

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2020) 44: 389 – 402 © TÜBİTAK doi:10.3906/mat-1911-87

Faber-Laurent series in variable Smirnov classes

Daniyal M. ISRAFILOV^{1,2,*}, Elife GÜRSEL¹

¹Balıkesir University, Department of Mathematics, Balıkesir Turkey ²Institute of Mathematics and Mechanics of ANAS, Baku, Azerbaijan

Received: 25.11.2019 • Accepted/Published Online: 09.01.2020 • Final Version: 17.03.2020

Abstract: In this work, the maximal convergence properties of partial sums of Faber–Laurent series in the variable exponent Smirnov classes of analytic functions defined on a doubly connected domain of the complex plane are investigated.

Key words: Faber–Laurent series, variable spaces, maximal convergence

1. Introduction and main results

Let K be a bounded continuum of the complex plane $\mathbb C$ with the complementary $\mathbb C\backslash K$, consisting of two simple connected domains G and B. We assume that B is bounded and G is unbounded component of this complementary. Without loss of generality, we assume that $0 \in B$. Moreover, let $D := \{w \in \mathbb C : |w| < 1\}$, $D^- := \{w \in \mathbb C : |w| > 1\}$, and $\mathbb T := \partial D$.

We denote by $w = \varphi_1(z)$ the conformal mapping of G onto D^- normalized by the conditions

$$\varphi_{1}\left(\infty\right) = \infty, \quad \lim_{z \to \infty} \frac{\varphi_{1}\left(z\right)}{z} > 0$$

and by ψ_1 the inverse mapping of φ_1 .

We also denote by $w = \varphi_2(z)$ the conformal mapping of B onto D^- normalized by the conditions

$$\varphi_2(0) = \infty, \quad \lim_{z \to 0} z \varphi_2(z) > 0$$

and by ψ_2 the inverse mapping of φ_2 .

Since the Laurent expansion of φ_1 in some neighborhood of the infinity has the form

$$\varphi_1(z) = \gamma z + \gamma_0 + \frac{\gamma_1}{z} + \frac{\gamma_2}{z^2} + ...,$$

we have

$$[\varphi_1(z)]^n = \gamma^n z^n + \sum_{k=0}^{n-1} \gamma_{n,k} z^k + \sum_{k<0} \gamma_{n,k} z^k.$$

^{*}Correspondence: mdaniyal@balikesir.edu.tr 2010 AMS Mathematics Subject Classification: 30E10, 41A10, 41A30

The polynomial

$$\Phi_n^1(z) := \gamma^n z^n + \sum_{k=0}^{n-1} \gamma_{n,k} z^k$$

is called the Faber polynomial of order n for continuum K. Let $E_n^1(z) := -\sum_{k<0} \gamma_{n,k} z^k$.

The function φ_2 has an expansion in some neighborhood of the origin:

$$\varphi_2(z) = \frac{\beta}{z} + \beta_0 + \beta_1 z + \dots + \beta_k z^k \dots$$

Raising this function to the power n, we obtain

$$[\varphi_2(z)]^n = \Phi_n^2(1/z) - E_n^2(z), \quad z \in B$$
 (1.1)

where $\Phi_n^2(1/z)$ denotes the polynomial of negative powers of z and the term $E_n^2(z)$ contains nonnegative powers of z; hence, this is an analytic function in the domain B.

Note that the polynomials Φ_n^1 and Φ_n^2 can be found also as the Taylor coefficients of the series representations

$$\frac{\psi_1'(t)}{\psi_1(t) - z} = \sum_{k=0}^{\infty} \Phi_k^1(z) \frac{1}{t^{k+1}}, \quad |t| > R_1 > 1, \ z \in K$$
(1.2)

and

$$\frac{\psi_2'(t)}{\psi_2(t) - z} = -\sum_{k=0}^{\infty} \Phi_k^2(1/z) \frac{1}{t^{k+1}}, \quad |t| > R_2 > 1, \ z \in K$$
(1.3)

respectively.

Let $p(\cdot): \Gamma \to \mathbb{R}^+ := [0, \infty)$ be a Lebesgue measurable function defined on the Jordan rectifiable curve $\Gamma \subset \mathbb{C}$, such that

$$1 < p_{-} := \underset{z \in \Gamma}{\operatorname{ess inf}} p\left(z\right) \le \underset{z \in \Gamma}{\operatorname{ess sup}} p\left(z\right) := p_{+} < \infty. \tag{1.4}$$

Definition 1.1 We say that $p(\cdot) \in P_0(\Gamma)$, if $p(\cdot)$ satisfies the conditions (1.4) and for some constant $c_0 > 0$ the inequality

$$|p(z_1) - p(z_2)| \le \frac{c_0}{\log(|\Gamma|/|z_1 - z_2|)}, \forall z_1, z_2 \in \Gamma$$

holds, where $|\Gamma|$ is the Lebesgue measure of Γ .

For a given exponent $p(\cdot)$ we define the variable exponent Lebesgue spaces $L^{p(\cdot)}(\Gamma)$ as the set of Lebesgue measurable functions f defined on Γ such that $\int_{\Gamma} |f(z)|^{p(z)} |dz| < \infty$. Equipped with the norm

$$\|f\|_{L^{p(\cdot)}(\Gamma)} := \inf \left\{ \lambda \ge 0 : \int_{\Gamma} |f\left(z\right)/\lambda|^{p(z)} |dz| \le 1 \right\} < \infty,$$

it becomes a Banach space, which in the case of $[0, 2\pi]$ is the variable exponent Lebesgue space $L^{p(\cdot)}([0, 2\pi])$, investigated in [3, 5, 19].

Let us take the level lines

$$\Gamma_{R_1} := \{z : |\varphi_1(z)| = R_1 > 1\},\$$

$$L_{R_2} := \{z : |\varphi_2(z)| = R_2 > 1\}$$

and let $G_{R_1} := int\Gamma_{R_1}$, $G_{R_1}^- := ext\Gamma_{R_1}$, $B_{R_2} := intL_{R_2}$, $B_{R_2}^- := extL_{R_2}$. Moreover, let G_{R_1,R_2} be a doubly-connected domain bounded by the curves Γ_{R_1} and L_{R_2} .

Let $E^p(G_{R_1,R_2})$, $p \ge 1$, be a classical Smirnov class of analytic functions in the doubly-connected domain G_{R_1,R_2} . We mention [6] that $f \in E^p(G_{R_1,R_2})$, iff f is analytic in G_{R_1,R_2} and there exists a sequence $(\Delta_{\nu})_{\nu=1}^{\infty}$, $\Delta_{\nu} \subset G_{R_1,R_2}$ of domains Δ_{ν} whose boundaries $(\Gamma_{\nu})_{\nu=1}^{\infty}$ consist of two rectifiable Jordan curves, such that the domain Δ_{ν} contains each compact subset G^* of G_{R_1,R_2} for every $n \ge n_0$ for some $n_0 \in \mathbb{N}$ and

$$\underset{\nu\to\infty}{limsup} \int\limits_{\Gamma} \left| f\left(z\right) \right|^p \left| dz \right| < \infty.$$

Definition 1.2 Let $p_1(\cdot)$ and $p_2(\cdot)$ be the Lebesgue measurable functions defined on Γ_{R_1} and L_{R_2} , respectively. The set

$$E^{p_{1}(\cdot),p_{2}(\cdot)}\left(G_{R_{1},R_{2}}\right):=\left\{ f\in E^{1}\left(G_{R_{1},R_{2}}\right):f\in L^{p_{1}(\cdot)}\left(\Gamma_{R_{1}}\right)\cap L^{p_{2}(\cdot)}\left(L_{R_{2}}\right)\right\}$$

is called the variable exponent Smirnov class of analytic functions in G_{R_1,R_2} .

Since $L^{p(\cdot)}(\mathbb{T})$ is noninvariant with respect to the usual shift operator, we consider the mean value operator: $\sigma_h: f \to \sigma_h f := \frac{1}{h} \int_0^h f\left(we^{it}\right) dt$, $w \in \mathbb{T}$, $0 < h < \pi$, which is bounded[4] in $L^{p(\cdot)}(\mathbb{T})$, $p(\cdot) \in \mathcal{P}_0(\mathbb{T})$. Using this operator we define the modulus of smoothness as following.

Definition 1.3 Let $f \in L^{p(\cdot)}\left(\mathbb{T}\right), \ p\left(\cdot\right) \in P_0\left(\mathbb{T}\right).$ The function $\Omega\left(f,\cdot\right)_{p(\cdot),\mathbb{T}}:\left[0,\infty\right) \rightarrow \left[0,\infty\right)$ defined by

$$\Omega(f,\cdot)_{p(\cdot),\mathbb{T}} := \sup_{0 < h < \delta} \|f - \sigma_h f\|_{L^{p(\cdot)}(\mathbb{T})}$$

is called the modulus of smoothness of f in $L^{p(\cdot)}(\mathbb{T})$.

If $f(z) \in E^1(G_{R_1,R_2})$ is an analytic function in the doubly-connected domain G_{R_1,R_2} , then it has the integral representation [20, pp. 256]:

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma_{R_1}} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{L_{R_2}} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in K.$$

Let

$$f_{R_{1}}^{+}(z) := \frac{1}{2\pi i} \int_{\Gamma_{R_{1}}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{|w|=R_{1}} \frac{\psi_{1}'(w)}{\psi_{1}(w) - z} f(\psi_{1}(w)) dw , \qquad (1.5)$$

$$f_{R_{2}}^{-}(z) := \frac{-1}{2\pi i} \int_{L_{R_{2}}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{-1}{2\pi i} \int_{|w| = R_{2}} \frac{\psi_{2}'(w)}{\psi_{2}(w) - z} f(\psi_{2}(w)) dw.$$
(1.6)

Combining (1.5) and (1.6) with the series representations (1.2) and (1.3), respectively we can write

$$f_{R_1}^+(z) \sim \sum_{k=0}^{\infty} a_k \left(f_{R_1}^+ \right) \Phi_k^1(z), \quad z \in G_{R_1},$$
 (1.7)

$$f_{R_2}^-(z) \sim \sum_{k=0}^{\infty} b_k \left(f_{R_2}^- \right) \Phi_k^2(1/z), \quad z \in B_{R_2}^-,$$
 (1.8)

where

$$a_{k}(f_{R_{1}}^{+}) = \frac{1}{2\pi i} \int_{\Gamma_{R_{1}}} \frac{f_{R_{1}}^{+}(z) \varphi_{1}'(z)}{[\varphi_{1}(z)]^{k+1}} dz$$

$$= \frac{1}{2\pi i} \int_{|w|=R_{1}} \frac{f_{R_{1}}^{+}(\psi_{1}(w))}{w^{k+1}} dw,$$
(1.9)

$$b_{k}\left(f_{R_{2}}^{-}\right) = \frac{1}{2\pi i} \int_{L_{R_{2}}} \frac{f_{R_{2}}^{-}(z) \varphi_{2}'(z)}{\left[\varphi_{2}(z)\right]^{k+1}} dz$$

$$= \frac{1}{2\pi i} \int_{|w|=R_{2}} \frac{f_{R_{2}}^{-}(\psi_{2}(w))}{w^{k+1}} dw. \tag{1.10}$$

Let us introduce the value

$$R_{n}(z,f) := f(z) - \left\{ \sum_{k=0}^{n} a_{k} \left(f_{R_{1}}^{+} \right) \Phi_{k}^{1}(z) + \sum_{k=1}^{n} b_{k} \left(f_{R_{2}}^{-} \right) \Phi_{k}^{2}(1/z) \right\}$$

$$(1.11)$$

and the best approximation numbers

$$E_n(f, G_{R_1})_{p_1(\cdot)} := \inf \|f - p_n\|_{L^{p_1(\cdot)}(\Gamma_{R_1})} \quad \text{for } f \in E^{p_1(\cdot)}(G_{R_1}),$$
(1.12)

$$E_n\left(f, B_{R_2}^-\right)_{p_2(\cdot)} := \inf \|f - q_n\|_{L^{p_2(\cdot)}\left(L_{R_2}\right)} \quad \text{for } f \in E^{p_2(\cdot)}\left(B_{R_2}^-\right), \tag{1.13}$$

where inf is taken over the polynomials $p_n(z)$ and $q_n(1/z)$, respectively.

Since Γ_{R_1} and L_{R_2} are analytic curves, the following lemmas are true[14]:

Lemma 1.4 If
$$f \in L^{p_1(\cdot)}(\Gamma_{R_1})$$
, $p_1(\cdot) \in \mathcal{P}_0(\Gamma_{R_1})$, then $f_{R_1}^+(z) \in E^{p_1(\cdot)}(G_{R_1})$.

Lemma 1.5 If $f \in L^{p_2(\cdot)}(L_{R_2})$, $p_2(\cdot) \in \mathcal{P}_0(L_{R_2})$, then $f_{R_2}^-(z) \in E^{p_2(\cdot)}(B_{R_2}^-)$.

By $c(\cdot)$, $c_1(\cdot)$, $c_2(\cdot)$,..., we denote the constants depending in general of parameters given in the brackets.

Our main results are as follows:

Theorem 1.6 Let $p_1(\cdot) \in \mathcal{P}_0(\Gamma_{R_1})$, $p_2(\cdot) \in \mathcal{P}_0(L_{R_2})$. If $f \in E^{p_1(\cdot),p_2(\cdot)}(G_{R_1,R_2})$, $R_1,R_2 > 1$, then there is a constant $c(p_1,p_2) > 0$ such that for $\forall z \in K$

$$|R_n(z,f)| \le c(p_1,p_2)\sqrt{n\ln n} \left[\frac{E_n\left(f_{R_1}^+,G_{R_1}\right)_{p_1(\cdot)}}{R_1^{n+1}(R_1-1)} + \frac{E_n\left(f_{R_2}^-,B_{R_2}^-\right)_{p_2(\cdot)}}{R_2^{n+1}(R_2-1)} \right].$$

Theorem 1.6 is new also for the simple connected domains. When G is a simple connected domain, we have

Corollary 1.7 Let $p(\cdot) \in \mathcal{P}_0(\Gamma_R)$. If $f \in E^{p(\cdot)}(G_R)$, R > 1, then there is a constant c(p) > 0 such that

$$|R_n(z,f)| \le c(p) \sqrt{n \ln n} \frac{E_n(f_R^+, G_R)_{p(\cdot)}}{R_1^{n+1}(R_1 - 1)}, \ z \in K,$$

where

$$R_n(z, f) := f(z) - \sum_{k=0}^n a_k (f_R^+) \Phi_k^1(z).$$

We denote by $w = \varphi_1(z)$ the conformal mapping of $G_{R_1}^-$ onto D^- and by φ_1^{-1} the inverse mapping of φ_1 . Moreover, we denote by $w = \varphi_2(z)$ the conformal mapping of B_{R_2} onto D^- and by φ_2^{-1} the inverse mapping of φ_2 . It is easy to see that

$$\varphi_1(z) = \frac{\varphi_1(z)}{R_1}$$
 and $\varphi_1^{-1}(w) = \psi_1(R_1w)$,

$$\varphi_2(z) = \frac{\varphi_2(z)}{R_2}$$
 and $\varphi_2^{-1}(w) = \psi_2(R_2w)$.

Let

$$f_1(w) := f(\varphi_1^{-1}(w)) \text{ and } p_{1,1}(w) := p_1(\varphi_1^{-1}(w)),$$

$$f_2(w) := f(\varphi_2^{-1}(w)) \text{ and } p_{2,2}(w) := p_2(\varphi_2^{-1}(w)).$$

The following theorem gives a qualitative estimation for the error of maximal convergence:

Theorem 1.8 Let $p_1(\cdot) \in \mathcal{P}_0(\Gamma_{R_1})$, $p_2(\cdot) \in \mathcal{P}_0(L_{R_2})$. If $f \in E^{p_1(\cdot),p_2(\cdot)}(G_{R_1,R_2})$, $R_1,R_2 > 1$, then there exists a constant $c(p_1,p_2) > 0$ such that

$$|R_n(z,f)| \le c(p_1,p_2)\sqrt{n\ln n}\left[\frac{\Omega(f_1,1/n)_{p_{1,1}(\cdot),\mathbb{T}}}{R_1^{n+1}(R_1-1)} + \frac{\Omega(f_2,1/n)_{p_{2,2}(\cdot),\mathbb{T}}}{R_2^{n+1}(R_2-1)}\right].$$

When $p(\cdot) = const > 1$, different versions of Theorems 1.6 and 1.8 in the classical Smirnov, Smirnov–Orlicz classes of analytic functions defined on the simple connected domains can be found in the monograph [20, chapter X] and also in [8–12]. In the case of variable exponent $p(\cdot)$ similar problems were investigated in [1, 2, 7, 13–17, 22].

2. Auxiliary results

For fixed $R_1, R_2 > 1$ the level curves Γ_{R_1} and L_{R_2} are analytic curves and hence by [21] there exist the positive constants $c_i > 0$, i = 1, 2, ..., 8, such that

$$0 < c_{1} \le |\varphi'_{1}(z)| \le c_{2} < \infty, \quad z \in \Gamma_{R_{1}},$$

$$0 < c_{3} \le |\psi'_{1}(w)| \le c_{4} < \infty, \quad |w| = R_{1}$$

$$0 < c_{5} \le |\varphi'_{2}(z)| \le c_{6} < \infty, \quad z \in L_{R_{2}},$$

$$(2.1)$$

$$0 < c_7 \le |\psi_2'(w)| \le c_8 < \infty, \quad |w| = R_2$$
 (2.2)

The proof of the following Lemma goes by a similar way to the proof of Lemma 1 in [14].

Lemma 2.1 The following equivalences are true

$$p_{1}\left(\cdot\right)\in\mathcal{P}_{0}\left(\Gamma_{R_{1}}\right)\Leftrightarrow p_{1,1}\left(\cdot\right)\in\mathcal{P}_{0}\left(\mathbb{T}\right),\quad p_{2}\left(\cdot\right)\in\mathcal{P}_{0}\left(L_{R_{2}}\right)\Leftrightarrow p_{2,2}\left(\cdot\right)\in\mathcal{P}_{0}\left(\mathbb{T}\right),$$

$$f\in L^{p_{1}\left(\cdot\right)}\left(\Gamma_{R_{1}}\right)\Leftrightarrow f_{1}\in L^{p_{1,1}\left(\cdot\right)}\left(\mathbb{T}\right),\quad f\in L^{p_{2}\left(\cdot\right)}\left(L_{R_{2}}\right)\Leftrightarrow f_{2}\in L^{p_{2,2}\left(\cdot\right)}\left(\mathbb{T}\right).$$

We mention that if Γ is a rectifiable Jordan curve and $f \in L^1(\Gamma)$, then the limit

$$S_{\Gamma}(f)(z) := \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\Gamma \setminus \Gamma(z,\varepsilon)} \frac{f(\zeta)}{\zeta - z} d\zeta := \frac{1}{2\pi i} (P.V) \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta,$$

where $\Gamma(z,\varepsilon) := \{ \zeta \in \Gamma : |\zeta - z| < \varepsilon \}$, existing for almost all $z \in \Gamma$ is called the Cauchy singular integral of f at $z \in \Gamma$.

For a given $f \in L^1(\Gamma)$ we associate the singular integral $S_{\Gamma}(f)$ taking the value $S_{\Gamma}(f)(z)$ a.e. on Γ . The linear operator S_{Γ} defined in such way is called the *Cauchy singular operator*. By [18] it is a bounded linear operator from $L^{p(\cdot)}(\Gamma)$ to $L^{p(\cdot)}(\Gamma)$.

If $f \in L^{p(\cdot)}(\Gamma)$, $p(\cdot) \in \mathcal{P}_0(\Gamma)$, then the functions

$$f^{+}(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in int\Gamma,$$

$$f^{-}(z) := \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad z \in ext\Gamma$$

are analytic in $int\Gamma$ and $ext\Gamma$, respectively. According to Privalov's theorem they have nontangential limits a.e. on Γ and the relations

$$f^{+}(z) = S_{\Gamma}(f)(z) + \frac{1}{2}f(z) \text{ and } f^{-}(z) = S_{\Gamma}(f)(z) - \frac{1}{2}f(z)$$
 (2.3)

are valid a.e. on Γ . Hence,

$$f(z) = f^{+}(z) - f^{-}(z)$$

holds a.e. on Γ .

 $\mathbf{Lemma\ 2.2}\ \ \mathit{If}\ f \in L^{p(\cdot)}\left(\mathbb{T}\right),\ p\left(\cdot\right) \in \mathcal{P}_{0}\left(\mathbb{T}\right),\ \mathit{then}\ \Omega\left(S_{\mathbb{T}}\left(f\right),\cdot\right)_{p\left(\cdot\right)} \leq c\left(p\right)\Omega\left(f,\cdot\right)_{p\left(\cdot\right)}.$

Proof Let $\delta \in (0, \pi)$, $h < \delta$ and $w \in \mathbb{T}$. By Fubini's theorem

$$\sigma_{h}\left(S_{\mathbb{T}}\left(f\right)\left(w\right)\right) = \left(1/h\right) \int_{0}^{h} S_{\mathbb{T}}\left(f\right)\left(we^{it}\right) dt$$

$$= \left(1/h\right) \int_{0}^{h} \frac{1}{2\pi i} \left(P.V.\right) \left(\int_{\mathbb{T}} \frac{f\left(\tau e^{it}\right) d\tau}{\tau - w}\right) dt$$

$$= \frac{1}{2\pi i} \left(P.V.\right) \int_{\mathbb{T}} \frac{\left(1/h\right) \int_{0}^{h} f\left(\tau e^{it}\right) dt}{\tau - w} d\tau$$

$$= \frac{1}{2\pi i} \left(P.V.\right) \int_{\mathbb{T}} \frac{\sigma_{h}\left(f\right)\left(\tau\right)}{\tau - w} d\tau$$

$$= S_{\mathbb{T}}\left(\sigma_{h}\left(f\right)\left(w\right)\right)$$

and hence using the boundedness of singular operator $S_{\mathbb{T}}$ in $L^{p(\cdot)}(\mathbb{T})$, we have that

$$||S_{\mathbb{T}}(f) - \sigma_{h}(S_{\mathbb{T}}(f))||_{L^{p(\cdot)}(\mathbb{T})} = ||S_{\mathbb{T}}(f - \sigma_{h}(f))||_{L^{p(\cdot)}(\mathbb{T})}$$

$$\leq c(p) ||f - \sigma_{h}(f)||_{L^{p(\cdot)}(\mathbb{T})},$$

which implies the desired relation $\Omega\left(S_{\mathbb{T}}\left(f\right),\cdot\right)_{p\left(\cdot\right)}\leq c\left(p\right)\Omega\left(f,\cdot\right)_{p\left(\cdot\right)}$.

In [14] were proved some direct theorems of approximation theory in the variable exponent Smirnov classes of analytic functions which in our terms can be formulated as follows:

Theorem 2.3 If $f \in E^{p_1(\cdot)}(G_{R_1})$, $p_1(\cdot) \in \mathcal{P}_0(\Gamma_{R_1})$, then for $\forall n \in \mathbb{N}$ there is an algebraic polynomial $p_n(z, f)$ such that for some constant $c(p_1) > 0$ the inequality

$$\left\|f-p_{n}\left(\cdot,f\right)\right\|_{L^{p_{1}\left(\cdot\right)}\left(\Gamma_{R_{1}}\right)}\leq c\left(p_{1}\right)\Omega\left(f_{1},1/n\right)_{p_{1,1}\left(\cdot\right),\mathbb{T}}$$

holds.

Theorem 2.4 If $f \in E^{p_2(\cdot)}(B_{R_2}^-)$, $p_2(\cdot) \in \mathcal{P}_0(L_{R_2})$, then for $\forall n \in \mathbb{N}$ there is an algebraic polynomial $p_n(1/z, f)$ such that for some constant $c(p_2) > 0$ the inequality

$$\left\|f-p_{n}\left(\cdot,f\right)\right\|_{L^{p_{2}\left(\cdot\right)}\left(L_{R_{2}}\right)}\leq c\left(p_{2}\right)\Omega\left(f_{2},1/n\right)_{p_{2,2}\left(\cdot\right),\mathbb{T}}$$

holds.

The following theorem also will be used.

Theorem 2.5 If $r_i > 1$ and $|w| \ge r > 1$, i = 1, 2, then the inequality

$$\frac{1}{2\pi} \int_{|t|=ri} \left| \frac{\psi_i'(t)}{\psi_i(t) - \psi_i(w)} - \frac{1}{t-w} \right| |dt| \le \sqrt{\frac{r_i^2}{r_i^4 - 1} \ln \frac{r^2}{r^2 - 1}}$$
 (2.4)

holds.

Note that Theorem 2.5 in the case of i = 1 was proved in [20, pp. 174], and in the case of i = 2 the proof goes by a similar way.

Using (1.7) and (1.8) in (1.11), for $z \in K$ we obtain

$$|R_{n}(z,f)| = \left| f(z) - \sum_{k=0}^{n} a_{k} \left(f_{R_{1}}^{+} \right) \Phi_{k}^{1}(z) - \sum_{k=1}^{n} b_{k} \left(f_{R_{2}}^{-} \right) \Phi_{k}^{2}(1/z) \right|$$

$$= \left| f_{R_{1}}^{+}(z) + f_{R_{2}}^{-}(z) - \sum_{k=0}^{n} a_{k} \left(f_{R_{1}}^{+} \right) \Phi_{k}^{1}(z) - \sum_{k=1}^{n} b_{k} \left(f_{R_{2}}^{-} \right) \Phi_{k}^{2}(1/z) \right|$$

$$\leq |f_{R_{1}}^{+}(z) - \sum_{k=0}^{n} a_{k} (f_{R_{1}}^{+}) \Phi_{k}^{1}(z) | + |f_{R_{2}}^{-}(z) - \sum_{k=1}^{n} b_{k} (f_{R_{2}}^{-}) \Phi_{k}^{2}(1/z) |$$

$$= \left| \sum_{k=n+1}^{\infty} a_{k} \left(f_{R_{1}}^{+} \right) \Phi_{k}^{1}(z) \right| + \left| \sum_{k=n+1}^{\infty} b_{k} \left(f_{R_{2}}^{-} \right) \Phi_{k}^{2}(1/z) \right|$$

$$= : |R_{n}^{1}(z, f_{R_{1}}^{+})| + |R_{n}^{2}(z, f_{R_{2}}^{-})|. \tag{2.5}$$

It is clear that

$$R_{n}^{1}(z, f_{R_{1}}^{+}) = \sum_{k=n+1}^{\infty} a_{k} (f_{R_{1}}^{+}) \Phi_{k}^{1}(z)$$

$$= \frac{1}{2\pi i} \int_{|t|=R_{1}} f_{R_{1}}^{+}(\psi(t)) \left[\sum_{k=n+1}^{\infty} \frac{\Phi_{k}^{1}(z)}{t^{k+1}} \right] dt$$
(2.6)

and

$$R_{n}^{2}(z, f_{R_{2}}^{-}) = \sum_{k=n+1}^{\infty} b_{k}(f_{R_{2}}^{-}) \Phi_{k}^{2}(1/z)$$

$$= \frac{1}{2\pi i} \int_{|t|=R_{2}} f_{R_{2}}^{-}(\psi_{2}(t)) \sum_{k=n+1}^{\infty} \frac{\Phi_{k}^{2}(1/z)}{t^{k+1}} dt.$$
(2.7)

If p_n is a polynomial of degree at most n, then

$$R_n^1\left(z, f_{R_1}^+\right) = \frac{1}{2\pi i} \int_{|t|=R_1} \left[f_{R_1}^+\left(\psi_1\left(t\right)\right) - p_n\left(\psi_1\left(t\right)\right) \right] \sum_{k=n+1}^{\infty} \frac{\Phi_k^1\left(z\right)}{t^{k+1}} dt. \tag{2.8}$$

Since

$$\Phi_k^1(z) = [\varphi_1(z)]^k + E_k^1(z), \quad z \in K,$$
(2.9)

we have

$$\sum_{k=n+1}^{\infty} \frac{\Phi_k^1(z)}{t^{k+1}} = \sum_{k=n+1}^{\infty} \frac{\left[\varphi_1(z)\right]^k}{t^{k+1}} + \sum_{k=n+1}^{\infty} \frac{E_k^1(z)}{t^{k+1}}.$$
 (2.10)

Hence, from (2.8), taking into account (2.10), for $z = \psi_1(w)$ we get

$$\left| R_n^1 \left(z, f_{R_1}^+ \right) \right| \le \frac{1}{2\pi} \int_{|t| = R_1} \left| f_{R_1}^+ \left(\psi_1 \left(t \right) \right) - p_n \left(\psi_1 \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{w^k}{t^{k+1}} \right| |dt|$$

$$+\frac{1}{2\pi} \int_{|t|=R_1} \left| f_{R_1}^+ \left(\psi_1 \left(t \right) \right) - p_n \left(\psi_1 \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} E_k^1 \left(\psi_1 \left(w \right) \right) \frac{1}{t^{k+1}} \right| |dt|. \tag{2.11}$$

Similarly, using (1.1) we obtain

$$\left| R_n^2 \left(z, f_{R_2}^- \right) \right| \le \frac{1}{2\pi} \int_{|t|=R_2} \left| f_{R_2}^- \left(\psi_2 \left(t \right) \right) - p_n \left(1/\psi_2 \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{w^k}{t^{k+1}} \right| dt$$

$$+\frac{1}{2\pi} \int_{|t|=R_2} \left| f_{R_2}^-(\psi_2(t)) - p_n(1/\psi_2(t)) \right| \left| \sum_{k=n+1}^{\infty} \frac{E_k^2(\psi_2(w))}{t^{k+1}} \right| dt.$$
 (2.12)

We shall also use the relations [20, pp. 63]:

$$E_k^i(\psi_i(w)) = \frac{1}{2\pi i} \int_{|\tau| = r_i} \tau^k F_i(\tau, w) \, d\tau, \quad |w| \ge r_i > 1, \quad i = 1, 2$$
 (2.13)

where

$$F_i(\tau, w) := \frac{\psi_i'(\tau)}{\psi_i(\tau) - \psi_i(w)} - \frac{1}{\tau - w}, \quad |\tau| > 1, \ |w| > 1.$$

3. Proof of main results

Proof [Proof of Theorem 1.6] Let $z \in \Gamma_{r_1}$, $1 < r_1 < R_1$ and p_n be the best approximating polynomial of degree at most n to $f_{R_1}^+ \in E^{p_1(\cdot)}(G_{R_1})$. Denoting

$$I_{1} := \frac{1}{2\pi} \int_{|t|=R_{1}} \left| f_{R_{1}}^{+} \left(\psi_{1} \left(t \right) \right) - p_{n} \left(\psi_{1} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{w^{k}}{t^{k+1}} \right| \left| dt \right|,$$

$$I_{2} := \frac{1}{2\pi} \int_{|t|=R_{1}} \left| f_{R_{1}}^{+} \left(\psi_{1} \left(t \right) \right) - p_{n} \left(\psi_{1} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} E_{k}^{1} \left(\psi_{1} \left(w \right) \right) \frac{1}{t^{k+1}} \right| |dt|$$

by virtue of (2.11), we see that

$$\left|R_n^1\left(z, f_{R_1}^+\right)\right| \le I_1 + I_2.$$
 (3.1)

Using relations (2.1), (1.12) and applying Hölder's inequality [3, pp. 27], we have

$$I_{1} = \frac{1}{2\pi} \int_{\Gamma_{R_{1}}} \left| f_{R_{1}}^{+}(\zeta) - p_{n}(\zeta) \right| \left| \sum_{k=n+1}^{\infty} \frac{[\varphi_{1}(z)]^{k}}{[\varphi_{1}(\zeta)]^{k+1}} \right| |\varphi'_{1}(\zeta)| |d\zeta|$$

$$\leq c_{1} \int_{\Gamma_{R_{1}}} \left| f_{R_{1}}^{+}(\zeta) - p_{n}(\zeta) \right| \left| \sum_{k=n+1}^{\infty} \frac{[\varphi_{1}(z)]^{k}}{[\varphi_{1}(\zeta)]^{k+1}} \right| |d\zeta|$$

$$\leq c_{2}(p_{1}) \left\| f_{R_{1}}^{+}(\zeta) - p_{n}(\zeta) \right\|_{L^{p_{1}(\cdot)}(\Gamma_{R_{1}})} \left\| \sum_{k=n+1}^{\infty} \frac{[\varphi_{1}(z)]^{k}}{[\varphi_{1}(\zeta)]^{k+1}} \right\|_{L^{q_{1}(\cdot)}(\Gamma_{R_{1}})}$$

$$\leq c_{3}(p_{1}) E_{n} \left(f_{R_{1}}^{+}, G_{R_{1}} \right)_{p_{1}(\cdot)} \left\| \frac{|\varphi_{1}(z)|^{n+1} |\varphi_{1}(\cdot)|^{-n-1}}{|\varphi_{1}(\cdot)| - |\varphi_{1}(z)|} \right\|_{L^{q_{1}(\cdot)}(\Gamma_{R_{1}})}$$

$$\leq \frac{c_{4}(p_{1}) r_{1}^{n+1}}{R_{1}^{n+1}(R_{1}-r_{1})} E_{n} \left(f_{R_{1}}^{+}, G_{R_{1}} \right)_{p_{1}(\cdot)}. \tag{3.2}$$

Now, we estimate the integral I_2 . By (2.13) we have

$$I_{2} = \frac{1}{2\pi} \int_{|t|=R_{1}} \left| f_{R_{1}}^{+} \left(\psi_{1} \left(t \right) \right) - p_{n} \left(\psi_{1} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{E_{k}^{1} \left(\psi_{1} \left(w \right) \right)}{t^{k+1}} \right| |dt|$$

$$= \frac{1}{2\pi} \int_{|t|=R_{1}} \left\{ \left| f_{R_{1}}^{+} \left(\psi_{1} \left(t \right) \right) - p_{n} \left(\psi_{1} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \left[\frac{1}{2\pi i} \int_{|\tau|=r_{1}} \tau^{k} F_{1} \left(\tau, w \right) d\tau \right] \frac{1}{t^{k+1}} \right| \right\} |dt|$$

$$\leq \frac{1}{2\pi} \int_{|t|=R_{1}} \left\{ \left| f_{R_{1}}^{+} \left(\psi_{1} \left(t \right) \right) - p_{n} \left(\psi_{1} \left(t \right) \right) \right| \frac{1}{2\pi} \int_{|\tau|=r_{1}} \left| \sum_{k=n+1}^{\infty} \frac{\tau^{k}}{t^{k+1}} \right| |F_{1} \left(\tau, w \right) | |d\tau| \right\} |dt|$$

$$= \frac{1}{2\pi} \int_{|t|=R_{1}} \left\{ \left| f_{R_{1}}^{+} \left(\psi_{1} \left(t \right) \right) - p_{n} \left(\psi_{1} \left(t \right) \right) \right| \frac{1}{2\pi} \int_{|\tau|=r_{1}} \left| \frac{\tau^{n+1}}{t^{n+1} \left(t - \tau \right)} \right| |F_{1} \left(\tau, w \right) | |d\tau| \right\} |dt|.$$

By Fubini's theorem

$$I_{2} \leq \frac{r_{1}^{n+1}}{2\pi R_{1}^{n+1}} \int_{|\tau|=r_{1}} \left\{ \left|F_{1}\left(\tau,w\right)\right| \frac{1}{2\pi} \int_{|t|=R_{1}} \left|f_{R_{1}}^{+}\left(\psi_{1}\left(t\right)\right) - p_{n}\left(\psi_{1}\left(t\right)\right)\right| \frac{\left|dt\right|}{\left|t-\tau\right|} \right\} \left|d\tau\right|$$

and then changing the variables and using Hölder's inequality we obtain

$$\begin{split} I_{2} & \leq & \frac{r_{1}^{n+1}}{2\pi R_{1}^{n+1}} \int_{|\tau|=r_{1}} \left\{ |F_{1}\left(\tau,w\right)| \frac{1}{2\pi} \int_{\Gamma_{R_{1}}} \left| f_{R_{1}}^{+}\left(\zeta\right) - p_{n}\left(\zeta\right) \right| \frac{|\varphi_{1}'\left(\zeta\right)| |d\zeta|}{|\varphi_{1}\left(\zeta\right) - \varphi_{1}\left(z\right)|} \right\} |d\tau| \\ & \leq & \frac{c_{5}\left(p_{1}\right) r_{1}^{n+1}}{R_{1}^{n+1}} \int_{|\tau|=r_{1}} \left| F_{1}\left(\tau,w\right) \right| \left\{ \left\| f_{R_{1}}^{+}\left(\zeta\right) - p_{n}\left(\zeta\right) \right\|_{L^{p_{1}(\cdot)}\left(\Gamma_{R_{1}}\right)} \left\| \frac{\varphi_{1}'\left(\zeta\right)}{\varphi_{1}\left(\zeta\right) - \varphi_{1}\left(z\right)} \right\|_{L^{q_{1}(\cdot)}\left(\Gamma_{R_{1}}\right)} \right\} |d\tau| \\ & \leq & \frac{c_{6}\left(p_{1}\right) r_{1}^{n+1}}{R_{1}^{n+1}\left(R_{1}-r_{1}\right)} \int_{|\tau|=r_{1}} \left| F_{1}\left(\tau,w\right) \right| E_{n}\left(f_{R_{1}}^{+},G_{R_{1}}\right)_{p_{1}(\cdot)} |d\tau| \,. \end{split}$$

From this, by using (2.4), we have that

$$I_{2} \leq \frac{c_{7}(p_{1}) r_{1}^{n+1}}{R_{1}^{n+1}(R_{1}-r_{1})} E_{n}\left(f_{R_{1}}^{+}, G_{R_{1}}\right)_{p_{1}(\cdot)} \sqrt{\frac{r_{1}^{2}}{r_{1}^{4}-1} \ln \frac{r_{1}^{2}}{r_{1}^{2}-1}}.$$

$$(3.3)$$

Now, the inequalities (3.1)–(3.3) imply that

$$\left| R_n^1 \left(z, f_{R_1}^+ \right) \right| \le \frac{c_8 \left(p_1 \right) r_1^{n+1} E_n \left(f_{R_1}^+, G_{R_1} \right)_{p_1(\cdot)}}{R_1^{n+1} \left(R_1 - r_1 \right)} \sqrt{\frac{r_1^2}{r_1^4 - 1} \ln \frac{r_1^2}{r_1^2 - 1}}.$$

Consequently, setting $z \in K$ and $r_1 = 1 + \frac{1}{n}$ in this estimate, we obtain the inequality

$$\left| R_n^1 \left(z, f_{R_1}^+ \right) \right| \le \frac{c_9 \left(p_1 \right) E_n \left(f_{R_1}^+, G_{R_1} \right)_{p_1(\cdot)}}{R_1^{n+1} \left(R_1 - 1 \right)} \sqrt{n \ln n} \tag{3.4}$$

with $c_9(p_1) > 0$. Now, let $z \in \Gamma_{r_2}$, $1 < r_2 < R_2$. Denoting

$$I_{1}^{*} := \frac{1}{2\pi} \int_{|t|=R_{2}} \left| f_{R_{2}}^{-} \left(\psi_{2} \left(t \right) \right) - p_{n} \left(1/\psi_{2} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{w^{k}}{t^{k+1}} \right| dt$$

$$I_{2}^{*} := \frac{1}{2\pi} \int_{|t|=R_{2}} \left| f_{R_{2}}^{-} \left(\psi_{2} \left(t \right) \right) - p_{n} \left(1/\psi_{2} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{E_{k}^{2} \left(\psi_{2} \left(w \right) \right)}{t^{k+1}} \right| dt$$

by virtue of (2.12), we see that

$$\left| R_n^2 \left(z, f_{R_2}^- \right) \right| \le I_1^* + I_2^*. \tag{3.5}$$

Using (2.2) and Hölder's inequality, we have

$$I_{1}^{*} = \frac{1}{2\pi} \int_{|t|=R_{2}} \left| f_{R_{2}}^{-}(\psi_{2}(t)) - p_{n}(1/\psi_{2}(t)) \right| \sum_{k=n+1}^{\infty} \frac{w^{k}}{t^{k+1}} \left| |dt|$$

$$= \frac{1}{2\pi} \int_{L_{R_{2}}} \left| f_{R_{2}}^{-}(\zeta) - p_{n}(1/\zeta) \right| \sum_{k=n+1}^{\infty} \frac{\left[\varphi_{2}(z) \right]^{k}}{\left[\varphi_{2}(\zeta) \right]^{k+1}} \left| |\varphi'_{2}(\zeta)| |d\zeta|$$

$$\leq c_{10} \int_{L_{R_{2}}} \left| f_{R_{2}}^{-}(\zeta) - p_{n}(1/\zeta) \right| \sum_{k=n+1}^{\infty} \frac{\left[\varphi_{2}(z) \right]^{k}}{\left[\varphi_{2}(\zeta) \right]^{k+1}} \left| |d\zeta|$$

$$\leq c_{11}(p_{2}) \left\| f_{R_{2}}^{-}(\cdot) - p_{n}(1/\cdot) \right\|_{L^{p_{2}(\cdot)}(L_{R_{2}})} \left\| \sum_{k=n+1}^{\infty} \frac{\left[\varphi_{2}(z) \right]^{k}}{\left[\varphi_{2}(\cdot) \right]^{k+1}} \right\|_{L^{q_{2}(\cdot)}(L_{R_{2}})}$$

$$\leq c_{12}(p_{2}) \left\| f_{R_{2}}^{-}(\cdot) - p_{n}(1/\cdot) \right\|_{L^{p_{2}(\cdot)}(L_{R_{2}})} \left\| \frac{\left| \varphi_{2}(z) \right|^{n+1}}{\left| |\varphi_{2}(\cdot) \right|^{n+1}(\left| \varphi_{2}(z) \right|)} \right\|_{L^{q_{2}(\cdot)}(L_{R_{2}})}$$

$$\leq c_{13}(p_{2}) E_{n}\left(f_{R_{2}}^{-}, B_{R_{2}}^{-} \right)_{p_{2}(\cdot)} \frac{r_{2}^{n+1}}{R_{2}^{n+1}(R_{2} - r_{2})}.$$

$$(3.6)$$

Now, we estimate the integral I_2^* . By (2.13) we have

$$\begin{split} I_{2}^{*} &= \frac{1}{2\pi} \int_{|t|=R_{2}} \left| f_{R_{2}}^{-} \left(\psi_{2} \left(t \right) \right) - p_{n} \left(1/\psi_{2} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{E_{k}^{2} \left(\psi_{2} \left(w \right) \right)}{t^{k+1}} \right| \left| dt \right| \\ &= \frac{1}{2\pi} \int_{|t|=R_{2}} \left\{ \left| f_{R_{2}}^{-} \left(\psi_{2} \left(t \right) \right) - p_{n} \left(1/\psi_{2} \left(t \right) \right) \right| \left| \sum_{k=n+1}^{\infty} \frac{1}{2\pi i} \int_{|\tau|=r_{2}} \frac{\tau^{k}}{t^{k+1}} F_{2} \left(\tau, w \right) d\tau \right| \right\} \left| dt \right| \\ &\leq \frac{1}{2\pi} \int_{|t|=R_{2}} \left\{ \left| f_{R_{2}}^{-} \left(\psi_{2} \left(t \right) \right) - p_{n} \left(1/\psi_{2} \left(t \right) \right) \right| \frac{1}{2\pi} \int_{|\tau|=r_{2}} \sum_{k=n+1}^{\infty} \frac{\tau^{k}}{t^{k+1}} \left| \left| F_{2} \left(\tau, w \right) \right| \left| d\tau \right| \right\} \left| dt \right| \\ &= \frac{1}{2\pi} \int_{|t|=R_{2}} \left\{ \left| f_{R_{2}}^{-} \left(\psi_{2} \left(t \right) \right) - p_{n} \left(1/\psi_{2} \left(t \right) \right) \right| \frac{1}{2\pi} \int_{|\tau|=r_{2}} \left| \frac{\tau^{n+1}}{t^{n+1} \left(t - \tau \right)} \left| \left| F_{2} \left(\tau, w \right) \right| \left| d\tau \right| \right\} \left| dt \right| \right. \end{split}$$

By Fubini's theorem

$$I_{2}^{*} \leq \frac{1}{2\pi} \int_{|\tau|=r_{2}} \left\{ |\tau|^{n+1} |F_{2}(\tau, w)| \frac{1}{2\pi} \int_{|t|=R_{2}} \left| f_{R_{2}}^{-}(\psi_{2}(t)) - p_{n}(1/\psi_{2}(t)) \right| \frac{|t|^{-n-1}}{|t-\tau|} |dt| \right\} |d\tau|$$

and hence changing the variables and using Hölder's inequality, we obtain

$$I_{2}^{*} \leq \frac{r_{2}^{n+1}}{2\pi R_{2}^{n+1}} \int_{|\tau|=r_{2}} \left\{ |F_{2}(\tau,w)| \frac{1}{2\pi} \int_{L_{R_{2}}} |f_{R_{2}}^{-}(\zeta) - p_{n}(1/\zeta)| \frac{|\varphi'_{2}(\zeta)|}{|\varphi_{2}(\zeta) - \varphi_{2}(z)|} |d\zeta| \right\} |d\tau|$$

$$\leq \frac{c_{14}(p_{2}) r_{2}^{n+1}}{R_{2}^{n+1}} \int_{|\tau|=r_{2}} \left\{ |F_{2}(\tau,w)| \left\| f_{R_{2}}^{-}(\cdot) - p_{n}(1/\cdot) \right\|_{L^{p_{2}(\cdot)}(L_{R_{2}})} \left\| \frac{|\varphi'_{2}(\cdot)|}{|\varphi_{2}(\cdot) - \varphi_{2}(z)|} \right\|_{L^{q_{2}(\cdot)}(L_{R_{2}})} \right\} |d\tau|.$$

From this, using Theorem 2.5, in the case of i = 2 we have

$$I_2^* \le \frac{c_{15}\left(p_2\right)r_2^{n+1}}{R_2^{n+1}\left(R_2 - r_2\right)} E_n\left(f_{R_2}^-, B_{R_2}^-\right)_{p_2(\cdot)} \sqrt{\frac{r_2^2}{r_2^4 - 1}\ln\frac{r_2^2}{r_2^2 - 1}},$$

which, in combination with (3.5) and (3.6), implies that

$$\left|R_n^2\left(z, f_{R_2}^-\right)\right| \le \frac{c_{16}\left(p_2\right)r_2^{n+1}E_n\left(f_{R_2}^-, B_{R_2}^-\right)_{p_2(\cdot)}}{R_2^{n+1}\left(R_2 - r_2\right)} \sqrt{\frac{r_1^2}{r_1^4 - 1}\ln\frac{r_1^2}{r_1^2 - 1}}.$$

Setting in this estimate $r_2 = 1 + \frac{1}{n}$, we obtain for $z \in K$ the inequality

$$\left| R_n^2 \left(z, f_{R_2}^- \right) \right| \le \frac{c_{17} \left(p_2 \right) E_n \left(f_{R_2}^-, B_{R_2}^- \right)_{p_2(\cdot)}}{R_2^{n+1} \left(R_2 - 1 \right)} \sqrt{n \ln n} \tag{3.7}$$

with $c_{17}(p_2) > 0$. Finally, combining the relations (3.4), (3.7), and (2.5) we have

$$|R_n(z,f)| \le c(p_1,p_2)\sqrt{n\ln n} \left[\frac{E_n(f_{R_1}^+,G_{R_1})_{p_1(\cdot)}}{R_1^{n+1}(R_1-1)} + \frac{E_n(f_{R_2}^-,B_{R_2}^-)_{p_2(\cdot)}}{R_2^{n+1}(R_2-1)} \right].$$

Now we can proof Theorem 1.8.

Proof [Proof of Theorem 1.8] From Theorem 1.6, 2.3 and 2.4 we have

$$|R_n(z,f)| \le c(p_1,p_2)\sqrt{n\ln n} \left[\frac{E_n(f_{R_1}^+,G_{R_1})_{p_1(\cdot)}}{R_1^{n+1}(R_1-1)} + \frac{E_n(f_{R_2}^-,B_{R_2}^-)_{p_2(\cdot)}}{R_2^{n+1}(R_2-1)} \right]$$

$$\leq c_1 \left(p_1, p_2 \right) \sqrt{n \ln n} \left[\frac{\Omega \left(f_{R_1}^+ \circ \varphi_1^{-1}, 1/n \right)_{p_{1,1}(\cdot), \mathbb{T}}}{R_1^{n+1} \left(R_1 - 1 \right)} + \frac{\Omega \left(f_{R_2}^- \circ \varphi_2^{-1}, 1/n \right)_{p_{2,2}(\cdot), \mathbb{T}}}{R_2^{n+1} \left(R_2 - 1 \right)} \right].$$
(3.8)

Using the subadditivity property of modulus and (2.3), and also Lemma (2.2), we obtain that

$$\Omega \left(f_{R_{1}}^{+} \circ \varphi_{1}^{-1}, 1/n \right)_{p_{1,1}(\cdot), \mathbb{T}} = \Omega \left(f_{1}/2 + S_{\mathbb{T}} \left(f_{1} \right), 1/n \right)_{p_{1,1}(\cdot), \mathbb{T}}
\leq c_{18} \left(p_{1,1} \right) \left[\Omega \left(f_{1}, 1/n \right)_{p_{1,1}(\cdot), \mathbb{T}} + \Omega \left(S_{\mathbb{T}} \left(f_{1} \right), 1/n \right)_{p_{1,1}(\cdot), \mathbb{T}} \right]
\leq c_{19} \left(p_{1,1} \right) \Omega \left(f_{1}, 1/n \right)_{p_{1,1}(\cdot), \mathbb{T}}$$

and

$$\Omega \left(f_{R_{2}}^{-} \circ \varphi_{2}^{-1}, 1/n \right)_{p_{2,2}(\cdot), \mathbb{T}} = \Omega \left(f_{2}/2 - S_{\mathbb{T}} \left(f_{2} \right), 1/n \right)_{p_{2,2}(\cdot), \mathbb{T}} \\
\leq c_{20} \left(p_{2,2} \right) \left[\Omega \left(f_{2}, 1/n \right)_{p_{2,2}(\cdot), \mathbb{T}} + \Omega \left(S_{\mathbb{T}} \left(f_{2} \right), 1/n \right)_{p_{2,2}(\cdot), \mathbb{T}} \right] \\
\leq c_{21} \left(p_{2,2} \right) \Omega \left(f_{2}, 1/n \right)_{p_{2,2}(\cdot), \mathbb{T}}.$$

Now, these inequalities and (3.8) imply that

$$|R_n(z,f)| \le c \left(p_{1,1}, p_{2,2}\right) \sqrt{n \ln n} \left[\frac{\Omega\left(f_1, 1/n\right)_{p_{1,1}(\cdot), \mathbb{T}}}{R_1^{n+1} \left(R_1 - 1\right)} + \frac{\Omega\left(f_2, 1/n\right)_{p_{2,2}(\cdot), \mathbb{T}}}{R_2^{n+1} \left(R_2 - 1\right)} \right].$$

Acknowledgement

This work was supported by Scientific research projects unit of Balıkesir University grant 2019/043[D6]: "Faber-Laurent series in the complex plane".

References

[1] Bilalov BT, Guseynov ZG. Basicity of a system of exponents with a piece-wise linear phase in variable spaces. Mediterr. J. Math. 2012; 9(3): 487-498.

401

ISRAFILOV and GURSEL/Turk J Math

- [2] Bilalov BT, Gasymov TB, Guliyeva AA. On solvability of Riemann boundary value problem in Morrey-Hardy classes. Turkish Journal of Mathematics. 2016; 40(5), 1085-1101.
- [3] Cruz-Uribe DV, Fiorenza A. Variable Lebesgue Spaces Foundations and Harmonic Analysis. Basel, Switzerland: Birkhäuser, 2013.
- [4] Diening L. Maximal function on generalized Lebesgue spaces $L^{p(x)}$. Math Inequal Appl 2004; 7(2): 245-253.
- [5] Diening L, Harjulehto P, Hästö P, Michael Ruzicka M. Lebesgue and Sobolev Spaces with Variable Exponents. New York, NY, USA: Springer, 2011.
- [6] Duren PL. Theory of H^p Spaces. Toronto, Ontario, Canada: General Publishing Company, 2000.
- [7] Guven A, Israfilov DM. Trigonometric Approximation in Generalized Lebesgue Spaces Lp(x). Journal of Mathematical Inequalities. 2010; 4(2): 285-299.
- [8] Israfilov DM. Approximation by p-Faber polynomials in the weighted Smirnov class Ep (G, ω) and the Bieberbach polynomials. Constructive approximation 2001; 17(3): 335-351.
- [9] Israfilov DM. Approximation by p-Faber-Laurent Rational Functions in the Weighted Lebesgue Spaces. Czechoslovak Mathematical Journal 2004; 54(3): 751-765.
- [10] Israfilov DM, Guven A. Approximation in weighted Smirnov classes. East Journal on Approximations 2005; 11(1): 91-102.
- [11] Israfilov DM, Oktay B, Akgün R. Approximation in Smirnov-Orlicz classes. Glasnik Matematički 2005; 40(1): 87-102.
- [12] Israfilov DM, Akgün R. Approximation in weighted Smirnov-Orlicz classes. Journal of Mathematics of Kyoto University 2006; 46(4): 755-770.
- [13] Israfilov DM, Testici A. Approximation in Smirnov classes with variable exponent. Complex Var Elliptic Equ 2015; 60(9): 1243-1253.
- [14] Israfilov DM, Testici A. Approximation by Faber–Laurent rational functions in Lebesgue spaces with variable exponent. Indagationes Mathematicae 2016; 27(4): 914-922.
- [15] Jafarov SZ. On approximation in weighted Smirnov Orlicz classes. Complex Variables and Elliptic Equations 2012; 57(5): 567-577.
- [16] Jafarov SZ. On approximation of functions by p-Faber Laurent Rattional functions. Complex Variables and Elliptic Equations 2015; 60(3): 416-428.
- [17] Jafarov SZ. Approximation in weighted rearrangement invariant Smirnov spaces. Tbilisi Mathematical Journal 2016; 9 (1): 9-21.
- [18] Kokilashvili V, Samko S. Weighted boundedness in Lebesgue spaces with variable exponents of classical operators on Carleson curves. Proc A Razmadze Math Inst. 2005; 138: 106-110.
- [19] Sharapudinov II. Some problems of theory of approximation in the Lebesgue spaces with variable exponent. Vladikavkaz, Russia: Itogi Nauki Yug Rossi Seria Mathematicheskaya Monografia, 2012 (in Russian).
- [20] Suetin PK. Series of Faber Polynomials. New York, NY, USA: Gordon and Breach Science Publishers, 1998.
- [21] Warschawski S. Über das randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung. Mathematische Zeitschrift 1932; 35(1): 321-456 (in German).
- [22] Yurt H, Guven A. Approximation by Faber–Laurent rational functions on doubly connected domains. New Zealand Journal of Mathematics 2014; 44: 113-124.