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Abstract: We show that the intermediate subalgebras between C∗(X) and C(X) do not contain regular sequences
with length ≥ 2 . This shows that depth(A(X)) ≤ 1 for each intermediate subalgebra A(X) between C∗(X) and C(X) .
Whenever an intermediate subalgebra A(X) is proper, i.e. A(X) ̸= C(X) , we observe that the depth of A(X) is exactly
1. Using this, it turns out that depth(C∗(X)) = 0 if and only if X is a pseuodocompact almost P -space. The regular
sequences in the subrings of the form I + R of C(X) , where I is a z -ideal of C(X) , are also investigated and we
have shown that the length of regular sequences in such rings is at most 1. In contrast to the depth of intermediate
subalgebras, we see that the depth of a proper subring of the form I + R may be zero. Finally, regular sequences of
extension rings of C(X) are also studied and some examples of subrings of C(X) are given with depths different from
the depth of C(X) .
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1. Introduction
Throughout this article, topological spaces are assumed to be completely regular Hausdorff (Tychonoff) spaces.
We denote by C(X) the ring of all real-valued continuous functions on a space X . The subring C∗(X) of
C(X) is the set of bounded elements of C(X) , and whenever C(X) = C∗(X) , we say that X is pseudocompact.
Recall that for each f ∈ C(X) , Z(f) = {x ∈ X : f(x) = 0} , the zero-set of f , while coz f = X \ Z(f) ,
the cozero-set of f . For every ideal I of C(X) the set of zero-sets {Z(f) : f ∈ I} is denoted by Z[I] , and∩
Z[I] :=

∩
f∈I Z(f) . It is well known that a Hausdorff space X is completely regular if and only if the set of

all zero-sets is a base for closed subsets of X , or equivalently the set of all cozero-sets is a base for open subsets
of X ; see Theorem 3.2 in [5].

An ideal I in C(X) is called a z -ideal if whenever f ∈ I , g ∈ C(X) , and Z(f) ⊆ Z(g) , then g ∈ I .
Every maximal ideal of C(X) is precisely of the form Mp = {f ∈ C(X) : p ∈ clβXZ(f)} , for some p ∈ βX ,
where βX is the Stone-Čech compactification of X . Whenever p ∈ X , then Mp is denoted by Mp and in this
case Mp = {f ∈ C(X) : p ∈ Z(f)} . Hence, every maximal ideal itself is a z -ideal. It is easy to see that the
intersection of all maximal ideals containing f ∈ C(X) coincides with Mf = {g ∈ C(X) : Z(f) ⊆ Z(g)} and it
is the smallest z -ideal containing f . Using Problem 4A in [5], an ideal I is a z -ideal if and only if Mf ⊆ I for
each f ∈ I .

∗Correspondence: azarpanah@ipm.ir
2010 AMS Mathematics Subject Classification: 23584, 13A15, 54C40

This work is licensed under a Creative Commons Attribution 4.0 International License.
438



AZARPANAH and ESMAEILVANDI/Turk J Math

Every invertible element of a ring R is called a unit and an element of R is said to be regular if it is not
a zero divisor. The following lemma, which gives the well-known topological characterizations of unit elements
and regular elements of C(X) , is an immediate consequence of the definitions.

Lemma 1.1 The following statements hold:

1. An element f ∈ C(X) is a unit if and only if Z(f) = ∅ .

2. An element f ∈ C(X) is a regular element (non-zero divisor) if and only if intXZ(f) = ∅ , or equivalently
cozf is dense in X .

Recall that a point x ∈ X an almost P -point if for every f ∈ C(X) , x ∈ Z(f) implies that intXZ(f) ̸= ∅ .
Hence, using Lemma 1.1, x ∈ X is not an almost P -point if and only if there exists a regular element r ∈ C(X)

such that x ∈ Z(r) . A space X is called an almost P -space if every point of X is an almost P -point. By
Lemma 1.1, it is easy to see that a space X is an almost P -space if and only if every nonempty Gδ -set or
equivalently every nonempty zero-set in X has a nonempty interior. Using this and the above lemma, a space
X is an almost P -space if and only if the set of unit elements and the set of regular elements of C(X) coincide;
see [7] for more details about almost P -spaces. In case every zero-set or every Gδ -set in X is open, X is
called a P -space. Clearly every P -space is an almost P -space but not conversely. For instance, a one-point
compactification of an uncountable discrete space is an almost P -space that is not a P -space. We refer the
reader to 4J in [5] for more details and properties of P -spaces.

Whenever R is a ring, a sequence a1, · · · , an of elements of R is said to be a regular sequence of length
n if a1 is regular in R , a2 (in fact a2+a1R) is regular in R/a1R , a3 is regular in R/(a1R+a2R) , ... such that
R ̸=

∑n
i=1 aiR . The maximum length of all regular sequences in R , if it exists, is called the depth of R and it is

denoted by depth(R) . The concept of regular sequences of a ring was first introduced in [10]. Regular sequences
and the concept of depth are usually studied in the context of local rings and algebraic geometry. Nevertheless,
these concepts are defined and studied in general rings, modules, and recently in rings of continuous functions;
see [2]. We also refer interested readers to [6] and Auslander’s works [1]. In the present paper we generalize
Theorem 2.5 in [2] and its corollaries and we compute the depth of some important subrings of C(X) .

2. Regular sequences in the intermediate algebras between C∗(X) and C(X)

Since C∗(X) ∼= C(βX) and C(Y ) for each space Y does not contain a regular sequence of length more than 1
by Corollary 2.7 in [2], the lengths of regular sequences in C∗(X) are at most 1. More generally, we observe in
this section that the length of any regular sequence in the intermediate algebras between C∗(X) and C(X) is
also at most 1 and then we obtain the depth of such algebras. First we cite some known results. The following
lemma is Proposition 3.3 in [4]. We recall that a subring A of C(X) absolutely convex if whenever f ∈ C(X) ,
g ∈ A , and |f | ≤ |g| , then f ∈ A .

Lemma 2.1 If A(X) is an intermediate algebra between C∗(X) and C(X) , then A(X) is an absolutely convex
subalgebra of C(X) .

Using the above lemma, for each intermediate algebra A(X) between C∗(X) and C(X) , we have f ∈ A(X)

if and only if |f | ∈ A(X) . The following result also seems to be known, but we could not find the related
reference.
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Lemma 2.2 If A(X) is an intermediate algebra between C∗(X) and C(X) , then f ∈ A(X) if and only if
|f |1/2 ∈ A(X) . More generally, f ∈ A(X) if and only if |f |1/2n ∈ A(X) .

Proof Since |f |1/2
1+|f | ≤ 1

2 , we have |f |1/2
1+|f | ∈ C∗(X) ⊆ A(X) . Hence, there exists h ∈ A(X) such that

|f |1/2 = h(1 + |f |) , and since |f | ∈ A(X) by Lemma 2.1, we have |f |1/2 ∈ A(X) . Conversely, |f |1/2 ∈ A(X)

implies |f | = |f |1/2|f |1/2 ∈ A(X) . By induction, we may prove that f ∈ A(X) if and only if |f |1/2n ∈ A(X) .
2

Theorem 2.3 Let A(X) be an intermediate algebra between C∗(X) and C(X) , r be a nonunit regular element
of A(X) , and f ∈ A(X) . Let (r) denote the principal ideal in A(X) generated by r . If f + (r) is a nonunit
in A(X)/(r) , then f + (r) is a zero divisor in A(X)/(r) .

Proof Using Lemma 2.1, |f | + |r| ∈ A(X) . First we show that |f | + |r| is not a unit in A(X) . Suppose,
on the contrary, that |f | + |r| is a unit in A(X) and let h ∈ A(X) such that (|f | + |r|)h = 1 . Then
1−h2f2−r2h2 = 2|r||f |h2 . Again by squaring both sides, we get f(h4f3−2h2f−2h4fr2)+1 = r(2h2r−h4r3) ,
and this means that f + (r) is a unit in A(X)/(r) , a contradiction. Hence, |f | + |r| is not a unit in A(X) .
Next we consider two cases:

Case 1. Z(r) ∩ Z(f) = ∅ . Define h = r
|f |+|r| and k = f

|f |+|r| . Clearly h, k ∈ C∗(X) ⊆ A(X) and

fh = rk , i.e. (f + (r))(k + (r)) = (r) = 0 . To see that f + (r) is a zero divisor in A(X)/(r) , it is enough
to show that h /∈ (r) . Suppose, on the contrary, that h ∈ (r) . Then h = rt for some t ∈ A(X) , so we have

r
|f |+|r| = rt or r(1− t(|f |+ |r|)) = 0 . This implies that t(|f |+ |r|) = 1 , since r is a regular element of A(X) ,

but |f | + |r| is not a unit in A(X) , a contradiction. Therefore, f + (r) is indeed a zero divisor in A(X)/(r)

and we are through.
Case 2. Z(r)∩Z(f) ̸= ∅ . First, whenever intXZ(r)∩intXZ(f) ̸= ∅ , then we take x ∈ intXZ(r)∩intXZ(f)

and define g ∈ C∗(X) ⊆ A(X) such that g(x) = 1 and g(X \ intXZ(r) ∩ intXZ(f)) = 0 . Clearly gf = 0 and
g /∈ (r) because g(x) = 1 ̸= 0 = r(x) . This implies that f + (r) is a zero divisor in A(X)/(r) . Next, suppose
that intXZ(r) ∩ intXZ(f) = ∅ . Thus, |f |+ |r| is a nonunit regular element of A(X) . Define

h(x) =

{
r

|f |1/2+|r|1/2 (x) , x /∈ Z(r) ∩ Z(f)

0 , x ∈ Z(r) ∩ Z(f)

k(x) =

{
f

|f |1/2+|r|1/2 (x) , x /∈ Z(r) ∩ Z(f)

0 , x ∈ Z(r) ∩ Z(f).

Clearly h, k ∈ C(X) (in fact |h| ≤ |r|1/2 and |k| ≤ |f |1/2 ). Furthermore, |r|1/2, |f |1/2 ∈ A(X) by Lemma
2.2 and |h| ≤ |r|1/2 , |k| ≤ |f |1/2 imply that h, k ∈ A(X) by Lemma 2.1. Moreover, we have fh = rk ,
i.e. (f + (r))(h + (r)) = 0 in A(X)/(r) . We show that h /∈ (r) . Indeed, if h = rt for some t ∈ A(X) ,
then r(x)[t(x)(|f |1/2(x) + |r|1/2(x)) − 1] = 0 for all x /∈ Z(r) ∩ Z(f) . Clearly, this equality is also valid
for each x ∈ Z(r) ∩ Z(f) , so r(t(|f |1/2 + |r|1/2) − 1) = 0 . Since t(|r|1/2 + |f |1/2) − 1 ∈ A(X) and r

is regular in A(X) , we must have t(|r|1/2 + |f |1/2) − 1 = 0 . Therefore, t(x) = 1
|r|1/2+|f |1/2 (x) for each

x /∈ Z(r) ∩ Z(f) . But intXZ(r) ∩ intXZ(f) = ∅ , so ∅ ̸= Z(r) ∩ Z(f) = ∂(Z(r) ∩ Z(f)) = ∂Z(|f |1/2 + |r|1/2) .
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Now if we take x0 ∈ Z(r) ∩ Z(f) , there exists a net (xλ) in X \ (Z(r) ∩ Z(f)) such that xλ → x0 . Therefore,
|r|1/2(xλ) + |f |1/2(xλ) → 0 , whence t(xλ) → ∞ , i.e. t is not continuous at x0 , a contradiction. This implies
that h /∈ (r) ; hence, f + (r) is a zero divisor in A(X)/(r) and we are done. 2

Corollary 2.4 Whenever A(X) is an intermediate algebra between C∗(X) and C(X) , then A(X) does not
contain a regular sequence of length ≥ 2 . In other words, depth(A(X)) ≤ 1 .

Corollary 2.5 . If A(X) is a proper intermediate algebra between C∗(X) and C(X) , i.e. A(X) ̸= C(X) ,
then depth(A(X)) is exactly 1. In particular, if X is not pseudocompact, then depth(C∗(X)) = 1 .

Proof Suppose that f ∈ C(X)\A(X) . Using Lemma 2.1 we also have 1+ |f | /∈ A(X) . Now 1
1+|f | ∈ C∗(X) ⊆

A(X) implies that 1
1+|f | is a nonunit element of A(X) . On the other hand, 1

1+|f | is not a zero divisor in A(X) ,

so it is a nonunit regular element of A(X) . Moreover, 1
1+|f |A(X) ̸= A(X) , for if 1 = a

1+|f | for some a ∈ A(X) ,

then we have 1 + |f | = a ∈ A(X) , which is impossible. Therefore, depth(A(X)) ≥ 1 , and using Corollary 2.4,
depth(A(X)) = 1 2

Using Proposition 2.2 in [7], βX is an almost P -space if and only if X is a pseudocompact almost
P -space. On the other hand we know that X is an almost P -space if and only if every regular element of
C(X) is a unit. Therefore, depth(C(X)) = 0 if and only if X is an almost P -space. Now, using these facts
and C∗(X) ∼= C(βX) , the following result is evident.

Proposition 2.6 Depth(C∗(X)) = 0 if and only if X is a pseudocompact almost P -space.

Remark 2.7 Let A(X) be a proper intermediate algebra between C∗(X) and C(X) , i.e. A(X) ̸= C(X) .
Then, by the above results, whenever X is not an almost P -space, we have depth(C∗(X)) = depth(A(X)) =

depth(C(X)) = 1 , and whenever X is an almost P -space, then depth(C∗(X)) = depth(A(X)) = 1 but
depth(C(X)) = 0 .

3. Regular sequences in the subrings of the form I + R of C(X)

The class of subrings of C(X) of the form I + R , where I is a z -ideal of C(X) , is considered in this section.
Some properties of these subrings of C(X) were studied in [8], [9], and [3]. In this section we show that the
lengths of regular sequences in such subrings are also at most 1.

Whenever I is a z -ideal of C(X) , then the subring I + R has a useful representation as follows:

I + R = {f ∈ C(X) : f is constant on an element ofZ[I]}.

To see this, if f ∈ I + R , then f = i + r fo some i ∈ I and r ∈ R . This implies that f(Z(i)) = r , i.e. f is
constant on Z(i) ∈ Z[I] . Conversely, if f is constant on a zero-set Z(i) , where i ∈ I , say f(Z(i)) = c , then
Z(i) ⊆ Z(f − c) . Since I is a z -ideal, f − c ∈ I and therefore f = (f − c) + c ∈ I + R .

This representation helps us to see that whenever f ∈ I + R and f ≥ 0 , then fr ∈ I + R for each
nonnegative r ∈ R . In fact, if f ∈ I +R , then f is constant on some Z ∈ Z[I] , say f(Z) = c , and this implies
that fr(Z) = cr , i.e. fr ∈ I +R . In particular, whenever f ∈ I +R , then f

1
n ∈ I +R for each odd integer n .

Also, f ∈ I + R if and only if |f | ∈ I + R , because f is constant on a zero-set if and only if |f | is.
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To prove the next proposition we need the following well-known fact, which topologically characterizes
unit elements of I + R . For its simple proof, see [3] Proposition 1.1.

Lemma 3.1 Let I be a z -ideal of C(X) , i ∈ I and r ∈ R . Then i + r is a unit in I + R if and only if
Z(i+ r) = i−1({−r}) = ∅ .

Proposition 3.2 Let I be a z -ideal of C(X) , i, j ∈ I , and r, s ∈ R . Let i+ r be a nonunit regular element in
I+R and (i+r) be the principal ideal in I+R generated by i+r . Then every nonunit element of (I+R)/(i+r)

is a zero divisor.

Proof Let j+ s+(i+ r) be a nonunit element of (I +R)/(i+ r) . First we show that Z(i+ r)∩Z(j+ s) ̸= ∅ ,
i.e. (i + r)2 + (j + s)2 is a nonunit in I + R by Lemma 3.1. In fact, if (i + r)2 + (j + s)2 is a unit, then
t(i + r)2 + t(j + s)2 = 1 for some t ∈ I + R , but this means that j + s + (i + r) is a unit element of
(I + R)/(i+ r) , which contradicts our hypothesis. Next define

h(x) =

{
i+r

|i+r|1/2+|j+s|1/2 (x) , x /∈ Z(i+ r) ∩ Z(j + s)

0 , x ∈ Z(i+ r) ∩ Z(j + s)

k(x) =

{
j+s

|i+r|1/2+|j+s|1/2 (x) , x /∈ Z(i+ r) ∩ Z(j + s)

0 , x ∈ Z(i+ r) ∩ Z(j + s).

Clearly, h, k ∈ C(X) . Furthermore, the value of h on Z(i) ∩ Z(j) is the constant real number r
|r|1/2+|s|1/2 if

|r|+ |s| ̸= 0 . Similarly, the value of k on Z(i) ∩ Z(j) is the constant real number s
|r|1/2+|s|1/2 if |r|+ |s| ̸= 0 .

Whenever r = s = 0 , then both h and k are zero on Z(i) ∩ Z(j) by definitions of h and k . In any case, h

and k are constant on Z(i) ∩ Z(j) ∈ Z[I] ; therefore, h, k ∈ I + R . Moreover, we have (j + s)h = (i+ r)k . If
we show that h /∈ (i+ r)(I + R) , then j + s+ (i+ r) will be a zero divisor element of (I + R)/(i+ r) and we
are done.

Suppose, on the contrary, that h = (i + r)t for some t ∈ I + R . Then on X \ (Z(i + r) ∩ Z(j + s)) we
have

i+ r

|i+ r|1/2 + |j + s|1/2
= (i+ r)t.

Thus, on the outside of Z(i+ r) ∩Z(j + s) we have i+ r = (|i+ r|1/2 + |j + s|1/2)(i+ r)t . It is clear that this
equality also holds on Z(i+r) and hence on Z(i+r)∩Z(j+s) . Therefore, (i+r)(1−(|i+r|1/2+|j+s|1/2)t) = 0

on X . However, 1− (|i+ r|1/2+ |j+ s|1/2)t ∈ I +R by the argument preceding Lemma 3.1 and i+ r is regular
in I +R , so we must have 1− (|i+ r|1/2 + |j + s|1/2)t = 0 . Now Z(i+ r) ∩Z(j + s) ̸= ∅ implies that 1 = 0 , a
contradiction. 2

Corollary 3.3 For each z -ideal I of C(X) , every regular sequence in I + R has length at most 1 and
consequently depth(I + R) ≤ 1 .

As we already mentioned, X is an almost P -space if and only if depth(C(X) = 0 , but this is not the case
for subrings of the form I + R , even if I is a z -ideal. In the following examples we show that whenever X

is an almost P -space, then depth(I + R) may not be zero, and whenever X is not an almost P -space, then
depth(I + R) may be zero. To see this, we first prove the following proposition.
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Proposition 3.4 Let f ∈ C(X) and Z(f) ̸= ∅ . Then the following statements hold.

1. If depth(Mf + R) = 0 , then Z(f) is open.

2. If Z(f) is open and cozf is an almost P -space, then depth(Mf + R) = 0 .

Proof (1) Using Corollary 3.3, it is enough to show that whenever Z(f) is not open, then depth(Mf +R) = 1 .
First we observe that the nonunit element f of Mf + R is regular. To see this, we show that f is not a zero
divisor in Mf + R . If so, then f(g + r) = 0 for some g ∈ Mf and r ∈ R such that g + r ̸= 0 . If r = 0 , then
fg = 0 and Z(f) ⊆ Z(g) imply that g = 0 , whence g+r = 0 , a contradiction. Hence, r ̸= 0 . Now f(g+r) = 0

implies that Z(f) ∪ Z(g + r) = X , Z(f) ∩ Z(g + r) = ∅ , and this means that Z(f) is open, which contradicts
our hypothesis. Next, it is clear that f(Mf + R) ̸= Mf + R , so depth(Mf + R) = 1 by Corollary 3.3.

(2) If h ∈ Mf , then h is a zero divisor of Mf +R . To see this, it is enough to define g ∈ C(X) such that
g(Z(f)) = 0 and g(X \Z(f)) = 1 . Clearly g ∈ Mf , 0 ̸= g− 1 ∈ Mf +R , and h(g− 1) = 0 . Now suppose that
h + r ∈ Mf + R is a nonunit, where h ∈ Mf and 0 ̸= r ∈ R . Then ∅ ̸= Z(h + r) = (X \ Z(f)) ∩ Z(h + r) =

Z((h + r)|coz f ) . However, coz f is an almost P -space, and then intcoz fZ((h + r)|coz f ) ̸= ∅ , whence
intXZ(h+ r) ̸= ∅ , because coz f is open. Take x ∈ intXZ(h+ r) and define g ∈ C(X) such that g(x) = 1 and
g(X \ intXZ(h + r)) = 0 . Since Z(f) ⊆ X \ intXZ(h + r) (Z(h) ∩ Z(h + r) = ∅), we have Z(f) ⊆ Z(g) and
hence 0 ̸= g ∈ Mf . Moreover, g(h+ r) = 0 , i.e. h+ r is a zero divisor, so depth(Mf + R) = 0 . 2

Example 3.5 (a) Suppose that X is an almost P -space that is not a P -space. Then there is f ∈ C(X) such
that Z(f) is not open. Now using part (1) of Proposition 3.4, depth(Mf + R) = 1 , whereas depth(C(X)) = 0 .

(b) Suppose X and Y are two disjoint spaces such that X is an almost P -space but Y is not and take
T = X ∪ Y as a free union of X and Y . Since Y is a closed-open subset of T , we may consider it as a
zero-set, say Z(f) , where f ∈ C(T ) . Since Z(f) = Y is open and coz f = X is an almost P -space, using part
(2) of Proposition 3.4, the subring Mf + R of C(T ) has depth zero, whereas depth(C(T )) = 1 , because T is
not an almost P -space.

What we have shown so far is that the lengths of regular sequences in two large classes of subrings of
C(X) are at most 1. This fact also holds for some other subrings of C(X) outside of these two classes. For
instance, whenever S is a closed-open subset of a space X , then C(X) is isomorphic to the direct sum of C(S)

and C(X \S) ; see 1B(6) in [5]. Clearly, C(S) is a subring of C(X) that is neither an intermediate subring nor
a subring of the form I +R for some z -ideal I of C(X) . Now, using Corollary 2.7 in [2] and our Corollary 2.4,
the subring C(S) does not contain a regular sequence of length ≥ 2 .

Similar to C(X) and some subrings of C(X) , it seems that the length of every regular sequence in each
subring of C(X) is ≤ 1 , or equivalently, depth(S) ≤ 1 for every subring S of C(X) . We were unable to prove
or disprove this assertion, so we cite it here as a conjecture.

Conjecture. If S is a subring of C(X) , then depth(S) ≤ 1 .

4. Regular sequences in the trivial ring extension of C(X)

Not only for a large class of subrings of C(X) but for some other rings that contain C(X) as a subring, the
length of regular sequences does not exceed 1. In this section, we show this pretension in trivial ring extension
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of C(X) by C(X) itself, which is the ring C2(X) = C(X)×C(X) with addition and multiplication defined as
follows:

(f, g) + (h, k) = (f + h, g + k),

(f, g)(h, k) = (fh, fk + gh),

for all f, g, h, k ∈ C(X) . First we need the following lemma.

Lemma 4.1 Let f, g, h, k ∈ C(X) . Then the following statements hold.

1. (f, g) is a unit element of C2(X) if and only if f is a unit in C(X) , i.e. Z(f) = ∅ .

2. (f, g) is a regular element of C2(X) if and only if intXZ(f) = ∅ (i.e. f is a regular element of C(X)).

3. Whenever (f, g) is a regular element of C2(X) , then (h, k) is a unit in C2(X)/(f, g)C2(X) if and only
if Z(f) ∩ Z(h) = ∅ .

Proof (1) If (f, g) is a unit in C2(X) , then clearly f is a unit in C(X) . Conversely, if f is a unit in C(X) ,
then (f, g)( 1f ,

−g
f2 ) = (1, 0) , so (f, g) is a unit in C2(X) .

(2) If (f, g) is regular in C2(X) , then for each 0 ̸= h ∈ C(X) , we have (f, g)(0, h) = (0, fh) ̸= (0, 0) .
This means that f is regular in C(X) , so intXZ(f) = ∅ by Lemma 1.1. Conversely, if intXZ(f) = ∅ , then f

is regular in C(X) by the same lemma. Now if (h, k) ̸= (0, 0) , then clearly (f, g)(h, k) = (fh, fk+gh) ̸= (0, 0) .
In fact, if h ̸= 0 , then fh ̸= 0 and if h = 0 but k ̸= 0 , then fk ̸= 0 because f is regular in C(X) . In any
case, we have (f, g)(h, k) ̸= (0, 0) , so (f, g) is regular in C2(X) .

(3) Let (h, k) be a unit in C2(X)/(f, g)C2(X) . Then there exist t, s, u, v ∈ C(X) such that (h, k)(t, s) =

(1, 0)+(f, g)(u, v) . Hence, ht−fu = 1 implies that Z(h)∩Z(f) = ∅ . Conversely, suppose that Z(h)∩Z(f) = ∅ ,

i.e. f2+h2 = u is a unit by Lemma 1.1. Thus, f2

u + h2

u = 1 and hence (h, k)(hu , 0) = (1, kh
u + fg

u )+(f, g)(− f
u , 0) .

Now, multiplying both sides of the equality by (1,− fg
u − hk

u ) , we get

(h, k)(
h

u
,−fgh

u2
− kh2

u2
) = (1, 0) + (f, g)(−f

u
,
f2g

u2
+

fhk

u2
).

Therefore, (h, k) is a unit in C2(X)/(f, g)C2(X) . 2

Proposition 4.2 Let f, g ∈ C(X) and (f, g) be regular in C2(X) . Then every nonunit element of C2(X)/(f, g)C2(X)

is a zero divisor.

Proof Let (h, k) + (f, g)C2(X) be a nonunit in C2(X)/(f, g)C2(X) . Then Z(f) ∩ Z(h) ̸= ∅ by Lemma
3.6(3), and part (1) of the same lemma implies that h is a nonunit in C(X) . Since (f, g) is regular in C2(X) ,
f is regular in C(X) by Lemma 4.1(2), but depth(C(X)) ≤ 1 by Corollary 2.4, so h is a zero divisor of
C(X)/(f) . Thus, there exists t ∈ C(X) such that th = fu for some u ∈ C(X) , where t /∈ (f) . Now
(h, k)(0, t) = (f, g)(0, u) , and if we show that (0, t) /∈ (f, g)C2(X) , then (h, k) + (f, g)C2(X) will be a zero
divisor in C2(X)/(f, g)C2(X) . To this end, suppose, on the contrary, that (0, t) = (f, g)(m,n) for some
m,n ∈ C(X) . Therefore, we have fm = 0 , which implies m = 0 because f is regular in C(X) . On the other
hand, fn+ gm = t implies fn = t , i.e. t ∈ (f) , a contradiction. 2
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Corollary 4.3 depth(C2(X)) ≤ 1 .

Remark 4.4 The results of this article can be extended to the case of complex-valued continuous functions. It
seems that many arguments are valid in this case and the techniques applied in the proof of the results also work
in the case of complex-valued continuous functions. We leave this to the interested readers.
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