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Abstract: In this paper, we consider self-adjoint Sturm–Liouville problem (SLP) of higher-order. We define an
equivalence relation between second- and higher-order SLP. Using the Darboux lemma and equivalence relation we
obtain the closed form of a family of SLP which have the same eigenvalues. Also, some spectral properties of this family
of Sturm–Liouville problems are investigated.
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1. Introduction
The Sturm–Liouville problem (SLP) arises in many different physical and engineering applications. Usually,
self-adjoint SLP appears in quantum mechanics, while nonself-adjoint problems arise in hydrodynamic and
magnetohydrodynamic stability theory. The problems in hydrodynamic and magnetohydrodynamic stability
are of higher order. Of course, certain quantum mechanic problem can be reduced to a higher-order self-adjoint
problem [5, 6]. We consider a 2nth order Sturm–Liouville equation of the form:

(−1)ny(2n) + (−1)n−1(pn−1(x)y
(n−1))(n−1) + · · · − (p1(x)y′)′+ p0(x)y = λy, 0 < x < 1. (1.1)

Equation (1.1) together with 2n boundary conditions at the end points x = 0 and x = 1 is called the Sturm–
Liouville problem. We suppose that the coefficients pi(x) are real functions and integrable in [0, 1] . The
parameter λ is called an eigenvalue, and the corresponding nontrivial solution y is called an eigenfunction. Un-
der the above assumptions equation (1.1) together with 2n self-adjoint boundary conditions has real eigenvalues
and can be ordered as follows:

λ1 ≤ λ2 ≤ · · · , lim
k→∞

λk = ∞. (1.2)

For more details see [5–7]. For Sturm–Liouville problems, we have three types of problems: direct problems,
inverse problems, and isospectral problems. In direct problems, the eigenvalues and eigenfunctions are estimated
from the known coefficients. Also, some properties of the problem are studied. Different numerical methods
for solving direct problem are applied in [5, 7, 10, 11, 13]. In inverse problem, existence, uniqueness, and
determination or estimation of the coefficients from the information of eigenvalues or eigenfunctions are being
studied. The inverse problems related to the Sturm–Liouville problems are studied in [1, 3, 9, 15–18]. Third
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type of problems related to the Sturm–Liouville problems are isospectral problems. That is problems of the
same form, different coefficients, but with the same eigenvalues. In isospectral problems, for a given problem,
we want to obtain different problems of the same form, which have the same eigenvalues of the initial problem.
Isopectral Sturm–Liouville problems are studied in [2–4, 8, 12, 14, 19].
This paper is organized as follows: In Section 2, we define an equivalence relation between second and higher-
order SLP. Also, we obtain the closed form of Sturm–Liouville problems of order 4 , 6 , 8 , 10 and 4n which are
equivalent to the second-order problem. In section 3, we find a family of Sturm–Liouville problems of order 8 ,
10 , and 4n which are isospectral. Finally, two examples are given.

2. Equivalent higher-order Sturm–Liouville problems
In this section, we introduce higher-order SLP equivalent to second-order and obtain some spectral properties
of these problems.

Definition 2.1 Two SLP of order two and 2n are said to be equivalent if and only if the following statements
are hold:

(a) If (λ, y) is an eigenpair of second-order SLP, then (λn, y) is an eigenpair of 2n th order SLP,

(b) If (λn, y) is an eigenpair of 2n th order SLP, then (λ, y) or (−λ, y) is an eigenpair of second-order
problem.

In the following Theorem, we show that for every n ∈ N there exists a SLP of order 2n such that if (λ, y) is
an eigenpair of second order SLP then (λn, y) is an eigenpair of 2nth order SLP.

Theorem 2.2 Suppose that q(x) is an analytic real function in [0, 1] . There exists an SLP of order 2n such
that if (λ, y) is an arbitrary eigenpair of the problem

y′′(x) + (λ− q(x))y(x) = 0, x ∈ (0, 1),
y(0) = 0 = y(1),

(2.1)

then, (λn, y) is an eigenpair of 2n th order SLP.

Proof Suppose that (λ, y) is an eigenpair of the problem (2.1). Differentiating twice from Equation (2.1) and
substituting y′′ = (q − λ)y we find, the following SLP of order 4 such that (λ2, y) is an eigenpair of it.

y(4)(x)− 2(q(x)y′(x))′+ (q2(x)− q′′(x))y(x) = λ2y(x),
y(0) = y′′(0) = 0, y(1) = y′′(1) = 0.

(2.2)

Again, differentiating twice from Equation (2.2) and using (2.1) and (2.2), we obtain a sixth-order SLP as
follows:

−y(6)(x) + 3[q(x)y′′(x)]′′ − [(3q2(x)− 4q′′(x))y′(x)]′
+[q(4) + q3 − 2q′2 − 3qq′′]y(x) = λ3y(x),
y(0) = y′′(0) = 0, y(1) = y′′(1) = 0,
y(4)(0)− 2q′(0)y′(0) = 0, y(4)(1)− 2q′(1)y′(1) = 0.

(2.3)

Since q(x) is an analytic function, one can continue this process to obtain SLP of order 2n . 2
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For n = 4 and n = 5 , the SLP of Theorem 2.2 are as follows:

y(8)(x)− 4[qy′′′(x)]′′′
+[(6q2 − 10q′′)y′′(x)]′′+ [(−6q(4) − 4q3 + 8q′2 + 16qq′′)y′(x)]′
+[−8qq′2 − 6q2q′′+ 4qq(4) + q4 − q(6) + 7q′′

2

+ 10q′q′′′]y(x) = λ4y(x),
y(0) = y′′(0) = 0, y(1) = y′′(1) = 0,
y(4)(0)− 2q′(0)y′(0) = 0, y(4)(1)− 2q′(1)y′(1) = 0,
y(6)(0)− 6q′(0)y′′′(0)− 4q′′′(0)y′(0) = 0, y(6)(1)− 6q′(1)y′′′(1)− 4q′′′(1)y′(1) = 0.

(2.4)

−y(10)(x) + 5[qy(4)(x)](4) − [10q2 − 20q′′)y′′′(x)]′′′
−[(−21q(4)10q3 + 20q′2 + 50qq′′)y′′(x)]′′
+[(49q′′

2

+ 62q′q′′′ − 40qq′2 + 30qq(4) − 8q(6) + 40q2q′′+ 5q4)y′(x)]′+ [q(8) − 24q′′′
2 − 38q′′q(4)

−18q′q(5) − 5qq(6) + 52q′′q′2 + 35qq′′
2 − 50qq′q′′′+ 10q2q(4) + 10q′′q3 + 20q2q′2]y(x) = λ5y(x),

y(0) = y′′(0) = 0, y(1) = y′′(1) = 0,
y(4)(0)− 2q′(0)y′(0) = 0, y(4)(1)− 2q′(1)y′(1) = 0,
y(6)(0)− 6q′(0)y′′′(0)− 4q′′′(0)y′(0) = 0, y(6)(1)− 6q′(1)y′′′(1)− 4q′′′(1)y′(1) = 0,
y(8)(0)− 12q′(0)y(5)(0)− 24q′′′(0)y′′′(0)− 12q′(0)q′′(0)y′(0)− 6q(5)(1)y′(0) = 0,
y(8)(1)− 12q′(1)y(5)(1)− 24q′′′(1)y′′′(1)− 12q′(1)q′′(1)y′(1)− 6q(5)(1)y′(1) = 0.

(2.5)

In this paper, we obtained the closed form of SLP (satisfy in Theorem 2.2) up to order 10. Thus, here after we
will focus on these orders of SLPs. We denote the 2nth order Sturm–Liouville equations obtained in Theorem
2.2 with L2n,qy = λny, n = 1, 2, · · · . The general form of boundary conditions for these problems are as follows:

L2k,qy(x)|x=0,1 = 0, k = 0, 1, · · · , n− 1. (2.6)

Lemma 2.3 The SLPs obtained in Theorem 2.2 with inner product ⟨u, v⟩ =
∫ 1

0
vudx are self-adjoint.

Proof Let u and v be two functions and satisfy in the boundary conditions (2.6). Using integrating by parts
and applying the boundary conditions, we obtain that ⟨Lu, v⟩ = ⟨u, Lv⟩ for L = L2n,q, n = 1, 2, 3, 4, 5 . 2

Lemma 2.3 shows that the eigenvalues of the operators L2n,q with the boundary conditions (2.6) are real. In
[13, 14], some spectral properties of the operators L4,q and L6,q are studied. Here, we study some spectral
properties of the operators L8,q, L10,q , and L4n,q .

2.1. 8th order Sturm–Liouville problem

Theorem 2.4 For 8 th order SLP (2.4), the following statements are satisfy:

(a) The eigenvalues are nonnegative,

(b) If (λ4, y) is an eigenpair of L8,q , then only one of the eigenpairs (λ, y) or (−λ, y) is an eigenpair of L2,q ,

(c) The multiplicity of the eigenvalues are at most two,

(d) If λ = 0 is an eigenvalue of the operator L8,q , then it is a simple eigenvalue.
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Proof Part (a). We prove by contradiction. Let λ ̸= 0 and (−λ4, y) is an eigenpair of the problem (2.4).
Thus, we have L8,qy = −λ4y . We can factorize this equation as follows

(L4,q + λ2i)(L4,q − λ2i)y(x) = 0.

Suppose that Φ(x) := (L4,q − λ2i)y(x) . The function Φ(x) satisfies in the boundary conditions (2.2). We have
two cases: Φ(x) ̸= 0 and Φ(x) ≡ 0 . If Φ(x) ≡ 0 , then (λ2i, y(x)) is an eigenpair of fourth order problem
(2.2). If Φ(x) ̸= 0 , then (−λ2i, y(x)) is an eigenpair of fourth order problem (2.2). In two cases we have a
contradiction, since the eigenvalues of L4,q are real [14].
Part (b). Suppose that for λ ̸= 0 , (λ4, y(x)) is an eigenpair of the problem (2.4). We can write this equation
as follows:

(L4,q + λ2)(L4,q − λ2)y(x) = 0.

We define Φ(x) = (L4,q − λ2)y(x) . The function Φ(x) is zero, otherwise (−λ2,Φ(x)) is an eigenpair of L4,q

and this is a contradiction with the nonnegativity of the eigenvalues of problem (2.2), see [14]. From Φ(x) ≡ 0 ,
we conclude that (λ2, y(x)) is an eigenpair of the problem (2.2) and by Theorem 1 in [12] (λ, y) or (−λ, y) is
an eigenpair of second order SLP (2.1).
Part (c). Let λ ̸= 0 and (λ, y1) and (−λ, y2) be the eigenpairs of the second order SLP∗ (2.1), then by Theorem
2.2, (λ4, y1) and (λ4, y2) are the eigenpairs of 8th order problem (2.4). Thus, some eigenvalues of the problem
(2.4) can be of the multiplicity two. We prove that the multiplicity of nonzero eigenvalues are at most two.
Suppose that problem (2.4) has an eigenvalue λ4 with multiplicity three. Thus, there exist three independent
functions y1, y2 , and y3 such that

L8,qy1 = λ4y1, L8,qy2 = λ4y2, L8,qy3 = λ4y3.

By part (b), λ or −λ is an eigenvalue of second order problem (2.1) with multiplicity at least two. This is a
contradiction, the eigenvalues of (2.1) are simple. The proof of part (d), is similar to those of part (b) and part
(c). 2

Theorems 2.2 and 2.4 show that the second-order problem (2.1) and 8th order problem (2.4) are equivalent.

2.2. 10th order Sturm–Liouville problem

In the following Theorem, we prove some properties of 10th order SLP (2.5).

Theorem 2.5 The 10 th order SLP (2.5) have the following properties:

(a) If (λ5, y) is an eigenpair of the problem (2.5), then (λ, y) is an eigenpair of second order problem (2.1),

(b) The eigenvalues are simple.

Proof Let (λ5, y) be an eigenpair of the problem (2.5). We can factorize the equation L10,qy = λ5y as follows

{D8 − (λ+ 4q(x))D6 − 12q′(x)D5 +AD4 +BD3 + CD2 + ED + F}{D2 + (λ− q(x))}y(x) = 0, (2.7)
∗For example (−4, sin(x)) and (4, sin(3x)) are the eigenpairs of the second order problem y′′+ (λ+5)y = 0, y(0) = y(π) = 0 .
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where D is the differential operator and

A = 6q2 − 22q′′+ 3λq + λ2,
B = −24q′′′+ 24qq′+ 6λq′,
C = 20q′2 − 16q(4) + 28qq′′ − 4q3 + 7λq′′ − 3λq2 − 2λ2q − λ3,
E = −6q(5) + 32q′q′′+ 16qq′′′ − 12q′q2 + 4λq′′′ − 2λ2q′ − 6λqq′,
F = −q(6) + 4qq(4) − 6q2q′′+ 7q′′2 + 10q′q′′′ − 8qq′2 + q4 + λq(4)

−λ2q′′ − 3λqq′′ − 2λq′2 + λq3 + λ2q2 + λ3q + λ4.

We define Φ(x) = (D2+(λ−q(x)))y(x) . It is easy to verify that Φ(x) satisfies in the boundary conditions
of the problem (2.4). We claim that Φ(x) ≡ 0 . If Φ(x) ̸= 0 , then equation (2.7) can be written as follows

L8,q+λ
4 Φ(x) +

5

8
λ2L4,q+ 3

4λΦ(x) = −3

2
λ4Φ(x). (2.8)

It is proved that the operators L4,q and L8,q for all functions q(x) ∈ C6[0, 1] have nonnegative eigenvalues.

Thus, the eigenvalues of the operator L8,q+λ
4 + 5

8λ
2L4,q+ 3

4λ must be nonnegative, but equation (2.8) shows that
(− 3

2λ
4,Φ(x)) is an eigenpair of this operator. This is a contradiction; thus, Φ(x) ≡ 0 and (λ, y) is an eigenpair

of second order problem (2.1).
Part (b) concludes from part (a) and simplicity of the eigenvalues of second-order problem. 2

Theorems 2.2 and 2.5 state that 10th order problem (2.5) and second order problem (2.1) are equivalent by
means of definition 2.1.

2.3. Other higher-order problems

Having SLP of order 2n , we can obtain a SLP of order 4n as follows.

L4n,q := L2n,qL2n,q. (2.9)

We prove some properties of the operator L4n,q in the following Theorem:

Theorem 2.6 (i) If (λ, y) is an eigenpair of second-order problem, then (λ2n, y) is an eigenpair of the
operator L4n,q ,

(ii) The eigenvalues are nonnegative,

(iii) If λ2n is an eigenvalue of the operator L4n,q , then λ or −λ or both are the eigenvalues of second order
problem,

(iv) The multiplicity of the eigenvalues are at most two.

Proof Let (λ, y) be an eigenpair of second-order problem; thus, by Theorem 2.2, (λn, y) is an eigenpair of
the operator L2n,q ,i.e.,

L2n,q = λny =⇒ L4n,qy = λ2ny.
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Part (ii). Suppose that (−λ2n, y) is an eigenpair of the operator L4n,q ; thus, we have

L4n,q = −λ2ny =⇒ (L2n,q + λni)(L2n,q − λni)y = 0,

the rest of proof is similar to Part (a) of Theorem 2.4.
Part (iii). Suppose that L4n,qy = λ2ny . We can write this equation as (L2n,q + λn)(L2n,q − λn)y = 0 . Define
Φ(x) = (L2n,q − λn)y , if Φ(x) ≡ 0 , then λn is an eigenvalue of L2n,q . If Φ(x) ̸= 0 , then −λn is an eigenvalue
of L2n,q . According to the equivalence relation between the operators L2n,q and L2,q , we conclude that λ or
−λ or both are the eigenvalues of second order problem.
The proof of Part (iv) is similar to Part (d) of Theorem 2.4. 2

By Definition 2.1 and Theorem 2.6 the operators L4n,q and L2,q are equivalent.

3. Family of SLP with the same eigenvalues
If A and B are two operators, then the operators AB and BA have the same eigenvalues. One can apply this
idea for finding different operators with the same eigenvalues. For this purpose, the given operator must be
factorized as product of two operators, then by reversing the factors we obtain the new operator. This idea is
applied for second-order problem and known as Darboux Lemma:

Lemma 3.1 (Darboux Lemma)[3] Suppose that (λm, ym) is an arbitrary eigenpair of the problem:

y′′+ (λ− q̂)y = 0,
y(0) = 0, y(1) = 0.

(3.1)

Then problem (3.1) and problems

w′′+ (λ− qm,α(x))w = 0,
w(0) = 0, w(1) = 0.

(3.2)

have the same eigenvalues, where qm,α(x) = q̂(x) − 2(ln(1 + α
∫ x

0
y2m(t)dt))′′, m = 1, 2, · · · ,

∫ 1

0
y2m(t)dt = 1

and α > −1 is an arbitrary real number. In problem (3.2), the corresponding orthogonal eigenfunctions to the

eigenvalues λk are wk = yk(x)−
αym(x)

∫ x
0

ym(s)yk(s)ds

1+α
∫ x
0

y2
m(s)ds

, for k = 1, 2, .

Using Darboux lemma and equivalence relations obtained in the previous section, we find that, if we replace
the function q(x) in problems (2.4) and (2.5) with qm,α(x) , then the eigenvalues do not change. Thus, we can
construct family of isospectral SLP. We apply the mentioned method in the following examples.

Example 3.2 Consider the 8 th order SLP of the form (2.4) corresponding to q(x) = 0 as follows:

y(8)(x) = λ4y(x),
y(2k)(0) = 0, y(2k)(1) = 0, k = 0, 1, 2, 3.

(3.3)

Using Theorems 2.2 and 2.4, the problem (3.3) is equivalent to the problem:

y′′(x) = λy(x),
y(0) = 0, y(1) = 0.

(3.4)
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The eigenvalues of the problem (3.4) are λm = m2π2 and the corresponding orthogonal eigenfunctions are
ym(x) =

√
2 sin(mπx) . By Darboux Lemma, the problem (3.4) is isospectral to the problem

w′′(x) + (λ− qm,α(x))w(x) = 0, x ∈ (0, 1),
w(0) = 0, w(1) = 0,

(3.5)

where

qm,α = 4α
α− αcos(2mπx)−mπ(1 + αx)sin(2mπx)

(1 + αx− α
2mπ sin(2mπx))2

. (3.6)

Again, applying the equivalence relation we find that problem (3.5) and the following problem are equivalent.

y(8) − 4[qm,αy′′′]′′′+ [(6q2m,α − 10qm,α′′)y′′]′′
+[(−6q

(4)
m,α − 4q3m,α + 8qm,α′2 + 16qm,αqm,α′′)y′(x)]′

+[−8qm,αqm,α′2 − 6q2m,αqm,α′′+ 4qm,αq
(4)
m,α + q4m,α − q

(6)
m,α + 7q′′

2

m,α + 10qm,α′qm,α′′′]y = λ4y,
y(0) = y′′(0) = 0, y(1) = y′′(1) = 0,
y(4)(0)− 2qm,α′(0)y′(0) = 0, y(4)(1)− 2qm,α′(1)y′(1) = 0,
y(6)(0)− 6qm,α′(0)y′′′(0)− 4qm,α′′′(0)y′(0) = 0, y(6)(1)− 6qm,α′(1)y′′′(1)− 4qm,α′′′(1)y′(1) = 0.

(3.7)

Thus, problems (3.3) and (3.7) have the same eigenvalues. According to the equivalence relation the eigenvalues
of the problems (3.3) and (3.7) are λr = r8π8, for r = 1, 2, · · · .
By a similar method, we obtain that the 10 th order problems

−y(10)(x) = λ5y(x),
y(2k)(0) = 0, y(2k)(1) = 0, k = 0, 1, 2, 3, 4.

(3.8)

and

−y(10) + 5[qm,αy
(4)](4) − [10q2m,α − 20qm,α′′)y′′′]′′′

−[(−21q
(4)
m,α10q3m,α + 20qm,α′2 + 50qm,αqm,α′′)y′′]′′

+[(49q′′
2

m,α + 62qm,α′qm,α′′′ − 40qm,αqm,α′2 + 30qm,αq
(4)
m,α − 8q

(6)
m,α + 40q2m,αqm,α′′+ 5q4m,α)y′]′

+[q
(8)
m,α − 24q′′′

2

m,α − 38qm,α′′q(4)m,α − 18qm,α′q(5)m,α − 5qm,αq
(6)
m,α + 52qm,α′′qm,α′2 + 35qm,αq

′′2
m,α

−50qm,αqm,α′qm,α′′′+ 10q2m,αq
(4)
m,α + 10qm,α′′q3m,α + 20q2m,αqm,α′2]y = λ5y,

y(0) = y′′(0) = 0, y(1) = y′′(1) = 0,
y(4)(0)− 2qm,α′(0)y′(0) = 0, y(4)(1)− 2qm,α′(1)y′(1) = 0,
y(6)(0)− 6qm,α′(0)y′′′(0)− 4qm,α′′′(0)y′(0) = 0, y(6)(1)− 6qm,α′(1)y′′′(1)− 4qm,α′′′(1)y′(1) = 0,

y(8)(0)− 12qm,α′(0)y(5)(0)− 24qm,α′′′(0)y′′′(0)− 12qm,α′(0)qm,α′′(0)y′(0)− 6q
(5)
m,α(1)y′(0) = 0,

y(8)(1)− 12qm,α′(1)y(5)(1)− 24qm,α′′′(1)y′′′(1)− 12qm,α′(1)qm,α′′(1)y′(1)− 6q
(5)
m,α(1)y′(1) = 0,

(3.9)

have the same eigenvalues λl = l10π10 , for l = 1, 2, . . . . the corresponding eigenfunctions for problems (3.8)

and (3.9) are yl(x) = sin(lπx) and wl(x) =
√
2sin(lπx)− 2

√
2αsin(mπx)

∫ x
0

sin(mπs)sin(lπs)ds

1+2α
∫ x
0

sin2(mπs)ds
, respectively.

Also, for every n,m ∈ N and α > −1 , the operators L4n,0 and L4n,qm,α have the same eigenvalues λk =

k4nπ4n, k = 1, 2, · · · .

Example 3.3 [10] Consider the one dimentional quantum harmonic oscillator as follows

y′′(x) + (λ− x2)y(x) = 0, x ∈ (−∞,+∞), (3.10)
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with the boundary conditions limx→±∞ y(x) = 0 . This problem has the eigenvalues λm = 2m + 1 and

eigenfunctions ym(x) = (−1)mπ
−1
4√

2mm!
e

x2

2
dm

dxm (e−x2

) . Using this problem and the results of the previous sections, we

can construct a family of Sturm–Liouville problems of order 2n with the same eigenvalues λm = (2m+1)n,m =

0, 1, 2, . . . . In other words, if in problems (2.1)–(2.5) and the operator L4n,q , we replace the function q(x) with
the new function

qm,α(x) = x2 − 2(ln(1 + α

∫ x

−∞
y2m(s)ds))′′,

then we obtain a family of isospectral Sturm–Liouville problems of order 2n and 4n .
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