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Abstract: Let G be a nontrivial, connected, and edge-colored graph of order n ≥ 3 , where adjacent edges may be
colored the same. Let k be an integer with 2 ≤ k ≤ n . A tree T in G is a rainbow tree if no two edges of T are
colored the same. For S ⊆ V (G) , the Steiner distance d(S) of S is the minimum size of a tree in G containing S . An
edge-coloring of G is called a strong k -rainbow coloring if for every set S of k vertices of G there exists a rainbow tree
of size d(S) in G containing S . The minimum number of colors needed in a strong k -rainbow coloring of G is called
the strong k -rainbow index srxk(G) of G . In this paper, we study the strong 3 -rainbow index of edge-amalgamation
of graphs. We provide a sharp upper bound for the srx3 of edge-amalgamation of graphs. We also determine the srx3

of edge-amalgamation of some graphs.
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1. Introduction
All graphs considered in this paper are simple, finite, and connected. We follow the terminology and notation of
Diestel [5]. For simplifying, we define [a, b] as a set of all integers x with a ≤ x ≤ b . Let G be an edge-colored
graph of order n ≥ 3 , where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two
edges of T receive the same color. For S ⊆ V (G) , a rainbow S -tree is a rainbow tree that contains the vertices
of S . Let k be an integer with k ∈ [2, n] . An edge-coloring of G is called a k -rainbow coloring if for every set
S of k vertices of G there exists a rainbow S -tree in G . The k -rainbow index rxk(G) of G , introduced by
Chartrand et al. [3], is the minimum number of colors needed in a k -rainbow coloring of G . Thus, if k = 2 ,
then rx2(G) is the rainbow connection number rc(G) of G , which was first introduced by Chartrand et al. in
2008 [2]. Some known results about the rainbow connection number of graphs can be found in [2, 6–9, 11–13].
For every nontrivial connected graph G of order n , it is easy to see that rx2(G) ≤ rx3(G) ≤ ... ≤ rxn(G) .

The concept of the k -rainbow index has an interesting application in transferring classified information
in communication networks security. One of the things that can be done to make a secure transfer line between
k agencies (which may have other agencies as intermediaries) in communication networks is to assign a large
enough number of passwords to the line so that no password is repeated. An immediate question arises: What
is the minimum number of passwords needed that allows one secure line between every k agencies so that the
∗Correspondence: zata.yumni@s.itb.ac.id
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passwords along the line are distinct? This situation can be modeled by a graph and the minimum number of
these passwords is represented by the k -rainbow index of a graph.

The Steiner distance d(S) of a set S of vertices in G is the minimum size of a tree in G containing S .
Such a tree is called a Steiner S -tree. The maximum Steiner distance of S among all sets S of k vertices of G

is called the k -Steiner diameter sdiamk(G) of G . Chartrand et al. [3] stated that for every connected graph
G of order n ≥ 3 and each integer k with k ∈ [3, n] , k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n − 1 . In [3], they
showed that trees are composed of a class of graphs whose k -rainbow index attains the upper bound for rxk(G) .
They also determined the k -rainbow index of cycles and the 3 -rainbow index of complete graphs. Chen et al.
[4] provided the 3 -rainbow index of regular complete bipartite and multipartite graphs and wheels. In [1], we
determined the 3 -rainbow index of amalgamation of some graphs with diameter 2 . Liu and Hu in 2014 [10]
studied the 3 -rainbow index with respect to three important graph product operations, namely the Cartesian
product, strong product, and lexicographic product, and also other graph operations. Graph operations are an
interesting subject, which can be used to understand structures of graphs.

We generalized the concept of the k -rainbow index of G called the strong k -rainbow index of G∗. A
strong k -rainbow coloring of G is an edge-coloring of G having the property that for every set S of k vertices
of G there exists a rainbow tree of size d(S) containing S . Such a rainbow tree is called a rainbow Steiner
S -tree. The minimum number of colors needed in a strong k -rainbow coloring of G is the strong k -rainbow
index of G , denoted by srxk(G) . Thus, we have rxk(G) ≤ srxk(G) for every connected graph G . If k = 2 ,
then srx2(G) is the strong rainbow connection number src(G) of G [2]. Chartrand et al. [2] gave lower and
upper bounds for the strong rainbow connection number; that is, diam(G) ≤ rc(G) ≤ src(G) ≤ |E(G)| .

Note that every coloring that assigns distinct colors to all edges of a connected graph is a strong k -
rainbow coloring. Thus, the strong k -rainbow index is defined for every connected graph G . Furthermore, if G

is a nontrivial connected graph of size |E(G)| whose k -Steiner diameter is sdiamk(G) , then it is easy to check
that

sdiamk(G) ≤ rxk(G) ≤ srxk(G) ≤ |E(G)|. (1.1)

We have determined the strong 3 -rainbow index of some certain graphs. We also provided a sharp upper
bound for the strong 3 -rainbow index of amalgamation of graphs and determined the exact values of the strong
3 -rainbow index of amalgamation of some graphs∗. The following results are needed.

Theorem 1.1 ∗ Let Tn be a tree of order n ≥ 3 . For each integer k ∈ [3, n] , srxk(Tn) = |E(Tn)| = n− 1 .

Theorem 1.2 ∗ For n ≥ 3 , let Ln be a ladder graph of order 2n . Then srx3(Ln) = sdiam3(Ln) = n .

Theorem 1.3 ∗ For n ≥ 3 , let Kn,n be a regular complete bipartite graph of order 2n . Then srx3(Kn,n) = n .

Theorem 1.4 ∗ Let Cn be a cycle of order n ≥ 3 . Then:

srx3(Cn) =

 2, for n = 3;
n− 2, for n ∈ [4, 6] or n = 8;

n, for n = 7 or n ≥ 9.

For illustration, strong 3 -rainbow colorings of C3 , C4 , C5 , C6 , and C8 are given in Figure 1.
∗Awanis ZY, Salman A. The strong 3 -rainbow index of some certain graphs and its amalgamation. Submitted.
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Figure 1. Strong 3 -rainbow colorings of C3 , C4 , C5 , C6 , and C8 .

For an integer t ≥ 2 , let {G1, G2, ..., Gt} be a collection of finite, simple, and connected graphs and
each Gi has a fixed edge eoi called a terminal edge. Assume that each terminal edge has an orientation. The
edge-amalgamation of G1, G2, ..., Gt , denoted by Edge− Amal{Gi; eoi} , is a graph obtained by taking all the
G′

i s and identifying their terminal edges with the same orientation. If for each i ∈ [1, t] , Gi
∼= G and eoi = e ,

then Edge−Amal{Gi; eoi} is denoted by Edge−Amal(G, e, t) .
In this paper, we study graphs of type Edge − Amal(G, e, t) . It is needed when we want to make a

larger and complex communication networks and some agencies must pass through one or two centers in order
to transfer information or communicate with each other safely. We focus on k = 3 . We determine a sharp
upper bound for the strong 3 -rainbow index of Edge − Amal(G, e, t) . We also determine the exact values of
the strong 3 -rainbow index of Edge−Amal(G, e, t) for some connected graphs G .

2. Main results
Let G be a simple connected graph of order n ≥ 3 and let e be a terminal edge of G , which has an orientation.
Given c as a strong 3 -rainbow coloring of G and X ⊆ E(G) , let c(X) denote the set of colors assigned to all
edges of X . For t ≥ 2 , consider graphs Edge−Amal(G, e, t) . Let V (Edge−Amal(G, e, t)) = {u, v} ∪ {vpi |i ∈
[1, t], p ∈ [1, n − 2]} and uv be the identified edge of Edge − Amal(G, e, t) . For further discussion, given a
tree T of size m as a subgraph of Edge−Amal(G, e, t) , let T = {e1, e2, ..., em} denote the tree with edge set
{e1, e2, ..., em} .

2.1. Sharp upper bound for srx3(Edge−Amal(G, e, t)

In the following theorem, we provide an upper bound for the strong 3 -rainbow index of Edge−Amal(G, e, t) .

Theorem 2.1 Let t and n be two integers with t ≥ 2 and n ≥ 3 . Let G be a simple connected graph of order
n and e be a terminal edge of G . Then:

srx3(Edge−Amal(G, e, t)) ≤ min {t (|E(G)| − 1) + 1, t (srx3(G))} .

Proof Following (1.1), we know that |E(Edge − Amal(G, e, t))| = t (|E(G)| − 1) + 1 is the natural upper
bound for srx3(Edge − Amal(G, e, t)) . Now, let c′ be a strong 3 -rainbow coloring of G . We show that
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srx3(Edge−Amal(G, e, t)) ≤ t (srx3(G)) by defining a strong 3 -rainbow coloring c : E(Edge−Amal(G, e, t)) →
[1, t (srx3(G))] as follows:

c(e′) =

{
c′(e′), e′ ∈ E(G1);

c′(e′) + (q − 1) srx3(G), e′ ∈ E(Gq)\{e} for each q ∈ [2, t].

Observe that the coloring c above maintains the position of colors in Gi and assigns distinct colors in
E(Gi) and E(Gj) for distinct i and j in [1, t] . Therefore, it is not difficult to find a rainbow Steiner S -tree
for every set S of three vertices of Edge−Amal(G, e, t) . 2

The upper bound in Theorem 2.1 is sharp. It can be proven by providing some connected graphs G

such that srx3(Edge−Amal(G, e, t)) attains the upper bound. Theorems 2.2 and 2.4 show that srx3(Edge−
Amal(G, e, t)) = t (|E(G)| − 1) + 1 where G is a tree or a cycle of order odd n ≥ 9 . Meanwhile, Theorem 2.8
shows that srx3(Edge−Amal(G, e, t)) = t (srx3(G)) where G is a fan.

Theorem 2.2 Let t and n be two integers with t ≥ 2 and n ≥ 3 . Let Tn be a tree of order n and e be an
arbitrary edge of Tn . Then srx3(Edge−Amal(Tn, e, t)) = t (n− 2) + 1.

Proof Note that the edge-amalgamation of trees is also a tree with |E(Edge−Amal(Tn, e, t))| = t (|E(Tn)| −
1)+1 . It follows by Theorem 1.1 that srx3(Edge−Amal(Tn, e, t)) = |E(Edge−Amal(Tn, e, t))| = t (|E(Tn)|−
1) + 1 = t (n− 2) + 1 . 2

Let Cn be a cycle of order n ≥ 3 . Consider graphs Edge−Amal(Cn, e, t) where e is an arbitrary edge of
Cn . Let V (Edge−Amal(Cn, e, t)) = {u, v}∪{vpi |i ∈ [1, t], p ∈ [1, n−2]} such that E(Edge−Amal(Cn, e, t)) =

{uv} ∪ {uv1i , vv
n−2
i |i ∈ [1, t]} ∪ {vpi v

p+1
i |i ∈ [1, t], p ∈ [1, n− 3]} . We start with the following observation, which

will be used to prove the lower bound in Theorem 2.4.

Observation 2.3 Let t and n be two integers at least 2 and n is odd. For i ∈ [1, t] , let Ai be a set of edges of

path uv1i v
2
i ...v

⌊n
2 ⌋−1

i v
⌊n

2 ⌋
i and Bi be a set of edges of path vvn−2

i vn−3
i ...v

⌊n
2 ⌋+1

i v
⌊n

2 ⌋
i . If c is a strong 3-rainbow

coloring of Edge−Amal(Cn, e, t) , then:

1. c(Ai) ∩ c(Aj) = ∅ and c(Bi) ∩ c(Bj) = ∅ for distinct i and j in [1, t] ;

2. for n ≥ 9 , c(Ai) ∩ c(Bj) = ∅ for distinct i and j in [1, t] .

Proof Let i and j be two distinct integers in [1, t] .

1. Since path v
⌊n

2 ⌋
i v

⌊n
2 ⌋−1

i ...v1i uv
1
j ...v

⌊n
2 ⌋−1

j v
⌊n

2 ⌋
j is the only possible rainbow Steiner {u, v⌊

n
2 ⌋

i , v
⌊n

2 ⌋
j } -tree, we

have c(Ai) ∩ c(Aj) = ∅ . Similarly, by considering {v, v⌊
n
2 ⌋

i , v
⌊n

2 ⌋
j } , we have c(Bi) ∩ c(Bj) = ∅ .

2. By considering {v⌊
n
4 ⌋

i , v
⌊n

2 ⌋
i , v

⌊n
2 ⌋+1

j } and {v⌊
n
2 ⌋

i , v
⌊n

2 ⌋−2
j , v

⌊n
2 ⌋+1

j } , we obtain that no edges of the paths

v
⌊n

2 ⌋
i v

⌊n
2 ⌋−1

i ...v
⌊n

4 ⌋
i ...v1i uvv

n−2
j ...v

⌊n
2 ⌋+2

j v
⌊n

2 ⌋+1
j and v

⌊n
2 ⌋

i v
⌊n

2 ⌋−1
i ...v1i uv

1
j ...v

⌊n
2 ⌋−2

j v
⌊n

2 ⌋−1
j v

⌊n
2 ⌋

j v
⌊n

2 ⌋+1
j are col-

ored the same. Thus, we have c(Ai) ∩ c(Bj) = ∅ .

2
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Theorem 2.4 Let t be an integer at least 2 and n be an odd integer at least 9 . Let Cn be a cycle of order n

and e be an arbitrary edge of Cn . Then srx3(Edge−Amal(Cn, e, t)) = t (n− 1) + 1 .

Proof Since t (srx3(Cn)) = t n by Theorem 1.4 and t (|E(Cn)| − 1)+ 1 = t (n− 1)+ 1 , it follows by Theorem
2.1 that srx3(Edge−Amal(Cn, e, t)) ≤ t (n− 1) + 1 . Thus, we only need to prove the lower bound. Following
Theorem 1.4, c(uv) /∈ c(Ai) ∪ c(Bi) and we need at least n− 1 distinct colors assigned to all edges in Ai ∪Bi

for each i ∈ [1, t] . Hence, by using Observation 2.3, srx3(Edge−Amal(Cn, e, t)) ≥ t (n− 1) + 1 . 2

For n ≥ 3 , recall that a fan Fn of order n + 1 is a graph constructed by joining a vertex v to every
vertex of a path Pn : v1v2...vn . The edges of Pn are called the rims of Fn and the edges connecting v to the
vertices of Pn are called the spokes of Fn . Before we proceed to Theorem 2.8, we first determine the strong
3 -rainbow index of Fn . We start with the following lemma.

Lemma 2.5 For n ≥ 3 , let c be a strong 3-rainbow coloring of Fn . Then at most two spokes of Fn may be
colored the same. Moreover, if c(vvi) = c(vvj) for distinct i and j in [1, n] , then vi and vj are adjacent.

Proof Suppose that there are three spokes of Fn , vvi , vvj , and vvk , such that c(vvi) = c(vvj) = c(vvk) .
Note that two of the three vertices vi , vj , and vk are not adjacent. Without loss of generality, assume that vi

and vj are not adjacent. Observe that T = {vvi, vvj} is the only possible rainbow Steiner {v, vi, vj} -tree, but
c(vvi) = c(vvj) , a contradiction. Hence, at most two spokes of Fn may be colored the same. Furthermore, if
c(vvi) = c(vvj) for distinct i and j in [1, n] , then vi and vj are adjacent. 2

The following theorem is an immediate consequence of Lemma 2.5.

Theorem 2.6 For n ≥ 3 , let Fn be a fan of order n+ 1 . Then:

srx3(Fn) =

{
⌈n
2 ⌉, for n = 3 or n ≥ 5;
3, for n = 4.

Proof Let V (Fn) = {v} ∪ {vi|i ∈ [1, n]} such that E(Fn) = {vvi|i ∈ [1, n]} ∪ {vivi+1|i ∈ [1, n− 1]} .
For n ∈ [3, 4] , since sdiam3(F3) = 2 and sdiam3(F4) = 3 , we have srx3(F3) ≥ 2 and srx3(F4) ≥ 3

by (1.1). Next, we show that srx3(F3) ≤ 2 by defining a strong 3 -rainbow coloring c : E(F3) → [1, 2] , which
can be obtained by assigning the color 1 to the edges vv1 , vv2 , and v2v3 , and the color 2 to the edges vv3

and v1v2 . We show that srx3(F4) ≤ 3 by defining a strong 3 -rainbow coloring c : E(F4) → [1, 3] , which can
be obtained by assigning the color 1 to the edges vv1 , vv2 , and v2v3 , the color 2 to the edges vv3 , vv4 , and
v1v2 , and the color 3 to the edge v3v4 . By these two colorings, it is easy to find a rainbow Steiner S -tree for
every set S of three vertices of Fn for n ∈ [3, 4] .

For n ≥ 5 , it follows by Lemma 2.5 that srx3(Fn) ≥ ⌈n
2 ⌉ . Now we show that srx3(Fn) ≤ ⌈n

2 ⌉ by defining
a strong 3 -rainbow coloring c : E(Fn) → [1, ⌈n

2 ⌉] as follows:

c(vvi) = ⌈ i
2
⌉ for i ∈ [1, n] ;

for odd n , c(vivi+1) =

{
i+1
2 + 1, for odd i ∈ [1, n− 1];

i
2 , for even i ∈ [1, n− 1];
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for even n , c(vivi+1) =


i+1
2 + 1, for odd i ∈ [1, n− 3];
n
2 − 1, for i = n− 1;

i
2 , for even i ∈ [1, n− 4];

n
2 − 2, for i = n− 2.

Now we show that c is a strong 3 -rainbow coloring of Fn . Let S be a set of three vertices of Fn . Let
i , j , and k be three distinct integers in [1, n] . We consider two cases.

Case 1 S = {vi, vj , vk}
If vivj , vjvk ∈ E(Fn) , then T = {vivj , vjvk} is a rainbow Steiner S -tree. If i is odd, j = i + 1 with

vivj ∈ E(Fn) , and k = i− 2 or k = j + 2 , then there exists distinct l ∈ [1, n] such that vkvl, vlvi ∈ E(Fn) or
vjvl, vlvk ∈ E(Fn) . Thus, the rainbow Steiner S -tree is a path of order 4 , which contains vertices vi , vj , vk ,
and vl . If i is odd, j = i+ 1 with vivj ∈ E(Fn) , and k ≤ i− 3 or k ≥ j + 3 , then T = {vvi, vivi+1, vvk} is a
rainbow Steiner S -tree. For other values of i , j , and k , T = {vvi, vvj , vvk} is a rainbow Steiner S -tree.

Case 2 S = {v, vi, vj}
If i is odd and j = i + 1 with vivj ∈ E(Fn) , then T = {vvi, vivi+1} is a rainbow Steiner S -tree. For

other values of i and j , T = {vvi, vvj} is a rainbow Steiner S -tree. 2

Now we consider graphs Edge−Amal(Fn, e, t) where e = vvs is an arbitrary spoke of Fn . By symmetry,
we only consider for s ∈

[
1, ⌈n

2 ⌉
]
. Let V (Edge − Amal(Fn, e, t)) = {u, v} ∪ {vpi |i ∈ [1, t], p ∈ [1, n − 1]} such

that E(Edge − Amal(Fn, e, t)) = {uv} ∪ {vvpi |i ∈ [1, t], p ∈ [1, n − 1]} ∪ {uvsi |i ∈ [1, t]} ∪ {vpi v
p+1
i |i ∈ [1, t], p ∈

[s, n− 2]} ∪ E1 where

E1 =


∅, if s = 1;

{uv1i |i ∈ [1, t]}, if s = 2;

{uvs−1
i |i ∈ [1, t]} ∪ {vpi v

p+1
i |i ∈ [1, t], p ∈ [1, s− 2]}, otherwise.

The following observation is also an immediate consequence of Lemma 2.5.

Observation 2.7 Let t , n , and s be three integers with t ≥ 2 , n ≥ 3 , and s ∈
[
1, ⌈n

2 ⌉
]
. For i ∈ [1, t] , let

Ai be a set of spokes vvpi for p ∈ [1, s − 1] and Bi be a set of spokes vvpi for p ∈ [s, n − 1] . If c is a strong
3-rainbow coloring of Edge−Amal(Fn, e, t) , then c(Ai) ∩ c(Aj) = ∅ and c(Bi) ∩ c(Bj) = ∅ for distinct i and
j in [1, t] , and c(Ai) ∩ c(Bj) = ∅ for all i and j in [1, t] .

Theorem 2.8 Let t , n , and s be three integers with t ≥ 2 , n ≥ 3 , and s ∈
[
1, ⌈n

2 ⌉
]
. Let Fn be a

fan of order n + 1 and e = vvs be an arbitrary spoke of Fn . For odd n and even s , or even n ≥ 6 ,
srx3(Edge−Amal(Fn, e, t)) = t (⌈n

2 ⌉) .

Proof Since t (srx3(Fn)) = t (⌈n
2 ⌉) by Theorem 2.6 and t (|E(Fn)| − 1) + 1 = t (2n − 2) + 1 , it follows by

Theorem 2.1 that srx3(Edge − Amal(Fn, e, t)) ≤ t (⌈n
2 ⌉) . Thus, we only need to prove the lower bound. Let

c be a strong 3 -rainbow coloring of Edge − Amal(Fn, e, t) . For i ∈ [1, t] , let Ai be a set of spokes vvpi for
p ∈ [1, s− 1] and Bi be a set of spokes vvpi for p ∈ [s, n− 1] . Hence, |Ai| = s− 1 and |Bi| = n− s .

For odd n and even s , we have that for each i ∈ [1, t] , both |Ai| and |Bi| are odd. Hence, by
using Lemma 2.5, |c(Ai)| ≥ ⌈ s−1

2 ⌉ = s
2 and |c(Bi)| ≥ ⌈n−s

2 ⌉ = n−s+1
2 . It follows by Observation 2.7 that

srx3(Edge−Amal(Fn, e, t)) ≥ t (⌈n
2 ⌉) .
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For even n ≥ 6 , if s is odd, then for each i ∈ [1, t] , |Ai| is even and |Bi| is odd. It follows by
Lemma 2.5 that |c(Ai)| ≥ s−1

2 and |c(Bi)| ≥ ⌈n−s
2 ⌉ = n−s+1

2 . Hence, by using Observation 2.7, we have
srx3(Edge−Amal(Fn, e, t)) ≥ t (n2 ) . Similarly, we have srx3(Edge−Amal(Fn, e, t)) ≥ t (n2 ) if s is even. 2

2.2. The strong 3-rainbow index of Edge−Amal(G, e, t) for some connected graphs G

In this subsection, we determine the strong 3 -rainbow index of Edge−Amal(G, e, t) for some connected graphs
G . In particular, we consider G as a cycle, a fan, a ladder, and a regular complete bipartite graph. First,
we consider graphs Edge− Amal(Cn, e, t) where e is an arbitrary edge of Cn . In Theorem 2.4, we determine
srx3(Edge − Amal(Cn, e, t)) for odd n ≥ 9 . In the next theorem, we determine srx3(Edge − Amal(Cn, e, t))

for other values of n . First, we verify the following observation.

Observation 2.9 Let t be an integer at least 2 and n be an even integer at least 4 . For i ∈ [1, t] , let Ai be a

set of edges of path uv1i v
2
i ...v

n
2 −2
i v

n
2 −1
i and Bi be a set of edges of path vvn−2

i vn−3
i ...v

n
2 +1
i v

n
2
i . If c is a strong

3-rainbow coloring of Edge−Amal(Cn, e, t) , then:

1. c(Ai) ∩ c(Aj) = ∅ and c(Bi) ∩ c(Bj) = ∅ for distinct i and j in [1, t] ;

2. for n ≥ 10 , c(Ai) ∩ c(Bj) = ∅ for distinct i and j in [1, t] .

Proof Let i and j be two distinct integers in [1, t] .

1. Since path v
n
2 −1
i v

n
2 −2
i ...v1i uv

1
j ...v

n
2 −2
j v

n
2 −1
j is the only possible rainbow Steiner {u, v

n
2 −1
i , v

n
2 −1
j } -tree, we

have c(Ai) ∩ c(Aj) = ∅ . Similarly, by considering {v, v
n
2
i , v

n
2
j } , we have c(Bi) ∩ c(Bj) = ∅ .

2. By considering {u, v
n
2 −1
i , v

n
2 +1
j } , we obtain that no edge of path v

n
2 −1
i v

n
2 −2
i ...v1i uvv

n−2
j ...v

n
2 +1
j is colored

the same. Also, by considering {v
n
2 −1
i , v

n
2 −2
j , v

n
2 +1
j } , no edge of path v

n
2 −1
i v

n
2 −2
i ...v1i uv

1
j ..v

n
2 −2
j v

n
2 −1
j v

n
2
j v

n
2 +1
j

is colored the same. Thus, we have c(Ai) ∩ c(Bj) = ∅ .

2

Theorem 2.10 Let t and n be two integers with t ≥ 2 and n ≥ 3 . Let Cn be a cycle of order n and e be an
arbitrary edge of Cn . Then:

srx3(Edge−Amal(Cn, e, t)) =


t (srx3(Cn)− 1), for n = 3, or n = 5 and t ≥ 3;

t (srx3(Cn)− 1) + 1, for n = 4, or n = 5 and t = 2;
t (srx3(Cn)− 2) + 2, for even n ≥ 6, or n = 7 and t = 2;

5t+ 1, for n = 7 and t ≥ 3.

Proof For each i ∈ [1, t] , let Ci
n denote the ith cycle Cn in Edge−Amal(Cn, e, t) . For simplyfing the proof,

we define path vpvqvqvr = vpvqvr .
Case 1 n = 3

Note that srx3(C3) = 2 by Theorem 1.4. Let c be a strong 3 -rainbow coloring of Edge−Amal(C3, e, t) .
Then srx3(Edge−Amal(C3, e, t)) ≥ t by Observation 2.3. Now we show that srx3(Edge−Amal(C3, e, t)) ≤ t

by defining a strong 3 -rainbow coloring c : E(Edge−Amal(C3, e, t)) → [1, t] . This coloring can be obtained by
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assigning the colors i to the edges uv1i for all i ∈ [1, t] , the colors i+1 to the edges vv1i for all i ∈ [1, t−1] , and the
color 1 to the edges uv and vv1t . Now we show that c is a strong 3 -rainbow coloring of Edge−Amal(C3, e, t) .
Let S be a set of three vertices of Edge − Amal(C3, e, t) . We can find a rainbow Steiner S -tree as shown in
Table 1.

Table 1. A rainbow Steiner S -tree of Edge−Amal(C3, e, t) .

A set of three vertices S Condition A rainbow Steiner S-tree
{u, v, v1i } i ∈ [1, t− 1] {uv, vv1i }
{u, v, v1t } {uv, uv1t }
{u, v1i , v1j } i ̸= j {uv1i , uv1j }
{v, v1i , v1j } i ̸= j {vv1i , vv1j }
{v1i , v1j , v1k} i < j < k {uv1i , uv1j , uv1k}

Case 2 n = 4

By using Theorem 1.4, srx3(C4) = 2 . Let c be a strong 3 -rainbow coloring of Edge − Amal(C4, e, t) .
Since c(uv) ̸= c(uv1i ) for all i ∈ [1, t] , it follows by Observation 2.9 that srx3(Edge−Amal(C4, e, t)) ≥ t+ 1 .

Next, we show that srx3(Edge − Amal(C4, e, t)) ≤ t + 1 . We define an edge-coloring c : E(Edge −
Amal(C4, e, t)) → [1, t + 1] , which can be obtained by assigning the color 1 to edges uv and v1i v

2
i for all

i ∈ [1, t] and the colors i+1 to edges uv1i and vv2i for all i ∈ [1, t] . Now we show that c is a strong 3 -rainbow
coloring of Edge − Amal(C4, e, t) . Let S be a set of three vertices of Edge − Amal(C4, e, t) . Observe that
the coloring above assigns two colors to Ci

4 and has the same pattern as the strong 3 -rainbow coloring of C4

as shown in Figure 1. It follows by Theorem 1.4 that we can find a rainbow Steiner S -tree if the vertices of
S are contained on the same cycle Ci

4 for some i ∈ [1, t] . Hence, we may assume that vertices of S are not
contained on the same cycle Ci

4 . Let i , j , and k be three distinct integers in [1, t] . By symmetry, we consider
six subcases as shown in Table 2.

Table 2. A rainbow Steiner S -tree of Edge−Amal(C4, e, t) .

A set of three vertices S A rainbow Steiner S-tree
{u, v1i , v1j } {uv1i , uv1j }
{v, v1i , v1j } {uv, uv1i , uv1j }
{u, v1i , v2j } {uv1i , uv, vv2j }
{v1i , v2i , v1j } {uv1i , v1i v2i , uv1j }
{v1i , v1j , v1k} {uv1i , uv1j , uv1k}
{v1i , v1j , v2k} {uv1i , uv1j , uv, vv2k}

Case 3 n = 5

Note that srx3(C5) = 3 by Theorem 1.4. For t = 2 , since sdiam3(Edge−Amal(C5, e, 2)) = 5 , we have
srx3(Edge−Amal(C5, e, 2)) ≥ 5 by (1.1). Next, we show that srx3(Edge−Amal(C5, e, 2)) ≤ 5 by defining a
strong 3 -rainbow coloring of Edge−Amal(C5, e, 2) as shown in Figure 2.

For t ≥ 3 , let c be a strong 3 -rainbow coloring of Edge− Amal(C5, e, t) . It follows by Observation 2.3
that srx3(Edge − Amal(C5, e, t)) ≥ 2t . Next, we show that srx3(Edge − Amal(C5, e, t)) ≤ 2t by defining a
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Figure 2. A strong 3 -rainbow coloring of Edge−Amal(C5, e, 2) .

strong 3 -rainbow coloring c : E(Edge−Amal(C5, e, t)) → [1, 2t] as follows:

c(uv) = 1;

c(uv1i ) = c(vv3i ) = 2 + 2(i− 1) for i ∈ [1, t];

c(v1i v
2
i ) = 1 + 2(i− 1) for i ∈ [1, t];

c(v2i v
3
i ) =

{
1 + 2i, for i ∈ [1, t− 1];

1, for i = t.

Now we show that c is a strong 3 -rainbow coloring of Edge − Amal(C5, e, t) . Let S be a set of three
vertices of Edge−Amal(C5, e, t) . We consider three subcases.

– The vertices of S belong to the same cycle Ci
5 for some i ∈ [1, t]

Since the coloring above assigns three colors to Ci
5 and has the same pattern as the strong 3 -rainbow

coloring of C5 as shown in Figure 1, it follows by Theorem 1.4 that we can find a rainbow Steiner S -tree.

– Two vertices of S belong to the same cycle Ci
5 for some i ∈ [1, t]

Let j ∈ [1, t] with j ̸= i . First, consider S = {u, vpi , v
q
j} . If p, q ∈ [1, 2] , then P = vpi v

1
i uv

1
j v

q
j is a rainbow

Steiner S -tree. If p = 3 and q ∈ [1, 2] , then P = v3i vuv
1
j v

q
j is a rainbow Steiner S -tree. If p = q = 3 ,

then T = {uv, vv3i , vv3j } is a rainbow Steiner S -tree. A similar argument applies for S = {v, vpi , v
q
j} .

Next, consider S = {vpi , v
q
i , v

r
j} . We can find a rainbow Steiner S -tree as shown in Table 3.

– Each vertex of S belongs to distinct cycles Ci
5 , Cj

5 , and Ck
5 for some i, j, k ∈ [1, t]

Let S = {vpi , v
q
j , v

r
k} . We can find a rainbow Steiner S -tree as shown in Table 4.

Case 4 even n ≥ 6

Subcase 4.1 n = 6

Note that srx3(C6) = 4 by Theorem 1.4. First, we prove the lower bound. Assume to the contrary
that srx3(Edge − Amal(C6, e, t)) ≤ 2t + 1 . Then there exists a strong 3 -rainbow coloring c : E(Edge −
Amal(C6, e, t)) → [1, 2t+1] . Let i and j be two distinct integers in [1, t] . By using Observation 2.9, we need at
least 2t distinct colors assigned to the edges uv1i and v1i v

2
i for all i ∈ [1, t] . This implies we have at most one color
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Table 3. A rainbow Steiner {vpi , v
q
i , v

r
j } -tree of Edge−Amal(C5, e, t) .

p q r Condition A rainbow Steiner {vpi , v
q
i , v

r
j}-tree

1 2 1, 2 v2i v
1
i uv

1
j v

r
j

1 2 3 {v1i v2i , v2i v3i , vv3i , vv3j }
1 3 1 {uv1i , v1i v2i , v2i v3i , uv1j }

1 3 2

i ∈ [1, t− 1] and j = i+ 1 {v1i v2i , v2i v3i , vv3i , vv3j , v2j v3j }
i = t and j = 1

others i and j {uv1i , v1i v2i , v2i v3i , uv1j , v1j v2j }
1 3 3 {v1i v2i , v2i v3i , vv3i , vv3j }
2 3 1, 2, 3 The proof is similar to the case p = 1, q = 2, r ∈ [1, 3]

Table 4. A rainbow Steiner {vpi , v
q
j , v

r
k} -tree of Edge−Amal(C5, e, t) .

p q r Condition A rainbow Steiner {vpi , v
q
j , v

r
k}-tree

1, 2 1, 2 1, 2 uv1i v
p
i ∪ uv1j v

q
j ∪ uv1kv

r
k

1 1 3 {uv, uv1i , uv1j , vv3k}
2 2 3 {vv3i , v2i v3i , vv3j , v2j v3j , vv3k}
3 3 1 {uv, vv3i , vv3j , uv1k}
3 3 2 {vv3i , vv3j , vv3k, v2kv3k}
3 3 3 {vv3i , vv3j , vv3k}

1 2 3
j = 1 {uv, uv1i , vv3j , v2j v3j , vv3k}
j ̸= 1 {uv, uv1i , uv1j , v1j v2j , v3k}

left, say color a . Note that the only possible rainbow Steiner {v1i , v4i , v2j } -tree is T = {uv, uv1i , vv4i , uv1j , v1j v2j }

where {c(uv), c(vv4i )} ⊆ {c(v1i v2i ), a} . Since c(uv) ̸= c(v1i v
2
i ) , this forces c(uv) = a and c(vv4i ) = c(v1i v

2
i ) . Next,

by considering {v2i , v3i , v2j } and {v3i , v4i , v
p
j } for p ∈ {1, 4} , we have c(v2i v

3
i ) = a and c(v3i v

4
i ) = c(uv1i ) . Hence,

srx3(C
i
6) ≤ 3 , contradicting Theorem 1.4.
Next, we show that srx3(Edge − Amal(C6, e, t)) ≤ 2t + 2 by defining a strong 3 -rainbow coloring

c : E(Edge− Amal(C6, e, t)) → [1, 2t+ 2] . This coloring can be obtained by assigning the color 1 to the edge
uv , the color 2 to the edges v2i v

3
i for all i ∈ [1, t] , and the colors 3, 4, ..., 2t+2 to the remaining 4t edges where

c(uv1i ) = c(v3i v
4
i ) and c(v1i v

2
i ) = c(vv4i ) for all i ∈ [1, t] . Now we show that c is a strong 3 -rainbow coloring

of Edge− Amal(C6, e, t) . Let S be a set of three vertices of Edge− Amal(C6, e, t) . Since the coloring above
assigns four distinct colors to Ci

6 and has the same pattern as the strong 3 -rainbow coloring of C6 as shown in
Figure 1, if the vertices of S belong to the same cycle Ci

6 for some i ∈ [1, t] , then by using Theorem 1.4, there
exists a rainbow Steiner S -tree by coloring c . Therefore, we consider the following subcases.

– Two vertices of S belong to the same cycle Ci
6 for some i ∈ [1, t]

Let j ∈ [1, t] with j ̸= i . First, consider S = {u, vpi , v
q
j} . If p, q ∈ [1, 2] , then P = vpi v

1
i uv

1
j v

q
j is a

rainbow Steiner S -tree. If p ∈ [1, 2] and q ∈ [3, 4] , then P = vpi v
1
i uvv

4
j v

q
j is a rainbow Steiner S -tree.

If p, q ∈ [3, 4] , then T = vpi v
4
i vv

4
j v

q
j ∪ {uv} is a rainbow Steiner S -tree. A similar argument applies for
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S = {v, vpi , v
q
j} . Next, consider S = {vpi , v

q
i , v

r
j} . We can find a rainbow Steiner S -tree as shown in Table

5.

Table 5. A rainbow Steiner {vpi , v
q
i , v

r
j } -tree of Edge−Amal(C6, e, t) .

p q r Condition A rainbow Steiner {vpi , v
q
i , v

r
j}-tree

1, 2, 3 1, 2, 3 1, 2 p < q vqi v
q−1
i ...vpi ...uv

1
j v

r
j

1 4 1, 2 v1i uvv
4
i ∪ uv1j v

r
j

2, 3 4 1, 2 vpi v
p+1
i v4i vuv

1
j v

r
j

1 2, 3 3, 4 vqi v
q−1
i v1i uvv

4
j v

r
j

1 4 3, 4 v1i uvv
4
i ∪ vv4j v

r
j

2, 3, 4 2, 3, 4 3, 4 p < q vpi v
p+1
i ...vqi ...vv

4
j v

r
j

– Each vertex of S belongs to distinct cycles Ci
6 , Cj

6 , and Ck
6 for some i, j, k ∈ [1, t]

Let S = {vpi , v
q
j , v

r
k} . By symmetry, we consider two cases. If p, q, r ∈ [1, 2] , then T = uv1i v

p
i ∪uv1j v

q
j∪uv1kvrk

is a rainbow Steiner S -tree. If p, q ∈ [1, 2] and r ∈ [3, 4] , then T = uv1i v
p
i ∪ uv1j v

q
j ∪ uvv4kv

r
k is a rainbow

Steiner S -tree.

Subcase 4.2 n = 8

Note that srx3(C8) = 6 by Theorem 1.4. For the lower bound, assume to the contrary that srx3(Edge−
Amal(C8, e, t)) ≤ 4t+1 . Then there exists a strong 3 -rainbow coloring c : E(Edge−Amal(C8, e, t)) → [1, 4t+1] .
By using Observation 2.9, without loss of generality, let c(uv1i ) = 3i−2 , c(v1i v2i ) = 3i−1 , and c(v2i v

3
i ) = 3i for all

i ∈ [1, t] . Next, by considering {u, v, v3i } for all i ∈ [1, t] , we have c(uv) /∈ [1, 3t] . Hence, write c(uv) = 3t+ 1 .
This implies we have t colors left. Let A = [3t + 2, 4t + 1] be the set of these t colors. For an arbitrary
i ∈ [1, t] , consider {u, v5i , v3j } for all j ∈ [1, t] with j ̸= i . Since path v5i v

6
i vuv

1
j v

2
j v

3
j is the only possible rainbow

Steiner tree connecting these three vertices, c(v5i v
6
i ) /∈ {c(uv1i ), c(v2i v3i )} , and c(vv6i ) /∈ {c(uv1i ), c(v1i v2i )} , we

have c(v5i v
6
i ) ∈ {c(v1i v2i )} ∪ A and c(vv6i ) ∈ {c(v2i v3i )} ∪ A , with condition c(v5i v

6
i ) = c(v1i v

2
i ) if and only

if c(vv6i ) ̸= c(v2i v
3
i ) . It follows by Observation 2.9 that we have used all available colors. For the next

steps, let i and j be two distinct integers in [1, t] . First, consider {v3i , v4i , v
p
j } for p ∈ [3, 4] . We obtain

that c(v3i v
4
i ) /∈ [1, 3t] ∪ A , which means c(v3i v

4
i ) = c(uv) for all i ∈ [1, t] . This implies for each i ∈ [1, t] ,

c(vv6i ) ̸= c(v2i v
3
i ) , since if c(vv6i ) = c(v2i v

3
i ) for some i ∈ [1, t] , then there is no rainbow Steiner {v, v2i , v4i } -tree.

Hence, we have c(v5i v
6
i ) = c(v1i v

2
i ) and c(vv6i ) = 3t + 1 + i for all i ∈ [1, t] . Next, consider {v2i , v5i , v3j } . Note

that the rainbow Steiner tree connecting these three vertices should be the path v5i v
4
i v

3
i v

2
i v

1
i uv

1
j v

2
j v

3
j , which

implies c(v4i v
5
i ) /∈ [1, 3t] . Also, by considering {v2i , v5i , v4j } , we have c(v4i v

5
i ) /∈ A . Hence, c(v4i v

5
i ) = c(uv) , but

there is no rainbow Steiner {v3i , v4i , v5i } -tree, a contradiction. Thus, srx3(Edge−Amal(C8, e, t)) ≥ 4t+ 2 .
Next, we show that srx3(Edge − Amal(C8, e, t)) ≤ 4t + 2 . We define an edge-coloring c : E(Edge −

Amal(C8, e, t)) → [1, 4t+2] , which can be obtained by assigning the color 1 to the edge uv , the color 2 to the
edges v3i v

4
i for all i ∈ [1, t] , and the colors 3, 4, ..., 4t+2 to the remaining 6t edges where c(uv1i ) = c(v4i v

5
i ) and

c(v2i v
3
i ) = c(vv6i ) for all i ∈ [1, t] . By using an argument similar to that used in the proof for n = 6 , we can

find a rainbow Steiner S -tree for every set S of three vertices of Edge−Amal(C8, e, t) .
Subcase 4.3 n ≥ 10

456



AWANIS et al./Turk J Math

By using Theorem 1.4, assume to the contrary that srx3(Edge− Amal(Cn, e, t)) ≤ t (n− 2) + 1 . Then
there exists a strong 3 -rainbow coloring c : E(Edge − Amal(Cn, e, t)) → [1, t (n − 2) + 1] . For each i ∈ [1, t] ,

let Ai be a set of edges of path uv1i v
2
i ...v

n
2 −1
i and Bi be a set of edges of path vvn−2

i vn−3
i ...v

n
2
i . It follows

by Theorem 1.4 and Observation 2.9 that
∑t

i=1 |c(Ai)| + |c(Bi)| ≥ t (n − 2) . This implies we have at most

one color left. Note that by using Theorem 1.4 and by considering {v
n
2 −1
1 , v

n
2
1 , vpi } for all i ∈ [2, t] and

p ∈ [n2 − 1, n
2 ] , we have c(uv) ̸= c(v

n
2 −1
1 v

n
2
1 ) and {c(uv), c(v

n
2 −1
1 v

n
2
1 )} ⊈ c(Ai) ∪ c(Bi) for all i ∈ [1, t] . It

means we need two new distinct colors assigned to the edges uv and v
n
2 −1
1 v

n
2
1 , which is impossible. Thus,

srx3(Edge−Amal(Cn, e, t)) ≥ t (n− 2) + 2 .
Next, we prove the upper bound. We define a strong 3 -rainbow coloring c : E(Edge−Amal(Cn, e, t)) →

[1, t (n−2)+2] , which can be obtained by assigning the color 1 to the edge uv , the color 2 to the edges v
n
2 −1
i v

n
2
i

for all i ∈ [1, t] , and the colors 3, 4, ..., t (n− 2) + 2 to the remaining t (n− 2) edges of Edge−Amal(Cn, e, t) .
Now we show that c is a strong 3 -rainbow coloring of Edge−Amal(Cn, e, t) . Let S be a set of three vertices of
Edge−Amal(Cn, e, t) . If the vertices of S belong to the same cycle Ci

n for some i ∈ [1, t] , then there exists a
rainbow Steiner S -tree since the coloring above assigns distinct colors to Ci

n . Hence, we assume that the vertices
of S are not contained on the same cycle Ci

n . By this coloring, we know that each edge of Edge−Amal(Cn, e, t)

is colored with distinct colors, except edges v
n
2 −1
i v

n
2
i , i.e. c(v

n
2 −1
i v

n
2
i ) = c(v

n
2 −1
j v

n
2
j ) for distinct i and j in [1, t] .

Hence, it is not difficult to find a rainbow Steiner S -tree in Edge−Amal(Cn, e, t) .
Case 5 n = 7

By using Theorem 1.4, we have srx3(C7) = 7 . For t ≥ 3 , let c be a strong 3 -rainbow coloring of
Edge−Amal(C7, e, t) . By using Theorem 1.4 and Observation 2.3, and by considering {v1i , v3i , v4j } for distinct
i and j in [1, t] , we need at least 5t + 1 distinct colors assigned to all edges of Edge − Amal(C7, e, t) except
edges v3i v

4
i for all i ∈ [1, t] . Hence, srx3(Edge − Amal(C7, e, t)) ≥ 5t + 1 . For t = 2 , assume to the contrary

that srx3(Edge − Amal(C7, e, 2)) ≤ 11 . Similarly, we need at least 11 distinct colors assigned to all edges of
Edge − Amal(C7, e, 2) except edges v31v

4
1 and v32v

4
2 . It is easy to check that we need one new distinct color

assigned to these two edges, which is impossible. Thus, srx3(Edge−Amal(C7, e, 2)) ≥ 12 .
Next, we prove the upper bound. We show that srx3(Edge−Amal(C7, e, 2)) ≤ 12 by defining a strong

3 -rainbow coloring c : E(Edge − Amal(C7, e, 2)) → [1, 12] . This coloring can be obtained by assigning the
color 1 to the edge uv , the color 2 to the edges v31v

4
1 and v22v

3
2 , and the colors 3, 4, ..., 12 to the remaining

10 edges. For t ≥ 3 , we show that srx3(Edge − Amal(C7, e, t)) ≤ 5t + 1 by defining a strong 3 -rainbow
coloring c : E(Edge − Amal(C7, e, t)) → [1, 5t + 1] , which can be obtained by assigning the color 1 to the
edge uv and the colors 2, 3, ..., 5t + 1 to the remaining 6t edges where c(v3i v

4
i ) = c(v2i+1v

3
i+1) for i ∈ [1, t − 1]

and c(v3t v
4
t ) = c(v21v

3
1) . Now we show that c is a strong 3 -rainbow coloring of Edge − Amal(C7, e, t) . Let

S be a set of three vertices of Edge − Amal(C7, e, t) . If the vertices of S belong to the same cycle Ci
7 for

some i ∈ [1, t] , then there exists a rainbow Steiner S -tree since the coloring above assigns distinct colors
to Ci

7 . Hence, we assume that the vertices of S are not contained on the same cycle Ci
7 . By the coloring

above, we know that each edge of Edge − Amal(C7, e, t) has distinct colors, except edges v2i v
3
i and v3i v

4
i , i.e.

c(v3i v
4
i ) = c(v2i+1v

3
i+1) for i ∈ [1, t−1] and c(v3t v

4
t ) = c(v21v

3
1) . Hence, it is not difficult to find a rainbow Steiner

S -tree in Edge−Amal(C7, e, t) . 2
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Next, we consider graphs Edge−Amal(Fn, e, t) where e = vvs is an arbitrary spoke of Fn . In Theorem
2.8, we provide the exact values of srx3(Edge−Amal(Fn, e, t)) for certain values of n and s . The next theorem
provides srx3(Edge−Amal(Fn, e, t)) for other values of n and s .

Theorem 2.11 Let t , n , and s be three integers with t ≥ 2 , n ≥ 3 , and s ∈
[
1, ⌈n

2 ⌉
]
. Let Fn be a fan of

order n+ 1 and e = vvs be an arbitrary spoke of Fn . Then:

srx3(Edge−Amal(Fn, e, t)) =

{
t (n−1

2 ) + 1, for odd n and odd s;
2t, for n = 4.

Proof We consider two cases.
Case 1 n and s are odd
Assume to the contrary that srx3(Edge − Amal(Fn, e, t)) ≤ t (n−1

2 ) . Then there exists a strong 3 -
rainbow coloring c : E(Edge − Amal(Fn, e, t)) →

[
1, t (n−1

2 )
]
. For i ∈ [1, t] , let Ai be a set of spokes vvpi

for p ∈ [1, s − 1] and Bi be a set of spokes vvpi for p ∈ [s, n − 1] . Thus, both |Ai| and |Bi| are even with
|Ai| = s − 1 and |Bi| = n − s . It follows by Observation 2.7 that we need at least t (n−1

2 ) distinct colors
assigned to all spokes of Ai and Bi for all i ∈ [1, t] , which means we have used all available colors. Next,
consider spoke uv . Since |Ai| and |Bi| are even, by using Lemma 2.5, c(uv) ̸= c(vvpi ) for all i ∈ [1, t] and
p ∈ [1, n − 1] . It means we need one new distinct color assigned to the spoke uv , which is impossible. Thus,
srx3(Edge−Amal(Fn, e, t)) ≥ t (n−1

2 ) + 1 .

Next, we show that srx3(Edge−Amal(Fn, e, t)) ≤ t (n−1
2 )+1 . Let i ∈ [1, t] . We define an edge-coloring

c : E(Edge−Amal(Fn, e, t)) →
[
1, t (n−1

2 ) + 1
]

as follows:

c(uv) = 1;

c(vvpi ) =
⌈p
2

⌉
+ 1 + (i− 1)

(
n− 1

2

)
for p ∈ [1, n− 1];

c(uvpi ) = c(vvpi ) for p ∈ [s− 1, s];

c(vs−2
i vs−1

i ) = c(vsi v
s+1
i ) = 1;

c(vpi v
p+1
i ) =


p+1
2 + 2 + (i− 1)(n−1

2 ), for odd p ∈ [1, s− 3];
p+1
2 + (i− 1)(n−1

2 ), for odd p ∈ [s+ 1, n− 2];

⌈p+1
2 ⌉+ (i− 1)(n−1

2 ), for even p ∈ [1, s− 3];

⌈p+1
2 ⌉+ 1 + (i− 1)(n−1

2 ), for even p ∈ [s+ 1, n− 2].

By the coloring above, it is not difficult to find a rainbow Steiner S -tree for every set S of three vertices of
Edge−Amal(Fn, e, t) .

Case 2 n = 4

By using an argument similar to that used in the proof of the lower bound for even n ≥ 6 , we have
srx3(Edge − Amal(F4, e, t)) ≥ 2t . Now we show that srx3(Edge − Amal(F4, e, t)) ≤ 2t by defining a strong
3 -rainbow coloring c : E(Edge−Amal(F4, e, t)) → [1, 2t] as follows:

c(uv) = 1;

c(vv1i ) = c(v2i v
3
i ) = 1 + 2(i− 1) for i ∈ [1, t];

c(vv2i ) = c(vv3i ) = c(uv1i ) = 2 + 2(i− 1) for i ∈ [1, t];
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for s = 1 , c(v1i v
2
i ) =

{
1 + 2i, for i ∈ [1, t− 1];

1, for i = t;

for s = 2 , c(uv2i ) =

{
1 + 2i, for i ∈ [1, t− 1];

1, for i = t.

By the coloring above, it is easy to find a rainbow Steiner S -tree for every set S of three vertices of
Edge−Amal(F4, e, t) . 2

A ladder graph Ln is a Cartesian product of a Pn and a P2 , where Pn is a path of order n . Let
V (Ln) = {vi|i ∈ [1, 2n]} such that E(Ln) = {vivi+1|i ∈ [1, n− 1] ∪ [n+ 1, 2n− 1]} ∪ {vivi+n|i ∈ [1, n]} . In the
following theorem, we determine the strong 3 -rainbow index of Edge−Amal(Ln, e, t) where e is an arbitrary
edge of Ln .

Theorem 2.12 Let t and n be two integers with t ≥ 2 and n ≥ 3 . Let Ln be a ladder of order 2n and e be
an arbitrary edge of Ln . Then srx3(Edge−Amal(Ln, e, t)) = t (n− 1) + 1.

Proof Without loss of generality, we consider two cases.

Case 1 e = vsvs+1 for s ∈
[
1, ⌊n

2 ⌋
]

Let V (Edge−Amal(Ln, e, t)) = {u, v}∪{vpi |i ∈ [1, t], p ∈ [1, 2n−2]} such that E(Edge−Amal(Ln, e, t)) =

{uv}∪{vvsi |i ∈ [1, t]}∪{vpi v
p+1
i |i ∈ [1, t], p ∈ [s, n−3]∪[n−1, 2n−3]}∪{uvn+s−2

i , vvn+s−1
i |i ∈ [1, t]}∪{vpi v

p+n
i |i ∈

[1, t], p ∈ [s, n− 2]} ∪ E2 where

E2 =


∅, if s = 1;

{uv1i , v1i v
n−1
i |i ∈ [1, t]}, if s = 2;

{uvs−1
i |i ∈ [1, t]} ∪ {vpi v

p+1
i |i ∈ [1, t], p ∈ [1, s− 2]} ∪ {vpi v

p+n−2
i |i ∈ [1, t], p ∈ [1, s− 1]}, otherwise.

First, we prove the lower bound. Assume to the contrary that srx3(Edge− Amal(Ln, e, t)) ≤ t (n− 1) .
Then there exists a strong 3 -rainbow coloring c : E(Edge − Amal(Ln, e, t)) → [1, t (n − 1)] . For i ∈ [1, t] ,
let Ci be a set of colors assigned to the path v1i v

2
i ...v

s−1
i u ∪ vvsi v

s+1
i ...vn−2

i . Clearly, |Ci| = n − 2 . For
distinct i and j in [1, t] , by considering {v1i , v

n−2
i , v1j } and {v1i , v

n−2
i , vn−2

j } , we have Ci ∩ Cj = ∅ . Thus,∑t
i=1 |Ci| ≥ t (n − 2) . Next, consider edges uvn+s−2

i for all i ∈ [1, t] . By considering {u, vn+s−2
i , v1j } and

{u, vn+s−2
i , vn−2

j } for all j ∈ [1, t] , we obtain c(uvn+s−2
i ) /∈ Cj . Since c(uvn+s−2

i ) ̸= c(uvn+s−2
j ) for distinct i

and j in [1, t] , we need t new distinct colors assigned to the edges uvn+s−2
i for all i ∈ [1, t] . This implies we

have used all available colors. Next, consider edge uv . We can check that c(uv) /∈ Ci and c(uv) ̸= c(uvn+s−2
i )

for all i ∈ [1, t] . This forces us to need one new distinct color assigned to the edge uv , which is impossible.
Thus, srx3(Edge−Amal(Ln, e, t)) ≥ t (n− 1) + 1 .

Next, we show that srx3(Edge−Amal(Ln, e, t) ≤ t (n−1)+1 . Let i ∈ [1, t] . We define an edge-coloring
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c : E(Edge−Amal(Ln, e, t)) → [1, t (n− 1) + 1] as follows:

c(vpi v
p+1
i ) = c(vp+n−2

i vp+n−1
i ) = p+ (i− 1)(n− 1) for p ∈ [1, s− 2];

c(vpi v
p+1
i ) = c(vp+n

i vp+n+1
i ) = p+ 1 + (i− 1)(n− 1) for p ∈ [s, n− 3];

c(uvs−1
i ) = c(vn+s−3

i vn+s−2
i ) = s− 1 + (i− 1)(n− 1);

c(vvsi ) = c(vn+s−1
i vn+s

i ) = s+ (i− 1)(n− 1);

c(uv) = c(vn+s−2
i vn+s−1

i ) = t (n− 1) + 1;

c(vpi v
p+n−2
i ) = i (n− 1) for p ∈ [1, s− 1];

c(vpi v
p+n
i ) = i (n− 1) for p ∈ [s, n− 2];

c(uvn+s−2
i ) = c(vvn+s−1

i ) = i (n− 1).

By the coloring above, it is not difficult to find a rainbow Steiner S -tree for every set S of three vertices of
Edge−Amal(Ln, e, t) .

Case 2 e = vsvs+n for s ∈
[
1, ⌈n

2 ⌉
]

Let V (Edge−Amal(Ln, e, t)) = {u, v}∪{vpi |i ∈ [1, t], p ∈ [1, 2n−2]} such that E(Edge−Amal(Ln, e, t)) =

{uv} ∪ {vpi v
p+n−1
i |i ∈ [1, t], p ∈ [1, n− 1]} ∪ {uvsi , vv

n+s−1
i |i ∈ [1, t]} ∪ {vpi v

p+1
i |i ∈ [1, t], p ∈ [s, n− 2] ∪ [n+ s−

1, 2n− 3]} ∪ E3 where

E3 =


∅, if s = 1;

{uv1i , vvni |i ∈ [1, t]}, if s = 2;

{uvs−1
i , vvn+s−2

i |i ∈ [1, t]} ∪ {vpi v
p+1
i |i ∈ [1, t], p ∈ [1, s− 2] ∪ [n, n+ s− 3]}, otherwise.

First, we prove the lower bound. Let c be a strong 3 -rainbow coloring of Edge − Amal(Ln, e, t) . For
i ∈ [1, t] , let Di be a set of colors assigned to the path v1i v

2
i ...v

s−1
i uvsi ...v

n−1
i . Clearly, |Di| = n − 1 . By

considering {v1i , v
n−1
i , v1j } and {v1i , v

n−1
i , vn−1

j } for distinct i and j in [1, t] , we have Di ∩ Dj = ∅ . Thus,∑t
i=1 |Di| ≥ t (n− 1) . Next, consider edge uv . We can check that c(uv) /∈ Di for all i ∈ [1, t] , which means we

need one new distinct colors assigned to the edge uv . Thus, srx3(Edge−Amal(Ln, e, t)) ≥ t (n− 1) + 1 .
Next, we show that srx3(Edge−Amal(Ln, e, t) ≤ t (n−1)+1 . Let i ∈ [1, t] . We define an edge-coloring

c : E(Edge−Amal(Ln, e, t)) → [1, t (n− 1) + 1] as follows:

c(vpi v
p+1
i ) = c(vp+n−1

i vp+n
i ) =

{
p+ (i− 1)(n− 1), for p ∈ [1, s− 2];

p+ 1 + (i− 1)(n− 1), for p ∈ [s, n− 2];

c(uvpi ) = c(vvp+n−1
i ) = p+ (i− 1)(n− 1) for p ∈ [s− 1, s];

c(uv) = c(vpi v
p+n−1
i ) = t (n− 1) + 1 for p ∈ [1, n− 1].

By the coloring above, it is not difficult to find a rainbow Steiner S -tree for every set S of three vertices of
Edge−Amal(Ln, e, t) . 2

Following (1.1), sdiam3(Edge−Amal(G, e, t)) is the natural lower bound for srx3(Edge−Amal(G, e, t)) .
Consider the edge-amalgamation of ladders shown in Theorem 2.12. For e = v1v1+n (or e = vnv2n ), we can
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check that sdiam3(Edge − Amal(Ln, e, 2)) = 2n − 1 and sdiam3(Edge − Amal(Ln, e, t)) = 3n − 2 for t ≥ 3 .
Hence, following Theorem 2.12, we have srx3(Edge − Amal(Ln, e, t)) = sdiam3(Edge − Amal(Ln, e, t)) for
e = v1v1+n (or e = vnv2n ) and t ∈ [2, 3] .

Next, we consider graphs Edge−Amal(Kn,n, e, t) where e is an arbitrary edge of Kn,n . We determine
the strong 3 -rainbow index of Edge−Amal(Kn,n, e, t) , which is given in the following theorem.

Theorem 2.13 Let t and n be two integers with t ≥ 2 and n ≥ 3 . Let Kn,n be a regular complete bipartite
graph of order 2n and e be an arbitrary edge of Kn,n . Then srx3(Edge−Amal(Kn,n, e, t)) = t (n− 1) + 1.

Proof Let V (Edge−Amal(Kn,n, e, t)) = {u, v}∪{up
i |i ∈ [1, t], p ∈ [1, n−1]}∪{vpi |i ∈ [1, t], p ∈ [1, n−1]} such

that E(Edge−Amal(Kn,n, e, t)) = {uv}∪{uvpi |i ∈ [1, t], p ∈ [1, n−1]}∪{vup
i |i ∈ [1, t], p ∈ [1, n−1]}∪{up

i v
q
i |i ∈

[1, t], p, q ∈ [1, n− 1]} .
First, we prove the lower bound. Let c be a strong 3 -rainbow coloring of Edge−Amal(Kn,n, e, t) . For

all i, j ∈ [1, t] and p, q ∈ [1, n − 1] , by considering {u, v, vpi } and {u, vpi , v
q
j} , we have c(uv) ̸= c(uvpi ) and

c(uvpi ) ̸= c(uvqj ) . Since d(u) = t (n− 1) + 1 , we have srx3(Edge−Amal(Kn,n, e, t)) ≥ t (n− 1) + 1 .

Next, we show that srx3(Edge−Amal(Kn,n, e, t)) ≤ t (n− 1)+1 . Let i ∈ [1, t] and p, q ∈ [1, n− 1] . We
define an edge-coloring c : E(Edge−Amal(Kn,n, e, t)) → [1, t (n− 1) + 1] as follows:

c(uv) = c(up
i v

p
i ) = 1;

c(uvpi ) = p+ 1 + (i− 1)(n− 1);

c(vup
i ) = n− p+ 1 + (i− 1)(n− 1);

c(up
i v

q
i ) =

{
q − p+ 1 + (i− 1)(n− 1), if p < q;

n+ q − p+ 1 + (i− 1)(n− 1), if p > q.

By the coloring above, it is not difficult to find a rainbow Steiner S -tree for every set S of three vertices of
Edge−Amal(Kn,n, e, t) . 2
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