W2 (£)) = o (1/22 (1) ; i |1l
1 _ < e (),
— —pa (1 e d
. |fr, () = pu (1/C)] k:zw O It (O] 1dC]
B = ez (2))"
01 —pn (1 = |d
O/LR2 |7, () = pn (1/)] k:ZnH o 1
B = e (2))"
€11 )= Pn (1/)|| 1 ac P
(pz)HfRQ() ! ( /)HL ()(LRQ) k=n+1 [@2 (')]k+1 L‘ZZ(*)(LRQ)
e1202) | F, () = 0 ()| e (2)"
: L2 (Lra) | oo ()" (2 ()] = |2 (2)])
T;+1

IN

C13 (pQ) E, (f1;27B1;2)p2(-) m

qu(')(LRz)

(3.3)
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Now, we estimate the integral I5. By (2.13) we have

* 1 — — E2 (11[}2 ('UJ))
I, = o / |fr, (W2 () — pn (1/102 (1))] Z ktT |dt|
_ k=n-+1
lt|=Rz
1 _
B R ARSI sy G e P
|t|=R2 R =
1 B e’}
< o [ Am e -pmols [ 1Y el
|t=F> Iri=ry FEAE
1 _
o [ @) -n O 5 [ g P ()l ar]
[t|=Rz |T|_T2
By Fubini’s theorem
1 n+1 1 |t‘7n '
g [ TR o [ G 0) - e 0 )] T lat] ¢
|T|=r2 [t|=Rx
and hence changing the variables and using Hélder’s inequality, we obtain
rytt |5 (9)]
o< S [ IRl [ 15O - 00] SRl e
2 2r Ry | /5 |Is0 (€) =2 (Z)I| il
|7|=r2 Lg,
c14 (p2) TSL—H / - H |<P2 O)l
< /= F (r,w)| || fr, ) —pn (1/)],, —_— dr|.
R;H—l g | 2( )lH Rg() ( /)HL 2(> LR2 |902 — 9 (Z)| L‘12(')(L32) ‘ ‘
T|=T2
From this, using Theorem 2.5, in the case of i = 2 we have
n+1 2 2

15 (p2) 5

I I N n n. 7Bi b
2 = Rn+1 (R2 _ 7“2) (fRz R2)p2(') 7’3 —1 ’I"% —1

which, in combination with (3.5) and (3.6), implies that

n+1 — —
B2 (=, f7,)| < — w2) 8 Bn (Fy By [ 3 o3
2 = n .
n Ro R (Ry — 12) rt—1"r?-1

Setting in this estimate 1o =1+ % , we obtain for z € K the inequality

a7 (p2) En (fr,» Br,) .
+1( fr? R )m()\/nlnn (3.7)
RIFT(Ry — 1)

[R5 (=0 fr,)| <
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with ¢17 (p2) > 0. Finally, combining the relations (3.4), (3.7), and (2.5) we have

Bn (f:Cri) ) | B (fRa’B%)m(»]

|Rn (2, f)] < C(Phpz)\/m

RY™ (Ry — 1) Ry™ (Ry — 1)
O
Now we can proof Theorem 1.8.
Proof [Proof of Theorem 1.8] From Theorem 1.6, 2.3 and 2.4 we have
En (f%,,Gr) En (fr,» Br,)
R, (2, < : Valnn 1 p1(°) 2 2/pa()
oGNS oIVt [T m Ty T TR (R )
Q(fR O<P1 s / ) Q(fﬁ O<p2_1,1/n)
< ¢1 (p1,p2) Vnlnn : Pl : p220T | 3.8
< 1 (p1,p2) ”n"l R (R, — 1) RIFT(Ry — 1) (3.8)
Using the subadditivity property of modulus and (2.3), and also Lemma (2.2), we obtain that
Q (le o ng y 1/n)p1,1(')7'ﬂ‘ = Q (f1/2 + S’]r (fl) 5 l/n)p1,1(~),T
< cs(pra) [Q (f1, 1/n)p1,1(.),ir +Q(Sr(f), 1/”),;1,1(4),?]
< ag(p)Q(f1.1/n), 1
and
Q(fr, o vs 71/7”L)p22 gr = Q(R/2=5r(f2),1/n),, ),
< e20(p22) [Q (f2, 1/”)1)2,2(-),1‘ +Q (51 (f2), 1/”)1722 )T]
< e (p22) (f21/n),, 00
Now, these inequalities and (3.8) imply that
QU1 1/n)y, or  QU21/n), 01
R, (z, f)| <c(p11,p22) Vninn — O P2l ).
n (2. 91 < (1,1,22) Ry (Ry — 1) Ry (Ry — 1)
O
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