Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тӥвітак

Turk J Math
(2020) 44: 403 - 408
© TÜBİTAK
doi:10.3906/mat-1911-28

On orthomorphism elements in ordered algebra

Bahri TURAN* ${ }^{\text {© }}$, Hüma GÜRKÖK (
Department of Mathematics, Faculty of Science, Gazi University, 06500 Teknikokullar Ankara

Received: 08.11.2019 • Accepted/Published Online: 09.01.2020 • Final Version: 17.03.2020

Abstract

Let C be an ordered algebra with a unit e. The class of orthomorphism elements Orthe (C) of C was introduced and studied by Alekhno in "The order continuity in ordered algebras". If $C=L(G)$, where G is a Dedekind complete Riesz space, this class coincides with the band $\operatorname{Orth}(G)$ of all orthomorphism operators on G. In this study, the properties of orthomorphism elements similar to properties of orthomorphism operators are obtained. Firstly, it is shown that if C is an ordered algebra such that C_{r}, the set of all regular elements of C, is a Riesz space with the principal projection property and $\operatorname{Orthe}(C)$ is topologically full with respect to I_{e}, then $B_{e}=\operatorname{Orthe}(C)$ holds, where B_{e} is the band generated by e in C_{r}. Then, under the same hypotheses, it is obtained that $\operatorname{Orthe}(C)$ is an f-algebra with a unit e.

Key words: Ordered algebra, orthomorphism elements, orthomorphism, f-algebra

1. Introduction

All vector spaces are considered over the reals only. An ordered vector space (Riesz space) C under an associative multiplication is said to be an ordered algebra (Riesz algebra) whenever the multiplication makes C an algebra, and in addition it satisfies the following property: $a, b \in C^{+}$implies $a b \in C^{+}$. A Riesz algebra C is called an f-algebra if C has the additional property that $a \wedge b=0$ implies $a c \wedge b=c a \wedge b=0$ for each $c \in C^{+}$. Throughout the study, we will assume $C \neq\{0\}$ and C has a unit element $e>0$. An element $a \in C$ is called a regular element if $a=b-c$ with b and c positive, the space of all regular elements of C will be denoted by C_{r}. Obviously, C_{r} is a real ordered algebra. Let C be an ordered vector space and an element $a \in C^{+}$, the order ideal I_{a} generated by a is the set $I_{a}=\left\{b \in C:-\lambda a \leq b \leq \lambda a\right.$ for some $\left.\lambda \in \mathbb{R}^{+}\right\}$. Under the algebraic operations and the ordering induced by C, I_{a} is an ordered vector subspace of C. Moreover, I_{e} is an ordered algebra [1].

An element $q \in C$ is said to be an order idempotent whenever $0 \leq q \leq e$ and $q^{2}=q$. Under the partial ordering induced by C, the set of all order idempotents $O I(C)$ of C is a Boolean algebra and its lattice operations satisfy the identities $p \wedge q=p q$ and $p \vee q=p+q-p q$ for all $p, q \in O I(C)$. If $c \in C$ and the modulus $|c|$ of c exists, then $q|c|=|q c|$ and $|c| q=|c q|$ for all $q \in O I(C)$ [2].

Definition 1.1 [1] Let C be an ordered algebra, an element $a \in C$ is said to be an order idempotent preserving element whenever $(e-q) a q=0$ for all $q \in O I(C)$. An element a is said to be an orthomorphism element of

[^0]an ordered algebra C whenever a is an order idempotent preserving element that is also regular.
The collection of all orthomorphism elements of an ordered algebra C will be denoted by $\operatorname{Orthe}(C)$. An operator $\pi: G \rightarrow G$ on a Riesz space G is said to be band preserving whenever $\pi(B) \subseteq B$ holds for each band B of $G . \pi$ is a band preserving operator if and only if $\pi(x) \perp y$ whenever $x \perp y$ in G. A band preserving and order bounded operator π is called orthomorphism of G and the set of all orthomorphisms of G is denoted by $\operatorname{Orth}(G)$. If G has the principal projection property, then an operator $\pi: G \rightarrow G$ is band preserving if and only if $\pi p=p \pi$ (or $(I-p) \pi p=0)$ for every order projection p on G [3, Theorem 8.3]. If $C=L(G)$ is taken, where G is a Dedekind complete Riesz space, then the set of all order idempotents $O I(C)$ of C is the set of all order projections on G [3, Theorem 3.10] and the band B_{e} generated by e in C_{r} is equal to $\operatorname{Orth}(G)=\operatorname{Orthe}(C)$ [3, Theorem 8.11]. In general, the equality $B_{e}=\operatorname{Orthe}(C)$ does not hold in the case of an arbitrary ordered algebra C. Therefore, the following question might come into mind. Under what condition Orthe (C) could be identified to B_{e} ? In this work, we try to provide an answer to this question. Moreover, we will show that, under the same hypothesis, $\operatorname{Orthe}(C)$ has the similar properties of orthomorphisms.

We refer to $[3,5,7,9]$ for definitions and notations which are not explained here. All Riesz spaces in this paper are assumed to be Archimedean.

2. Ortomorphism elements

Proposition 2.1 Let C be an ordered algebra such that C_{r} is a Riesz space. Then, Orthe (C) is a band in C_{r} so that $B_{e} \subseteq$ Orthe (C) where B_{e} is the band generated by e in C_{r}.

Proof Since $q|a|=|q a|$ and $|a| q=|a q|$ for all $q \in O I(C)$ and $a \in C_{r}$, it is easy to show that $\operatorname{Orthe}(C)$ is an order ideal. To see that $\operatorname{Orthe}(C)$ is a band in C_{r}, let $0 \leq\left(b_{\alpha}\right) \uparrow b$ in C_{r} with $\left(b_{\alpha}\right) \subseteq \operatorname{Orthe}(C)$. Then, for all α we have

$$
0 \leq(e-q) b q=(e-q)\left(b-b_{\alpha}\right) q+(e-q) b_{\alpha} q=(e-q)\left(b-b_{\alpha}\right) q \leq\left(b-b_{\alpha}\right)
$$

Thus, $b-b_{\alpha} \downarrow 0$ implies $(e-q) b q=0$ and $b \in \operatorname{Orthe}(C) . B_{e} \subseteq \operatorname{Orthe}(C)$ is obtained from the definition of B_{e}.

Lemma 2.2 Let C be an ordered algebra such that C_{r} is a Riesz space with the principal projection property and $b \in C_{r}$. Then, $b \in \operatorname{Orthe}(C)$ if and only if $b a=a b$ for all $a \in I_{e}$.

Proof Let $b \in C_{r}$. If $b a=a b$ for all $a \in I_{e}$ then $b \in \operatorname{Orthe}(C)$ as $O I(C) \subseteq I_{e}$. Now, let $b \in \operatorname{Orthe}(C)$. From Freudenthal's Spectral Theorem [3, Theorem 6.8], there exists a sequence (u_{n}) of e-step function satisfying

$$
0 \leq a-u_{n} \leq n^{-1} e \text { for each } n \text { and } u_{n} \uparrow a
$$

for every $a \in I_{e}$. As $u_{n} e$-step function, there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k} \in \mathbb{R}$ and $p_{1}, p_{2}, \ldots, p_{k} \in O I(C)$ such that $u_{n}=\sum_{i=1}^{k} \lambda_{i} p_{i}$. Thus, we have $b u_{n}=u_{n} b$ for each n. This yields

$$
0 \leq|a b-b a|=\left|a b-u_{n} b+u_{n} b-b a\right| \leq\left|a b-u_{n} b\right|+\left|b u_{n}-b a\right| \leq n^{-1} b+n^{-1} b
$$

for each n. Since C is Archimedean, we have $a b=b a$ for every $a \in I_{e}$.

If $C=L(G)$, where G is a Dedekind complete Riesz space, then $\operatorname{Orth}(G)=\operatorname{Orthe}(C)=B_{I}$ where B_{I} is the generated by the identity operator I in C_{r}. In general, the equality $B_{e}=\operatorname{Orthe}(C)$ does not hold in the case of an ordered algebra C.

Example 2.3 Let G be the Riesz space of all continuous piecewise linear functions on $[0,1]$, then $\operatorname{Orth}(G)=$ $\{\lambda I: \lambda \in \mathbb{R}\}$ by the Problem 7 in [3, p. 124]. If we take $C=L(G)$, then we have $O I(C)=\{\theta, I\}$ as $O I(C) \subseteq \operatorname{Orth}(G)$ holds. As a result of these simple observations we obtain that $\operatorname{Orthe}(C)=L_{r}(G) \neq B_{I}$.

Now, we will investigate when $B_{e}=\operatorname{Orthe}(C)$ holds.

Definition 2.4 Let C be an ordered algebra such that C_{r} is a Riesz space and Orthe (C) has separating order dual. Let $b, c \in \operatorname{Orthe}(C)$ be arbitrary and $0 \leq b \leq c$. Orthe (C) is said to be topologically full with respect to I_{e} if there exists a net $0 \leq a_{\alpha} \leq e$ with $a_{\alpha} c \rightarrow b$ in $\sigma\left(\operatorname{Orthe}(C)\right.$, Orthe $\left.(C)^{\sim}\right)$.

Example 2.5 Let G be a Dedekind complete Riesz space with separating order dual. If we take $C=L(G)$, then $\operatorname{Orthe}(C)=\operatorname{Orth}(G)$ is topologically full with respect to $I_{e}=Z(G)$ from the Theorem 4.3 in [6].

Let C be a Riesz algebra such that C_{r} is a Riesz space. It is easy to see that $(b c) q=q(b c)$ for each $b, c \in \operatorname{Orthe}(C)$ and $q \in O I(C)$. Thus, $\operatorname{Orthe}(C)$ is a Riesz algebra. For $b \in \operatorname{Orthe}(C)$, let us define $L_{b}: \operatorname{Orthe}(C) \rightarrow \operatorname{Orthe}(C): L_{b}(c)=b c$ and $R_{b}: \operatorname{Orthe}(C) \rightarrow \operatorname{Orthe}(C): R_{b}(c)=c b$ for each $c \in \operatorname{Orthe}(C)$. L_{b}, R_{b} are regular operators and so that the adjoint operators $L_{b}^{\sim}, R_{b}^{\sim}$ are regular operators on $\operatorname{Orthe}(C)^{\sim}$. Let us consider positive linear maps

$$
\begin{aligned}
& S_{h}: \operatorname{Orthe}(C) \rightarrow I_{e}^{\sim}, b \rightarrow S_{b, h}: S_{b, h}(a)=h(a b) \\
& V_{h}: \operatorname{Orthe}(C) \rightarrow I_{e}^{\sim}, b \rightarrow V_{b, h}: V_{b, h}(a)=h(b a)
\end{aligned}
$$

for each $b \in \operatorname{Orthe}(C), a \in I_{e}$ and $h \in \operatorname{Orthe}(C) \sim$. If $\operatorname{Orthe}(C)$ is topologically full with respect to I_{e}, then we can say more about the positivity of the maps S_{h} and V_{h}. The proof of the following Lemma is the adaptation of the Lemma in [8, p.65].

Lemma 2.6 If C is an ordered algebra such that C_{r} is a Riesz space with the principal projection property and Orthe (C) is topologically full with respect to I_{e}, then $S_{h}, V_{h}: \operatorname{Orthe}(C) \rightarrow I_{e}^{\sim}$ are lattice homomorphisms for each $h \in \operatorname{Orthe}(C) \sim$.

Proof Let $0 \leq h \in \operatorname{Orthe}(C)^{\sim}$. To see that S_{h} is a lattice homomorphism, it is enough to show that $S_{b, h} \wedge S_{c, h}=0$ for each $b, c \in \operatorname{Orthe}(C)$ satisfying $b \wedge c=0$. Let $d=b+c$ and I_{b}, I_{c}, I_{d} be respectively, the order ideals generated by b, c, and d. Then I_{d} is actually the order direct sum of I_{b} and I_{c} by the Theorem 17.6 [5]. We denote by p the order projection of I_{d} onto I_{b}. Let R be the restriction to I_{d} of order bounded functionals on $\operatorname{Orthe}(C)$. Then R is an order ideal in I_{d}^{\sim} by the Theorem 2.3 in [3]. The adjoint $p^{\sim}: I_{d}^{\sim} \rightarrow I_{d}$ of p satisfies $0 \leq p^{\sim} \leq I$ and as a consequence we obtain $p^{\sim}(R) \subseteq R$. As a result of these simple observations we obtain that the pair $<I_{d}, R>$ constitutes a Riesz pair and $p:\left(I_{d}, \sigma\left(I_{d}, R\right)\right) \rightarrow\left(I_{d}, \sigma\left(I_{d}, R\right)\right)$ is continuous. Since $0 \leq p(d) \leq d$ there exists $\left(a_{\alpha}\right)$ in I_{e} such that $0 \leq a_{\alpha} \leq e$ with $a_{\alpha} d \rightarrow p(d)=b$ in $\sigma\left(\operatorname{Orthe}(C), \operatorname{Orthe}(C)^{\sim}\right)$. As $L_{a_{\alpha}} \in Z\left(I_{d}\right)$ for each α it is easy to see that $a_{\alpha} d \rightarrow b$ in $\sigma\left(I_{d}, R\right)$ and
$a_{\alpha} p(d)=p\left(a_{\alpha} d\right)$. By the continuity of p now yields $a_{\alpha} p(d)=a_{\alpha} b \rightarrow b$ in $\sigma\left(I_{d}, R\right)$. Since $a_{\alpha} d=a_{\alpha} b+a_{\alpha} c$ for each α, we have $a_{\alpha} c \rightarrow 0$ in $\sigma\left(I_{d}, R\right)$. As $\left(S_{b, h} \wedge S_{c, h}\right)(a) \leq h\left(\left(a-a a_{\alpha}\right) b+\left(a a_{\alpha}\right) c\right)$ for each α, we obtain

$$
\begin{aligned}
0 & \leq\left(S_{b, h} \wedge S_{c, h}\right)(a) \leq \lim _{\alpha} h\left(\left(a-a a_{\alpha}\right) b+\left(a a_{\alpha}\right) c\right) \\
& =\lim _{\alpha} h\left(L_{a}\left(b-a_{\alpha} b+a_{\alpha} c\right)\right. \\
& =\lim _{\alpha} L_{a}^{\sim}(h)\left(b-a_{\alpha} b+a_{\alpha} c\right) \\
& =0
\end{aligned}
$$

as $L_{a}^{\sim}\left(\operatorname{Orthe}(C)^{\sim}\right) \subseteq \operatorname{Orthe}(C)^{\sim}$, which implies that S_{h} is lattice homomorphism. On the other hand, by the Lemma $2.2 b a_{\alpha} \rightarrow b$ and $c a_{\alpha} \rightarrow 0$ in $\sigma\left(I_{d}, R\right)$ holds. Similarly, taking V_{h} instead of S_{h} and R_{a} instead of L_{a}, we get V_{h} is lattice homomorphism.

Corollary 2.7 Let the hypotheses in the Lemma 2.6 hold. If $b, c \in \operatorname{Orthe}(C)$ and $b \wedge c=0$ then $\left|S_{b, h}\right| \wedge\left|S_{c, t}\right|=0$ for each $h, t \in \operatorname{Orthe}(C)^{\sim}$.

Proof Let $b, c \in \operatorname{Orthe}(C)$ and $b \wedge c=0$. From the Lemma 2.6 we have

$$
0 \leq\left|S_{b, h}\right| \wedge\left|S_{c, t}\right| \leq S_{b,|h|} \wedge S_{c,|t|} \leq S_{b,|h| \vee|t|} \wedge S_{c,|h| \vee|t|}=S_{b \wedge c,|h| \vee|t|}=0
$$

Proposition 2.8 Let C be an ordered algebra such that C_{r} is a Riesz space with the principal projection property and Orthe (C) is topologically full with respect to I_{e}. Then, $B_{e}=\operatorname{Orthe}(C)$ holds (where B_{e} is the band generated by e in $\operatorname{Orthe}(C)$).

Proof Let $b \in \operatorname{Orthe}(C)$ with $|b| \wedge e=0$. Clearly,

$$
S_{b, h}(a)=h(a b)=h(b a)=h\left(L_{b}(a)\right)=L_{b}^{\sim}(h)(a e)=S_{e, L_{\tilde{b}}^{\sim}(h)}(a)
$$

holds for each $h \in \operatorname{Orthe}(C)_{+}^{\sim}$. Then, it follows that

$$
0 \leq\left|S_{b, h}\right|=\left|S_{b, h}\right| \wedge\left|S_{b, h}\right| \leq S_{|b|, h} \wedge S_{e, L_{|\tilde{b}|}(h)}=0
$$

and so $S_{b, h}=0$ for each $h \in \operatorname{Orthe}(C)^{\sim}$. Thus, we have $b=0$ which implies that $B_{e}=\{e\}^{d d}=\operatorname{Orthe}(C)$.

Corollary 2.9 Let the hypotheses be as in the Proposition 2.8. Then, the band B_{e} generated by e in C_{r} is equal to $\operatorname{Orthe}(C)$.

Proof It is clear that the band generated by e in $\operatorname{Orthe}(C)$ is equal to the band generated by e in C_{r} as $\operatorname{Orthe}(C)$ is a band in C_{r}.

By the Example 2.5, we have known that if G is a Dedekind complete Riesz space with separating order dual and $C=L(G)$, then $\operatorname{Orthe}(C)$ has separating order dual and $\operatorname{Orthe}(C)=\operatorname{Orth}(G)$ is topologically full with respect to $I_{e}=Z(G)$. By using this observation and the above result, we can obtain the following Corollary being previously proved as a theorem in a different manner.

Corollary 2.10 Let G be a Dedekind complete Riesz space and G has separating order dual. Then the band B_{I} generated by the identity operator in $L_{r}(G)$ is equal to $\operatorname{Orth}(G)$.

Theorem 2.11 If C is an ordered algebra such that C_{r} is a Riesz space with the principal projection property and $\operatorname{Orthe}(C)$ is topologically full with respect to I_{e}, then $\operatorname{Orthe}(C)$ is an f-algebra. Moreover, it is a full subalgebra of C.

Proof Let $b, c, d \in \operatorname{Orthe}(C)^{+}$and $b \wedge c=0$. For each $0 \leq h \in \operatorname{Orthe}(C)^{\sim}$ and $a \in I_{e}$

$$
\begin{aligned}
0 & \leq S_{d b \wedge c, h}(a)=\left(S_{d b, h} \wedge S_{c, h}\right)(a) \\
& \leq S_{d b, h}(a) \wedge S_{c, h}(a) \\
& =h(a(d b)) \wedge S_{c, h}(a) \\
& =h(d(a b)) \wedge S_{c, h}(a) \\
& =h\left(L_{d}(a b)\right) \wedge S_{c, h}(a) \\
& =L_{d}^{\sim}(h)(a b) \wedge S_{c, h}(a) \\
& =S_{b, L_{d}^{\sim}(h)}^{\sim}(a) \wedge S_{c, h}(a) \\
& =0
\end{aligned}
$$

holds, which proves that $d b \wedge c=0$. Similarly, taking V instead of S and R_{d} instead of L_{d}, we have $b d \wedge c=0$. Let $b \in \operatorname{Orthe}(C)$ be invertible in C. We will show that $b^{-1} \in \operatorname{Orthe}(C)$. As $b \in \operatorname{Orthe}(C) b q=q b$ for each $q \in O I(C)$. It is easy to see that $b^{-1} q=q b^{-1}$ for each $q \in O I(C)$. Thus, Orthe (C) is a full subalgebra of C.

Corollary 2.12 Let G be a Dedekind complete Riesz space and G has separating order dual. Then, Orth (G) is an f-algebra. Moreover, it is a full subalgebra of $L_{r}(G)$.

As each unital f-algebra C with separating order dual is topologically full with respect to I_{e} [8], we can give the following corollary.

Corollary 2.13 Let C be an ordered algebra such that C_{r} is a Riesz space with the principal projection property and Orthe (C) has separating order dual. Then, $\operatorname{Orthe}(C)$ is an f-algebra if and only if Orthe (C) is topologically full with respect to I_{e}.

As we said before, if G is a Dedekind complete Riesz space with separating order dual and $C=L(G)$ then $\operatorname{Orthe}(C)=\operatorname{Orth}(G)$ is topologically full with respect to $I_{e}=Z(G)$. However, even if C is a Dedekind complete ordered algebra, $\operatorname{Orthe}(C)$ may not be topologically full with respect to I_{e}. We now give an example of a Dedekind complete ordered algebra which is not topologically full with respect to I_{e}.

Example 2.14 Let f be a multiplicative functional on l_{∞} satisfying $f\left(c_{0}\right)=0$ and C be the linear space $l_{\infty} \oplus \mathbb{R}$. C is a Dedekind complete ordered Banach algebra with unit $(e, 0)$ under the multiplication

$$
\left(u_{1}, \lambda_{1}\right) *\left(u_{2}, \lambda_{2}\right)=\left(u_{1} u_{2}, \lambda_{1} f\left(u_{2}\right)+\lambda_{2} f\left(u_{1}\right)+\lambda_{1} \lambda_{2}\right),
$$

TURAN and GÜRKÖK/Turk J Math

the norm

$$
\|(u, \lambda)\|=\|u\|+|\lambda|
$$

and the order induced by the cone

$$
C^{+}=\left\{(u, \lambda): u \in l_{\infty}^{+} \text {and } \lambda \in \mathbb{R}\right\}
$$

Furthermore,

$$
\begin{aligned}
O I(C) & =\left\{(p, 0): p \in O I\left(l_{\infty}\right)\right\} \text { and } \\
\operatorname{Orthe}(C) & =\left\{(u, \lambda): u \in \operatorname{Orthe}\left(l_{\infty}\right) \text { and } \lambda \in \mathbb{R}\right\}[1] .
\end{aligned}
$$

Since C is Dedekind complete, C_{r} is a Riesz space with the principal projection property. As Orthe (C) is order closed, Orthe (C) is norm closed [9, Theorem 100.7]. This implies Orthe (C) Banach lattices, hence $\operatorname{Orthe}(C)^{\sim}=\operatorname{Orthe}(C)^{\prime}$ and so $\operatorname{Orthe}(C)$ has separating order dual. It is easy that, $(0,1),(e, 0) \in \operatorname{Orthe}(C)$ and $(0,1) \perp(e, 0)$. On the other hand, we have

$$
(0,1) *(e, 0)=(0 e, 1 f(e)+0 f(0)+01)=(0,1) \neq 0
$$

so that $\operatorname{Orthe}(C)$ is not an f-algebra. By the Corollary 2.13, $\operatorname{Orthe}(C)$ is not topologically full with respect to I_{e}.

Since each f-algebra is commutative, we can give the following corollary.

Corollary 2.15 Let C be an ordered algebra such that C_{r} is a Riesz space with the principal projection property and $\operatorname{Orthe}(C)$ is topologically full with respect to I_{e}. Then, Orthe (C) is a commutative algebra.

References

[1] Alekhno EA. The order continuity in ordered algebras. Positivity 2017; 21 (2): 539-574. doi: 10.1007/s11117-016-0406-4
[2] Alekhno EA. The irreducibility in ordered Banach algebras. Positivity 2012; 16 (1): 143-176. doi: 10.1007/s11117-011-0117-9
[3] Aliprantis CD, Burkinshaw O. Positive Operators. London, United Kingdom: Academic Press, 1985. doi: 10.1007/978-1-4020-5008-4
[4] Alpay Ş, Turan B. On the commutant of the ideal centre. Note Di Matematica 1999; 18 (1): 63-69.
[5] Luxemburg WAJ, Zaanen AC. Riesz Space I. Amsterdam, Holland: North Holland Publishing Company, 1971.
[6] Luxemburg WAJ, Schep AR. Radon-Nikodym type theorem for positive operators and a dual. Indagationes Mathematicae 1978; 41: 145-154.
[7] Schaefer HH. Banach Lattices and Positive Operators. Berlin, Germany: Springer, 1991. doi: 10.1007/978-3-642-65970-6
[8] Turan B. On f-linearity and f-orthomorphisms. Positivity 2000; 4: 293-301.
[9] Zaanen AC. Riesz Spaces II. Amsterdam, Holland: North Holland Publishing Company, 1983.

[^0]: *Correspondence: bturan@gazi.edu.tr
 2010 AMS Mathematics Subject Classification: 46B42, 47B60

