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Abstract: Let R be a commutative ring with zero-divisors and I an ideal of R. I is said to be ES-stable if JI = I*
for some invertible ideal J C I, and I is said to be a weakly ES-stable ideal if there is an invertible fractional ideal J and
an idempotent fractional ideal E of R such that I = JE. We prove useful facts for weakly ES-stability and investigate
this stability in Noetherian-like settings. Moreover, we discuss a question of A. Mimouni on locally weakly ES-stable

rings: is a locally weakly ES-stable domain of finite character weakly ES-stable?
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1. Introduction

Let R be a commutative ring with zero divisors. We call an element of R regular if it is not a zero-divisor. Let
Reg(R) denote the monoid of regular elements of R and Q(R) = @ denote the total ring of fractions R. We
note that Q = (Reg(R))"'R. Let R denote the integral closure of R in Q(R). We say that an ideal I of R
is regular if I contains a regular element of R. We note that every invertible fractional ideal of R is finitely
generated and regular. For a prime ideal P of R, we set R p) = (Reg(R) P)"'RCQ.

We say that R is of finite character or has finite character if every x € Reg(R) is contained in at most
finitely many maximal ideals of R. We call a ring R is h-local if R has finite character and every nonzero regular
prime ideal of R is contained in a unique maximal ideal. We say that R is local-global if every polynomial
over R in finitely many indeterminates which represents units locally, assumes a unit value when evaluated at
properly chosen elements of R [10, V.4]. Rings of Krull dimension 0 and semilocal rings are local-global. A ring
is almost local-global if every of its proper factor ring is local-global. We note that domains of finite character
are almost local-global.

For the ideals I and J of R, the colon ideal (I : J) is defined to be {q¢ € @ : ¢J C I}. For the ideals
I and J of the ring R, with J regular, the natural map from (I : J) to Hompg(J,I) is an isomorphism |2,
Lemma 1.1]. Thus, the endomorphism ring of a regular ideal I, Endg(I) = (I : I). Furthermore, for a regular
ideal I, the inverse of I in R, I~! coincides with (R :I).

For a nonzero ideal I of R, (R:I)=1"1and (I7Y)"' = 1I,. I is a v-ideal if I = I,. An ideal I # 0
is called a t-ideal if for nonzero x1,...,x, € I,(x1,...,2,)y € I. Thus, I is a t-ideal if and only if I = J,

where J runs over the set of nonzero finitely generated ideals of R contained in I. An ideal I of R is called
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a w-ideal if I is the set of all x € R such that xJ C I for some nonzero finitely generated ideal J of R with
Ji = R. Let Max(R) be the set of maximal ideals of R.

In the literature, there are different types of stabilities described and facts relating these stabilities. Sally
and Vasconcelos introduced the notion of SV-stability [21, 22]. An ideal I of R is called SV-stable if it is
projective over its endomorphism ring, Endgr(I). Furthermore, we remark that an SV-stable ideal, over an
integral domain, is invertible in Endgr(I). We note that, over a commutative ring, if I is a finitely generated
reqular SV-stable ideal then I is invertible in End(I). R is called an SV-stable (finitely SV-stable, respectively)
ring if every regular (finitely generated, respectively) ideal of R is SV-stable.

Another type of stability is introduced by Eakin and Sathaye: the notion of ES-stability [9, Section 7.4].
In a general commutative ring R, an ideal is called ES-stable if I? = JI for some invertible ideal .J of R such
that J C I [17]. We define R to be ES-stable (finitely ES-stable, respectively) if every regular ideal (finitely
generated regular ideal, respectively) of R is ES-stable. We say that an ideal I of a ring is ES-prestable if some
power of I is ES-stable. We define a ring R to be ES-prestable (finitely ES-prestable, respectively) if every
regular ideal (finitely generated regular ideal, respectively) in R is ES-prestable.

In [17], a weak form of ES-stability for integral domains is defined. Here we need to modify its definition
for commutative rings with zero-divisors. We call an ideal I of R is said to be a weakly ES-stable ideal if there
is an invertible fractional ideal J and an idempotent fractional ideal E of R such that I = JFE, and R is said
to be a weakly ES-stable ring if every regular ideal of R is a weakly ES-stable ideal. R is said to be locally
weakly ES-stable if Rj; is weakly ES-stable for each maximal ideal M of R. We note that if R is weakly
ES-stable, then R is locally weakly ES-stable. Moreover, R is said to be a finitely weakly ES-stable ring if every
finitely generated regular ideal of R is weakly ES-stable. A nonzero ideal I of R is said to be an almost weakly
ES-stable ideal if some power of I is a weakly ES-stable ideal, and R is said to be an almost weakly ES-stable
ring if every regular ideal of R is almost weakly ES-stable. Moreover, R is said to be a finitely almost weakly
ES-stable ring if every finitely generated regular ideal of R is almost weakly ES-stable.

In §2 we prove preliminary results for weakly ES-stable ideals over commutative rings with zero-divisors
and later focus on finitely weakly ES-stable rings. In §3 we study finitely ES-stability in Priifer rings and
Notherian-like settings. §4 discusses a question of Mimouni on locally weakly ES-stable rings: is a locally
weakly ES-stable domain of finite character weakly ES-stable? We show that in Krull domains, Priifer h-
local domains, and Noetherian local-global rings, these two notions coincide. We provide an example of a one
dimensional Noetherian ring of finite character where there is a locally weakly ES-stable ideal which is not
weakly ES-stable.

2. Some results on weakly ES-stability

In [17], many facts are stated and proved for weakly ES-stable ideals of an integral domain. We adapt these
results to commutative rings with zero-divisors, and eventually, show that weakly finitely ES-stability coincides
with finitely ES-stability.

Proposition 2.1 Let R be a commutative ring and I a nonzero ideal of R.
(i) I is a weakly ES-stable ideal if and only if 1?> = JI for some invertible ideal J of R.
(i) If I is a weakly ES-stable ideal and I = JE where JJ=' = R and E = E?, then (I :I) = (E: E) and

E=1I(:1?).

802



AY SAYLAM/Turk J Math

Proof

(i) If I = JE with JJ~! = R and E? = E, then I? = J?E? = J?E = JJE = JI. Conversely, if I? = JI
for some invertible ideal J of R, then I = J(J~1I) and J~!I is idempotent.

(i) Set I = JE where JJ ! = R and E = E?. Let z € (I : I). Then zJE = 2 C I = JE, and hence
xJJ'E C JJ7'E = E implying that 2 € (E : E). If z € (E : E), then 2l = 2JE C JE = I.
Thus, (I : I) = (E : E). Next we claim that E = I(I : I?). By (i), I? = JI, so J~'I?> = I. Then
J=Y C (I : I?) implying that E = J='I C I(I : I?). Conversely, let z € (I : I?). Then zJ?E C JE.
Since J is invertible, JE C E. So, zJ C (F : E) implying that I = 2JE C E(E : E) = E. Thus,
I(I: I?) C E. Therefore, E = I(I : I?).

Lemma 2.2 Let R be a commutative ring and I a regular ideal of R.

(i) I is ES-stable if and only if I = JE where J is invertible and E = E* and J C I C E.
(i) If I is a finitely generated weakly ES-stable ideal, then I, C R.
(iii) If R is a weakly ES-stable ring, then Ay C R for every integral reqular ideal A of R.
Proof

(i) If I is ES-stable, then I? = JI for some invertible ideal J C I of R. Let E = J 'I. Since JJ ! = R,
I =JE with E? = E. Since J C I and I is regular, I-! C J~!' and hence I C II"' C IJ ! = E.
Thus, J C I C E. The converse is clear.

(ii) Suppose that I; = R. Since I is regular, I-' = (R:I), and since [, =, =R, (I: I)=1"!'= R. Set
I =JE with JJ=! = R and E? = E. By Proposition 2.1, (I : I) = (E : E), and hence (E : E) = R.
Since E>=FE, EC(E:E)= R sothat [ = JE C J. Since [ is regular, J~! C I~! = R implying that
R=JJ ' CJ. Then I C IJ = I? sothat I = I?. Since I is finitely generated, by Nakayama’s Lemma,
there exists x € R such that I = 0, which is impossible because I is regular.

(iii) Suppose that R is a weakly ES-stable ring and A; = R for an integral regular ideal A of R. Then, by
part (i), there exists a finitely generated sub-ideal J of A, and J; = J, = R, which is impossible by part
(ii). Hence, A; C R.

O
Lemma 2.3 If R is a finitely weakly ES-stable ring, then so is any overring R’ of R, that is RC R' C Q(R).

Proof Let A be a finitely generated ideal of R'. Then A = R's; + ...+ R’'s; for some s1,5s9,...,5 € A.
So, there exists a regular element ¢ € R such that cs; € R for all i. Thus, I = Res; + ... + Rcsy, which is
isomorphic to A as an R-module, is a finitely generated regular ideal of R. If I = JE, where JJ ! = R and
E? = E, then JR'(R': JR') = R’ and (ER')? = ER’ with A = (JR')(ER’) implying that A is finitely weakly
ES-stable. O
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Lemma 2.4 Let R be a commutative ring and I a finitely generated ideal of R. Then I is ES-stable if and
only if I is weakly ES-stable. In particular, R is a finitely ES-stable ring if and only if R is finitely weakly
ES-stable.

Proof
One way is clear by Lemma 2.2. Conversely, let I be a finitely generated ideal. Then I = JFE, where

JJ7' =R and E = FE?. Set T = (I : I). It follows from Lemma 2.3 that T is a finitely weakly ES-stable
ring. Applying Proposition 2.1 to I, we have E = I(T : I) is an idempotent integral ideal of 7. We observe
that E = IJ~! is a finitely generated fractional ideal of R, and hence of T = (I : I) = (E: E) = (T : E). So,
E;. = E,, =T (tr and vr are the t— and v—operations with respect to T'), which is not possible by Lemma
2.2, and hence E =T implying that I = JT'. Thus, J C I, and hence I is ES-stable by Lemma 2.2. O

We recall that an integral domain R is said to be conducive if (R : T) # (0) for each overring T of
R with T C Q(R). In [17, Corollary 4.4], it is proven that a conducive domain which is weakly ES-stable is
semilocal. Here we observe that a conducive domain of finite character which is finitely weakly ES-stable must

be semilocal.

Corollary 2.5 Let R be a conducive domain which is finitely weakly ES-stable. If R has finite character, then

R is semilocal.

Proof Let R be the integral closure of R. By [3, Lemma 3.4], R is a Priifer domain, and by [3, Lemma
3.6], R is finitely ES-stable. Moreover, R is a conducive domain. Since, for every P € Maxz(R), there is a
QeM am(]:?) such that P = QN R, it is enough to show that R is semilocal. So, without loss of generality we
assume that R is a conducive Priifer domain which is finitely ES-stable.

Let M € Max(R), and set P = (R : Ry). By assumption, P # 0. We may assume that R is not
local, that is R # Rjs, so P is a proper prime ideal of R. By [5, Lemma 2.10], P is a prime ideal of both R
and Ry. Let Q € Max(R) with Q # M, and let a € Q — M. Then, for each x € P, £ € PRy = P. So,
x €aP C PQ C Q. Thus, P C @. Therefore, P is contained in all maximal ideals of R. Since R has finite
character, R is semilocal. O

Next we prove a couple of helpful lemmas to show that, given a commutative ring R such that the
endomorphism ring of each finitely generated regular ideal of R is local-global, R is ES-stable if and only if R
is SV-stable.

Lemma 2.6 Let R be a commutative ring and I a regular ideal of R. If I is an ES-stable ideal, then I is
SV-stable.

Proof Suppose that I is ES-stable. Then JI = I? for some invertible ideal J C I. Since I is regular, its
endomorphism ring is E = (I : I). So, (J7'I)I = I, and hence J~'I C E. Let z € E. Then xJ C I. Hence,
x € J7. Therefore, J='I = E, so that J~'E is the inverse of I in End(I), that is I is SV-stable. O

Lemma 2.7 Let R be an SV-stable ring and I a regular ideal of R. If the endomorphism ring of each finitely
generated regular ideal of R s local-global, then I is ES-stable.

Proof Let E = (I:1I), the endomorphism ring of I. If I is SV-stable, then I = 21 F + ...+ x;E for some
z1,...,0.€1. S0, I?=a1I+...+2]. Let J=2,R+...+x,R. We observe that 1> CJC I and EJ=1.
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Since J is SV-stable and E’ = (J : J) is local-global, J = jE' by [10, Proposition V.4.4]. Since EJ = I,
E'CE,I=EJ=EFEj with je€JCI. Since E2=EF, I?> = j2E = jI, and hence I is ES-stable. O

Theorem 2.8 Let R be a commutative ring such that the endomorphism ring of each finitely generated regular
ideal of R is local-global, R is ES-stable if and only if R is SV-stable.

Proof Follows immediately from Lemmas 2.6 and 2.7. O

Theorem 2.9 Let R be a local-global ring. Then R is finitely ES-stable if and only if R is finitely SV-stable.

Proof 1If I is a finitely generated regular ideal of R, then the endomorphism ring of I, R C (I : I) is
an integral extension. By [6, Corollary 2.3], (I : I) is local-global. By Lemma 2.7 and Lemma 2.8, I is an
ES-stable ideal if and only if I is SV-stable. O

Theorem 2.10 Let R be a commutative ring. Then the following are equivalent.
(i) R is finitely SV-stable.
(ii) R is locally finitely SV-stable.

(iii) R is locally finitely (weakly) ES-stable.

Proof (i) = (i7) is trivial. (i4) < (4i7) holds by Theorem 2.8.

(i) = (i): Suppose R is locally finitely SV-stable. Let I be a finitely generated regular ideal of R.
Since (I : I) is contained in the integral closure of R, it is integral over R so that M = N N R is a maximal
ideal of R for each maximal ideal N of (I : I). By assumption, Ip; is invertible in (I : I)ps so that Iy is
invertible in (I : I)y for each maximal ideal N since R C (I : I)pr € (I : I)y. Hence I is SV-stable. O

3. ES-stability in Priifer rings and Noetherian-like settings

In this section, we study ES-stability and weakly ES-stability in Priifer rings with zero-divisors and Noetherian-
like settings, especially in Krull rings. We recall that R is a Priifer ring if and only if every finitely generated
(or two-generated) regular ideal is invertible.

In [3], an ideal I of a local ring is called ES-stable if zI = I? for some x € I, and a commutative
ring R is called ES-(pre)stable if any regular ideal I of R is locally ES-(pre)stable. This definition uses the
terminology in [7]. It is proven that, for a commutative ring with zero-divisors, R is integrally closed and
finitely ES-prestable (in the sense of [7]) if and only if R is a Priifer ring [3, Theorem 4.1]. Also, by [3, Lemma
3.7], I is finitely ES-prestable (in the sense of [7]) if and only if I is invertible. Over an integrally closed ring
R, if I is a regular finitely generated ideal of R, then R = (I : I). Hence, if I is finitely ES-stable, then it is
SV-stable so that I is invertible in R. Thus, R is a Priifer ring if and only if R is integrally closed and it is
finitely ES-stable (in the sense explained in Section 1).

Theorem 3.1 Let R be a commutative ring with zero-divisors. The following are equivalent for R.

(i) R is an integrally closed ring which is finitely (weakly) ES-stable,
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(ii) R is integrally closed and for each a,b € R with a regular there is a positive integer n such that (a,b)™

can be generated by n elements.
(iii) R is a Prifer ring.

Proof

(1) < (i) : From Lemma 2.4, finitely weakly ES-stability and ES-stability coincide. So, it follows
immediately from the previous paragraph.

(#7) < (4i7) : Follows from [3, Theorem 4.5].

O
In [17], the author shows that, for Noetherian domains, weakly ES-stability and ES-stability coincide [17,

Theorem 3.1]. We show that this is true for Noetherian rings with zero-divisors.

Theorem 3.2 Let R be a Noetherian ring with zero-divisors. Then R is weakly ES-stable if and only if R is
ES-stable.

Proof Follows immediately from Lemma 2.4 since each regular ideal of R is finitely generated. O

Since ES-stability implies SV-stability (Lemma 2.6) and an SV-stable Noetherian ring is at most one-

dimensional [22, Proposition 2.1], a weakly ES-stable Noetherian ring has dimension at most 1.

Theorem 3.3 A weakly ES-stable Noetherian ring with zero-divisors has dimension at most 1.

We recall that an integral domain R is said to be a strong Mori domain if R satisfies the acc on w-ideals.
We note that Noetherian domains are strong Mori domains. In [17, Corollary 3.2], it is proven that a strong
Mori domain which is weakly ES-stable is Noetherian. Next we show that, for a strong Mori domain, being
finitely weakly ES-stable is enough to be Noetherian.

Theorem 3.4 Let R be a strong Mori domain which is finitely weakly ES-stable. Then R is Noetherian.

Proof By [17, Lemma 2.4], each maximal ideal of R is a t-maximal ideal, and, hence by [16, Proposition 1.3],
each ideal of R is a w-ideal. Thus, R is Noetherian. O

We recall that a commutative ring R is said to be a Krull ring if R is a completely integrally closed Mori

ring. In the rest of this section, we study weakly ES-stability in Krull rings.

Theorem 3.5 Let R be a Krull ring with zero-divisors and I an ideal of R. If I is weakly ES-stable ideal,
then I is an invertible fractional ideal of R. Moreover, I is weakly ES-stable if and only if I is ES-stable.

Proof Let I be a weakly ES-stable regular ideal of R. Then I = JE with JJ~! = R and E = E?. By [13,
Theorem 8.4] and Proposition 2.1, (E: E) = (I : I) = R is a Krull ring. Since E? = F, EC (E: E) = R,
and hence E is an idempotent integral ideal of R. Since (R: E) = ((E: E): E)=(E:E*) = (E: E) =R,
E =R, and hence I = JR so that I = J, making I an invertible fractional ideal. Also, I is ES-stable. O

Lemma 3.6 Let R be a completely integrally closed ring with zero-divisors which is finitely ES-stable. Then
R is Priifer.

806



AY SAYLAM/Turk J Math

Proof Let I be a finitely generated regular ideal of R. Since I is an ES-stable ideal, and SV-stable by Lemma
2.6. So, I is invertible in its endomorphism ring E = (I : I). Since R is integrally closed, F = R so that I is

an invertible ideal of R. O

Theorem 3.7 Let R be a Krull domain which is finitely ES-stable. Then R is Dedekind.

Proof This follows from Theorem 3.4 and Lemma 3.6. O

4. Some results on locally weakly ES-stability

In [17], Mimouni shows that a Priifer domain that is locally weakly ES-stable need not be weakly ES-stable.
Given the fact that an integral domain is SV-stable if and only if it is locally SV-stable with finite character
([19, Theorem 3.3]), Mimouni shows that a weakly ES-stable domain is a locally weakly ES-stable domain of
finite character ([17, Remark 2.3(iii)], [17, Corollary 2.6]) and asks whether a locally weakly ES-stable domain
of finite character is weakly ES-stable. We first show that this question has an affirmative answer for Krull
domains. Then we show for Priifer h-local domains and Noetherian local-global rings these two notions coincide.

We first discuss Mimouni’s question for domains of finite character.
Lemma 4.1 If R is finitely locally weakly ES-stable ring, then there exists a finitely generated ideal J C I of
R such that 1? = JI.

Proof R is finitely locally weakly ES-stable ring if and only if R is finitely SV-stable (Theorem 2.10). If I
is a finitely generated regular ideal of R, then I = J(I : I) for a finitely generated ideal J contained in I by
assumption. So, I2=1J(I:1)=JI.

Lemma 4.2 Let R be an integral domain of finite character and I a nonzero ideal of R.
(i) R is locally ES-stable if and only if R is SV-stable and R is locally weakly ES-stable.

(ii) If R is locally weakly ES-stable, then there exists a finitely generated ideal J of R such that I?> C JI.
Proof

(i) If R is locally ES-stable, then R is locally SV-stable (Lemma 2.6) so that R is SV-stable by [19, Theorem
3.3]. If R is SV-stable, then it is locally SV-stable. So, the converse follows from [17, Corollary 2.5].

(ii) Let I be an ideal of R. Since R is of finite character, there are at most finitely many maximal ideals
My, Ms, ..., M; of R containing I. Since R is locally weakly ES-stable, (I%)ys, = (Ji)as, Ins, for some
invertible ideal (J;)as, of Ray, , by Proposition 2.1(i), for each i € {1,2,...,t}, and (I?)y; = Ry for each
M € Maz(R) such that I ¢ M. Since (J;)p, is a principal ideal of Ry, , we can write (J;)a, = xR,
for some z; € J;. Let J = (w1,22,...,7;). We observe that (I%)y;, C (JI)p, for each i. Thus,
I = Narentanmy T € Mizy (1), € Niey (JT)u, = JI. Therefore, 12 C JI.
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Lemma 4.3 Let R be a completely integrally closed domain of finite character and I a nonzero ideal of R. If
R is locally ES-stable, then R is SV-stable and I is invertible in R.

Proof If R is locally ES-stable, then I is SV-stable and I? = JI for some finitely generated ideal J C I
and (F : J) is the inverse of I in E(I) = (I : I) by Lemma 4.2. Since E = R ([13, Theorem 2.4.8]) and
(R:J)=J"1', IJ' = R so that I is invertible. O

Theorem 4.4 Let R be a completely integrally closed domain of finite character and I a monzero ideal of R.
Then R is locally ES-stable if and only if R is ES-stable.
Proof Suppose that R is locally ES-stable. Then, by Lemma 4.3, I is invertible so that I is finitely generated.

Moreover, R is SV-stable. Hence, by [9, Prpoposition 7.4.4], R is ES-stable. O

Theorem 4.5 Let R be a Krull domain and I a nonzero ideal of R. Then R is locally ES-stable if and only
if R is ES-stable if and only if R is locally weakly ES-stable if and only if R is weakly ES-stable.

Proof Follows immediately from Theorem 4.4 and Theorem 3.5. O

We recall that a Priifer domain is strongly discrete if PRp is a principal ideal for each prime ideal P of
R. Tt is shown in [18, Theorem 4.6] that, for an integrally closed domain R, R is SV-stable if and only if it is

a strongly discrete Priifer domain of finite character.

Theorem 4.6 Let R be a Prifer domain of finite character and I a nonzero ideal of R.
(i) R is locally ES-stable if and only if R is ES-stable if and only if R is strongly discrete.
(i) If R is strongly discrete, then R is weakly ES-stable.

(iii) If R is locally weakly ES-stable, then there evists an invertible ideal J of R such that I? C JI with
J = (z,y) for some x € J and y € 1.

Proof

(i) In a Priifer domain, SV-stability and ES-stability coincide [9, Lemma 7.4.1]. So, by [19, Theorem 3.3], R
is locally ES-stable of finite character if and only if R is ES-stable. From Theorem [18, Theorem 4.6], the
latter holds if and only if R is strongly discrete.

(ii) If R is strongly discrete, then by part (i), R is ES-stable, and hence weakly ES-stable.

(iii) By Lemma 4.2(ii), I? C JI for some finitely generated ideal J of R. Since R is Priifer, J is invertible.
Furthermore, since R is a Priifer domain, J is 1%—generated, so one of the generators of J can be chosen

arbitrarily. Since I2 C J, J = (z,y) for some x € J and y € I*.

O

Remark 4.7 A weakly ES-stable Priifer domain (of finite character) R is not necessarily strongly discrete,
and hence ES-stable, since the maximal ideal PRp of the valuation domain Rp, for any prime ideal P of R,

is either principal or idempotent.
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Proposition 4.8 Let R be a Priifer domain of finite character and I a locally weakly ES-stable ideal of R.
Then there exixts an invertible fractional ideal B of (I : I) such that I* = BI.

Proof Let I bean ideal of R. Let My, ..., M; be the maximal ideals containing I. Then (I?)xs, = (J;)as, Iu,
for some invertible ideal of Ry, for each i. We observe that these are the only maximal ideals which contain
I?, also. For all other maximal ideals N # M;, for each 1, IZQV = Ry = Iy. So, for each 1, (I2)Mi = j:iln,
for some j; € J. Thus, by [10, Lemma III.2.6], there exists a finitely generated ideal B of (I : I) such that

I? = BI. Since (I : I) is a fractional overring of R, it is Priifer, and hence B is an invertible fractional ideal
of (I:1). O

Theorem 4.9 Let R be a completely integrally closed Priifer domain of finite character. Then R is locally
weakly ES-stable if and only if R is weakly ES-stable.

Proof Follows immediately from Proposition 4.8 since (I : I) = R for any ideal I of R. O

Theorem 4.10 Let R be an h-local domain and I a flat ideal of R. Then I is locally weakly ES-stable if and
only if I is weakly ES-stable.

Proof If I is locally weakly ES-stable, then (IZ)M = Jy Iy for some invertible ideal Jy; of Rjs for
each maximal ideal M of R. Since R has finite character, I is contained in at most finitely many maximal
ideals, say Mi,...,M;. We have 112\, = JyIny = Ry for each maximal ideal N of R not containing I, and
(I*)ar, = a;lpy, for some a; € R for each i € {1,2,...,t}. Let A= RNa1 Ry, N...Na;Ry,. We observe
that A is a fractional ideal of R. Then Al = I Naily, N ... N ailp, by the flatness of I. Hence, we have
Al = Narertan(ry e N3, N NIy, = Ny IR N3, NN IRy, = I?, where Maz(R) is the set of all maximal
ideals of R. Now, we claim that A is locally principal, and hence invertible. Since R is h-local, (Rp,)n = @
[10, Lemma IV.3.2], and hence Ay = Ry N (a1 Ry, )nv N ... N (arRar, )Ny = By . Also, (Rar;)m, = Q for i # 7,
we have Ap;, = Ry, N (a1 Rar, )ar, N .. N a; Ry, N oo (aeRag, )y, = aiRpy, . Thus, A is an invertible ideal of
R so that I is weakly ES-stable. O

Theorem 4.11 Let R be a Priifer h-local domain. Then R is locally weakly ES-stable if and only if R is
weakly ES-stable.

Proof Since all ideals of a Priifer domain are flat ([10, Theorem VI1.9.10]), it follows from Theorem 4.10

immediately. O

Next we prove that Noetherian domains, which are locally (weakly) ES-stable, already have finite

character, in deed, they are h-local.

Theorem 4.12 Let R be a Noetherian domain. If R is locally (weakly) ES-stable, then R is
(i) SV-stable,
(i) one dimensional,

(i) h-local,
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Proof Suppose that R is locally (weakly) ES-stable.
(i) Since every ideal of a Noetherian domain is finitely generated, by Theorem 2.10, R is SV-stable.
(ii) Follows immediately from part (i) and [12, Lemma 2].
(iii) Follows immediately from part (i) and [12, Lemma 2].
O

Theorem 4.13 Let R be a commutative ring such that the endomorphism ring of each finitely generated regular
ideal of R is local-global. R is locally finitely (weakly) ES-stable if and only if R is finitely (weakly) ES-stable.

Proof Suppose R is locally finitely (weakly) ES-stable. Let I be a finitely generated regular ideal of R. Then
I is SV-stable, by Theorem 2.10. Since (I : I) is local-global, I is ES-stable by Lemma 2.7. O

Since, for a Noetherian ring, the regular ideals are finitely generated, and ES-stability coincides with

weakly ES-stability (Theorem 3.2), the following corollary immediately follows from Theorem 4.13.

Corollary 4.14 Let R be a Noetherian ring such that the endomorphism ring of each ideal of R is local-global.
Then R is locally (weakly) ES-stable if and only if R is (weakly) ES-stable.

In [15], it is proven that a semilocal Noetherian one dimensional domain is SV-stable if and only if it is
ES-stable. So, Corollary 4.14 generalizes this fact for one-dimensional local-global Noetherian rings.

We conclude that, over Noetherian local-global rings, locally (weakly) ES-stability, (weakly) ES-stability,
locally SV-stability and SV-stability coincide. Moereover, these notions also coincide for one dimensional
integrally closed Noetherian rings (Dedekind rings) [9, Proposition 7.4.4].

We observe that, at least for Noetherian rings, the finite character property does not seem to be useful
to prove that locally (weakly) ES-stability implies (weakly) ES-stability. We provide an example of a one
dimensional Noetherian ring of finite character in which there is an SV-stable (and hence locally ES-stable)
ideal which is not (weakly) ES-stable. First we recall that an integral domain R has the trace property (or is a
TP domain) if, for every ideal I of R, either II=! = R or IT~! is a prime ideal. An ideal I of R is strongly
divisorial if I is divisorial, that is (I=!)~! = I, and strong, that is I1-! = 1I.

Example 4.15 Let R be a Noetherian TP domain which is not Dedekind. So, by [9, Theorem 4.2.48], R is
one dimensional (so that R is h-local by [20, Example 3.1]), and it has a unique noninvertible mazimal ideal

M . In fact, M is stongly divisorial, and M~ = R, the integral closure of R. Hence

MM™'=MR=M.

By [1, Proposition 2.4] and [9, Proposition 7.3.2], each nonzero prime ideal is SV-stable. So, M is SV-stable.
Suppose M is (weakly) ES-stable. Then M = JE for some invertible fractional ideal J of R and an idempotent
fractional ideal E of R. Let T = (M : M). By Proposition 2.1, E = M(T : M), E is a trace (integral)
ideal of T which is idempotent. Since T is Noetherian, E = T. So, M = JT. Since MM~! = M,
(R:M)=M"1CT. Also, TC(R:M)= M. Thus, M~' =T. Hence,

MR=M=JE=JM'=JR.
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So,
MRJ'=RR=R
which implies that J~1 is the inverse of MR in R. Since MM~ = M,

MJt=MM'J'=MRM'J!=R,

so M~YJ~' the inverse of MR in R. Therefore, J—' = M~'J~! which implies that M~' = R. Since
M~ = R, R = R so that R is integrally closed, but R is not Dedekind. Hence, M is SV-stable, but not
ES-stable.
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