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Abstract: Let R be a commutative ring with zero-divisors and I an ideal of R . I is said to be ES-stable if JI = I2

for some invertible ideal J ⊆ I , and I is said to be a weakly ES-stable ideal if there is an invertible fractional ideal J and
an idempotent fractional ideal E of R such that I = JE . We prove useful facts for weakly ES-stability and investigate
this stability in Noetherian-like settings. Moreover, we discuss a question of A. Mimouni on locally weakly ES-stable
rings: is a locally weakly ES-stable domain of finite character weakly ES-stable?
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1. Introduction
Let R be a commutative ring with zero divisors. We call an element of R regular if it is not a zero-divisor. Let
Reg(R) denote the monoid of regular elements of R and Q(R) = Q denote the total ring of fractions R . We
note that Q = (Reg(R))−1R . Let R̃ denote the integral closure of R in Q(R) . We say that an ideal I of R

is regular if I contains a regular element of R . We note that every invertible fractional ideal of R is finitely
generated and regular. For a prime ideal P of R , we set R(P ) = (Reg(R) P )−1R ⊆ Q .

We say that R is of finite character or has finite character if every x ∈ Reg(R) is contained in at most
finitely many maximal ideals of R . We call a ring R is h-local if R has finite character and every nonzero regular
prime ideal of R is contained in a unique maximal ideal. We say that R is local-global if every polynomial
over R in finitely many indeterminates which represents units locally, assumes a unit value when evaluated at
properly chosen elements of R [10, V.4]. Rings of Krull dimension 0 and semilocal rings are local-global. A ring
is almost local-global if every of its proper factor ring is local-global. We note that domains of finite character
are almost local-global.

For the ideals I and J of R , the colon ideal (I : J) is defined to be {q ∈ Q : qJ ⊆ I} . For the ideals
I and J of the ring R , with J regular, the natural map from (I : J) to HomR(J, I) is an isomorphism [2,
Lemma 1.1]. Thus, the endomorphism ring of a regular ideal I , EndR(I) = (I : I) . Furthermore, for a regular
ideal I , the inverse of I in R , I−1 coincides with (R : I) .

For a nonzero ideal I of R , (R : I) = I−1 and (I−1)−1 = Iv . I is a v-ideal if I = Iv . An ideal I ̸= 0

is called a t-ideal if for nonzero x1, . . . , xn ∈ I, (x1, . . . , xn)v ⊆ I . Thus, I is a t-ideal if and only if I =
∪
Jv

where J runs over the set of nonzero finitely generated ideals of R contained in I . An ideal I of R is called
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a w-ideal if I is the set of all x ∈ R such that xJ ⊆ I for some nonzero finitely generated ideal J of R with
Jt = R . Let Max(R) be the set of maximal ideals of R .

In the literature, there are different types of stabilities described and facts relating these stabilities. Sally
and Vasconcelos introduced the notion of SV-stability [21, 22]. An ideal I of R is called SV-stable if it is
projective over its endomorphism ring, EndR(I) . Furthermore, we remark that an SV-stable ideal, over an
integral domain, is invertible in EndR(I) . We note that, over a commutative ring, if I is a finitely generated
regular SV-stable ideal then I is invertible in End(I) . R is called an SV-stable (finitely SV-stable, respectively)
ring if every regular (finitely generated, respectively) ideal of R is SV-stable.

Another type of stability is introduced by Eakin and Sathaye: the notion of ES-stability [9, Section 7.4].
In a general commutative ring R , an ideal is called ES -stable if I2 = JI for some invertible ideal J of R such
that J ⊆ I [17]. We define R to be ES-stable (finitely ES-stable, respectively) if every regular ideal (finitely
generated regular ideal, respectively) of R is ES-stable. We say that an ideal I of a ring is ES-prestable if some
power of I is ES-stable. We define a ring R to be ES-prestable (finitely ES-prestable, respectively) if every
regular ideal (finitely generated regular ideal, respectively) in R is ES-prestable.

In [17], a weak form of ES-stability for integral domains is defined. Here we need to modify its definition
for commutative rings with zero-divisors. We call an ideal I of R is said to be a weakly ES-stable ideal if there
is an invertible fractional ideal J and an idempotent fractional ideal E of R such that I = JE , and R is said
to be a weakly ES-stable ring if every regular ideal of R is a weakly ES-stable ideal. R is said to be locally
weakly ES-stable if RM is weakly ES-stable for each maximal ideal M of R . We note that if R is weakly
ES-stable, then R is locally weakly ES-stable. Moreover, R is said to be a finitely weakly ES-stable ring if every
finitely generated regular ideal of R is weakly ES-stable. A nonzero ideal I of R is said to be an almost weakly
ES-stable ideal if some power of I is a weakly ES-stable ideal, and R is said to be an almost weakly ES-stable
ring if every regular ideal of R is almost weakly ES-stable. Moreover, R is said to be a finitely almost weakly
ES-stable ring if every finitely generated regular ideal of R is almost weakly ES-stable.

In §2 we prove preliminary results for weakly ES-stable ideals over commutative rings with zero-divisors
and later focus on finitely weakly ES-stable rings. In §3 we study finitely ES-stability in Prüfer rings and
Notherian-like settings. §4 discusses a question of Mimouni on locally weakly ES-stable rings: is a locally
weakly ES-stable domain of finite character weakly ES-stable? We show that in Krull domains, Prüfer h-
local domains, and Noetherian local-global rings, these two notions coincide. We provide an example of a one
dimensional Noetherian ring of finite character where there is a locally weakly ES-stable ideal which is not
weakly ES-stable.

2. Some results on weakly ES-stability

In [17], many facts are stated and proved for weakly ES-stable ideals of an integral domain. We adapt these
results to commutative rings with zero-divisors, and eventually, show that weakly finitely ES-stability coincides
with finitely ES-stability.

Proposition 2.1 Let R be a commutative ring and I a nonzero ideal of R .

(i) I is a weakly ES-stable ideal if and only if I2 = JI for some invertible ideal J of R .

(ii) If I is a weakly ES-stable ideal and I = JE where JJ−1 = R and E = E2 , then (I : I) = (E : E) and
E = I(I : I2) .
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Proof

(i) If I = JE with JJ−1 = R and E2 = E , then I2 = J2E2 = J2E = JJE = JI . Conversely, if I2 = JI

for some invertible ideal J of R , then I = J(J−1I) and J−1I is idempotent.

(ii) Set I = JE where JJ−1 = R and E = E2 . Let x ∈ (I : I) . Then xJE = xI ⊆ I = JE , and hence
xJJ−1E ⊆ JJ−1E = E implying that x ∈ (E : E) . If x ∈ (E : E) , then xI = xJE ⊆ JE = I .
Thus, (I : I) = (E : E) . Next we claim that E = I(I : I2) . By (i), I2 = JI , so J−1I2 = I . Then
J−1 ⊆ (I : I2) implying that E = J−1I ⊆ I(I : I2) . Conversely, let x ∈ (I : I2) . Then xJ2E ⊆ JE .
Since J is invertible, xJE ⊆ E . So, xJ ⊆ (E : E) implying that xI = xJE ⊆ E(E : E) = E . Thus,
I(I : I2) ⊆ E . Therefore, E = I(I : I2) .

2

Lemma 2.2 Let R be a commutative ring and I a regular ideal of R .

(i) I is ES-stable if and only if I = JE where J is invertible and E = E2 and J ⊆ I ⊆ E .

(ii) If I is a finitely generated weakly ES-stable ideal, then It ⊊ R .

(iii) If R is a weakly ES-stable ring, then At ⊊ R for every integral regular ideal A of R .

Proof

(i) If I is ES-stable, then I2 = JI for some invertible ideal J ⊆ I of R . Let E = J−1I . Since JJ−1 = R ,
I = JE with E2 = E . Since J ⊆ I and I is regular, I−1 ⊆ J−1 , and hence I ⊆ II−1 ⊆ IJ−1 = E .
Thus, J ⊆ I ⊆ E . The converse is clear.

(ii) Suppose that It = R . Since I is regular, I−1 = (R : I) , and since Iv = It = R , (I : I) = I−1 = R . Set
I = JE with JJ−1 = R and E2 = E . By Proposition 2.1, (I : I) = (E : E) , and hence (E : E) = R .
Since E2 = E , E ⊆ (E : E) = R so that I = JE ⊆ J . Since I is regular, J−1 ⊆ I−1 = R implying that
R = JJ−1 ⊆ J . Then I ⊆ IJ = I2 so that I = I2 . Since I is finitely generated, by Nakayama’s Lemma,
there exists x ∈ R such that xI = 0 , which is impossible because I is regular.

(iii) Suppose that R is a weakly ES-stable ring and At = R for an integral regular ideal A of R . Then, by
part (i), there exists a finitely generated sub-ideal J of A , and Jt = Jv = R , which is impossible by part
(ii). Hence, At ⊊ R .

2

Lemma 2.3 If R is a finitely weakly ES-stable ring, then so is any overring R′ of R , that is R ⊆ R′ ⊆ Q(R) .

Proof Let A be a finitely generated ideal of R′ . Then A = R′s1 + . . . + R′st for some s1, s2, . . . , st ∈ A .
So, there exists a regular element c ∈ R such that csi ∈ R for all i . Thus, I = Rcs1 + . . . + Rcst , which is
isomorphic to A as an R -module, is a finitely generated regular ideal of R . If I = JE , where JJ−1 = R and
E2 = E , then JR′(R′ : JR′) = R′ and (ER′)2 = ER′ with A = (JR′)(ER′) implying that A is finitely weakly
ES-stable. 2
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Lemma 2.4 Let R be a commutative ring and I a finitely generated ideal of R . Then I is ES-stable if and
only if I is weakly ES-stable. In particular, R is a finitely ES-stable ring if and only if R is finitely weakly
ES-stable.

Proof
One way is clear by Lemma 2.2. Conversely, let I be a finitely generated ideal. Then I = JE , where

JJ−1 = R and E = E2 . Set T = (I : I) . It follows from Lemma 2.3 that T is a finitely weakly ES-stable
ring. Applying Proposition 2.1 to I , we have E = I(T : I) is an idempotent integral ideal of T . We observe
that E = IJ−1 is a finitely generated fractional ideal of R , and hence of T = (I : I) = (E : E) = (T : E) . So,
EtT = EvT = T (tT and vT are the t− and v−operations with respect to T ), which is not possible by Lemma
2.2, and hence E = T implying that I = JT . Thus, J ⊆ I , and hence I is ES-stable by Lemma 2.2. 2

We recall that an integral domain R is said to be conducive if (R : T ) ̸= (0) for each overring T of
R with T ⊂ Q(R) . In [17, Corollary 4.4], it is proven that a conducive domain which is weakly ES-stable is
semilocal. Here we observe that a conducive domain of finite character which is finitely weakly ES-stable must
be semilocal.

Corollary 2.5 Let R be a conducive domain which is finitely weakly ES-stable. If R has finite character, then
R is semilocal.

Proof Let R̃ be the integral closure of R . By [3, Lemma 3.4], R̃ is a Prüfer domain, and by [3, Lemma
3.6], R̃ is finitely ES-stable. Moreover, R̃ is a conducive domain. Since, for every P ∈ Max(R) , there is a
Q ∈ Max(R̃) such that P = Q∩R , it is enough to show that R̃ is semilocal. So, without loss of generality we
assume that R is a conducive Prüfer domain which is finitely ES-stable.

Let M ∈ Max(R) , and set P = (R : RM ) . By assumption, P ̸= 0 . We may assume that R is not
local, that is R ̸= RM , so P is a proper prime ideal of R . By [5, Lemma 2.10], P is a prime ideal of both R

and RM . Let Q ∈ Max(R) with Q ̸= M , and let a ∈ Q −M . Then, for each x ∈ P , x
a ∈ PRM = P . So,

x ∈ aP ⊆ PQ ⊆ Q . Thus, P ⊆ Q . Therefore, P is contained in all maximal ideals of R . Since R has finite
character, R is semilocal. 2

Next we prove a couple of helpful lemmas to show that, given a commutative ring R such that the
endomorphism ring of each finitely generated regular ideal of R is local-global, R is ES-stable if and only if R

is SV-stable.

Lemma 2.6 Let R be a commutative ring and I a regular ideal of R . If I is an ES-stable ideal, then I is
SV-stable.

Proof Suppose that I is ES-stable. Then JI = I2 for some invertible ideal J ⊆ I . Since I is regular, its
endomorphism ring is E = (I : I) . So, (J−1I)I = I , and hence J−1I ⊆ E . Let x ∈ E . Then xJ ⊆ I . Hence,
x ∈ J−1I. Therefore, J−1I = E , so that J−1E is the inverse of I in End(I) , that is I is SV-stable. 2

Lemma 2.7 Let R be an SV-stable ring and I a regular ideal of R . If the endomorphism ring of each finitely
generated regular ideal of R is local-global, then I is ES-stable.

Proof Let E = (I : I) , the endomorphism ring of I . If I is SV-stable, then I = x1E + . . . + xtE for some
x1, . . . , xt ∈ I . So, I2 = x1I + . . .+ xtI . Let J = x1R+ . . .+ xtR . We observe that I2 ⊆ J ⊆ I and EJ = I .
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Since J is SV-stable and E′ = (J : J) is local-global, J = jE′ by [10, Proposition V.4.4]. Since EJ = I ,
E′ ⊆ E , I = EJ = Ej with j ∈ J ⊆ I . Since E2 = E , I2 = j2E = jI , and hence I is ES-stable. 2

Theorem 2.8 Let R be a commutative ring such that the endomorphism ring of each finitely generated regular
ideal of R is local-global, R is ES-stable if and only if R is SV-stable.

Proof Follows immediately from Lemmas 2.6 and 2.7. 2

Theorem 2.9 Let R be a local-global ring. Then R is finitely ES-stable if and only if R is finitely SV-stable.

Proof If I is a finitely generated regular ideal of R , then the endomorphism ring of I , R ⊆ (I : I) is
an integral extension. By [6, Corollary 2.3], (I : I) is local-global. By Lemma 2.7 and Lemma 2.8, I is an
ES-stable ideal if and only if I is SV-stable. 2

Theorem 2.10 Let R be a commutative ring. Then the following are equivalent.

(i) R is finitely SV-stable.

(ii) R is locally finitely SV-stable.

(iii) R is locally finitely (weakly) ES-stable.

Proof (i) ⇒ (ii) is trivial. (ii) ⇔ (iii) holds by Theorem 2.8.
(ii) ⇒ (i) : Suppose R is locally finitely SV-stable. Let I be a finitely generated regular ideal of R .

Since (I : I) is contained in the integral closure of R , it is integral over R so that M = N ∩ R is a maximal
ideal of R for each maximal ideal N of (I : I) . By assumption, IM is invertible in (I : I)M so that IN is
invertible in (I : I)N for each maximal ideal N since R ⊆ (I : I)M ⊆ (I : I)N . Hence I is SV-stable. 2

3. ES-stability in Prüfer rings and Noetherian-like settings
In this section, we study ES-stability and weakly ES-stability in Prüfer rings with zero-divisors and Noetherian-
like settings, especially in Krull rings. We recall that R is a Prüfer ring if and only if every finitely generated
(or two-generated) regular ideal is invertible.

In [3], an ideal I of a local ring is called ES-stable if xI = I2 for some x ∈ I , and a commutative
ring R is called ES-(pre)stable if any regular ideal I of R is locally ES-(pre)stable. This definition uses the
terminology in [7]. It is proven that, for a commutative ring with zero-divisors, R is integrally closed and
finitely ES-prestable (in the sense of [7]) if and only if R is a Prüfer ring [3, Theorem 4.1]. Also, by [3, Lemma
3.7], I is finitely ES-prestable (in the sense of [7]) if and only if I is invertible. Over an integrally closed ring
R , if I is a regular finitely generated ideal of R , then R = (I : I) . Hence, if I is finitely ES-stable, then it is
SV-stable so that I is invertible in R . Thus, R is a Prüfer ring if and only if R is integrally closed and it is
finitely ES-stable (in the sense explained in Section 1).

Theorem 3.1 Let R be a commutative ring with zero-divisors. The following are equivalent for R .

(i) R is an integrally closed ring which is finitely (weakly) ES-stable,
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(ii) R is integrally closed and for each a, b ∈ R with a regular there is a positive integer n such that (a, b)n

can be generated by n elements.

(iii) R is a Prüfer ring.

Proof
(i) ⇔ (iii) : From Lemma 2.4, finitely weakly ES-stability and ES-stability coincide. So, it follows

immediately from the previous paragraph.
(ii) ⇔ (iii) : Follows from [3, Theorem 4.5].

2

In [17], the author shows that, for Noetherian domains, weakly ES-stability and ES-stability coincide [17,
Theorem 3.1]. We show that this is true for Noetherian rings with zero-divisors.

Theorem 3.2 Let R be a Noetherian ring with zero-divisors. Then R is weakly ES-stable if and only if R is
ES-stable.

Proof Follows immediately from Lemma 2.4 since each regular ideal of R is finitely generated. 2

Since ES-stability implies SV-stability (Lemma 2.6) and an SV-stable Noetherian ring is at most one-
dimensional [22, Proposition 2.1], a weakly ES-stable Noetherian ring has dimension at most 1.

Theorem 3.3 A weakly ES-stable Noetherian ring with zero-divisors has dimension at most 1.

We recall that an integral domain R is said to be a strong Mori domain if R satisfies the acc on w-ideals.
We note that Noetherian domains are strong Mori domains. In [17, Corollary 3.2], it is proven that a strong
Mori domain which is weakly ES-stable is Noetherian. Next we show that, for a strong Mori domain, being
finitely weakly ES-stable is enough to be Noetherian.

Theorem 3.4 Let R be a strong Mori domain which is finitely weakly ES-stable. Then R is Noetherian.

Proof By [17, Lemma 2.4], each maximal ideal of R is a t-maximal ideal, and, hence by [16, Proposition 1.3],
each ideal of R is a w-ideal. Thus, R is Noetherian. 2

We recall that a commutative ring R is said to be a Krull ring if R is a completely integrally closed Mori
ring. In the rest of this section, we study weakly ES-stability in Krull rings.

Theorem 3.5 Let R be a Krull ring with zero-divisors and I an ideal of R . If I is weakly ES-stable ideal,
then I is an invertible fractional ideal of R . Moreover, I is weakly ES-stable if and only if I is ES-stable.

Proof Let I be a weakly ES-stable regular ideal of R . Then I = JE with JJ−1 = R and E = E2 . By [13,
Theorem 8.4] and Proposition 2.1, (E : E) = (I : I) = R is a Krull ring. Since E2 = E , E ⊆ (E : E) = R ,
and hence E is an idempotent integral ideal of R . Since (R : E) = ((E : E) : E) = (E : E2) = (E : E) = R ,
E = R , and hence I = JR so that I = J , making I an invertible fractional ideal. Also, I is ES-stable. 2

Lemma 3.6 Let R be a completely integrally closed ring with zero-divisors which is finitely ES-stable. Then
R is Prüfer.
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Proof Let I be a finitely generated regular ideal of R . Since I is an ES-stable ideal, and SV-stable by Lemma
2.6. So, I is invertible in its endomorphism ring E = (I : I) . Since R is integrally closed, E = R so that I is
an invertible ideal of R . 2

Theorem 3.7 Let R be a Krull domain which is finitely ES-stable. Then R is Dedekind.

Proof This follows from Theorem 3.4 and Lemma 3.6. 2

4. Some results on locally weakly ES-stability

In [17], Mimouni shows that a Prüfer domain that is locally weakly ES-stable need not be weakly ES-stable.
Given the fact that an integral domain is SV-stable if and only if it is locally SV-stable with finite character
([19, Theorem 3.3]), Mimouni shows that a weakly ES-stable domain is a locally weakly ES-stable domain of
finite character ([17, Remark 2.3(iii)], [17, Corollary 2.6]) and asks whether a locally weakly ES-stable domain
of finite character is weakly ES-stable. We first show that this question has an affirmative answer for Krull
domains. Then we show for Prüfer h-local domains and Noetherian local-global rings these two notions coincide.

We first discuss Mimouni’s question for domains of finite character.

Lemma 4.1 If R is finitely locally weakly ES-stable ring, then there exists a finitely generated ideal J ⊆ I of
R such that I2 = JI .

Proof R is finitely locally weakly ES-stable ring if and only if R is finitely SV-stable (Theorem 2.10). If I

is a finitely generated regular ideal of R , then I = J(I : I) for a finitely generated ideal J contained in I by
assumption. So, I2 = IJ(I : I) = JI .

2

Lemma 4.2 Let R be an integral domain of finite character and I a nonzero ideal of R .

(i) R is locally ES-stable if and only if R is SV-stable and R is locally weakly ES-stable.

(ii) If R is locally weakly ES-stable, then there exists a finitely generated ideal J of R such that I2 ⊆ JI .

Proof

(i) If R is locally ES-stable, then R is locally SV-stable (Lemma 2.6) so that R is SV-stable by [19, Theorem
3.3]. If R is SV-stable, then it is locally SV-stable. So, the converse follows from [17, Corollary 2.5].

(ii) Let I be an ideal of R . Since R is of finite character, there are at most finitely many maximal ideals
M1,M2, . . . ,Mt of R containing I . Since R is locally weakly ES-stable, (I2)Mi

= (Ji)Mi
IMi

for some
invertible ideal (Ji)Mi of RMi , by Proposition 2.1(i), for each i ∈ {1, 2, . . . , t} , and (I2)M = RM for each
M ∈ Max(R) such that I ⊈ M . Since (Ji)Mi is a principal ideal of RMi , we can write (Ji)Mi = xiRMi

for some xi ∈ Ji . Let J = (x1, x2, . . . , xt) . We observe that (I2)Mi ⊆ (JI)Mi for each i . Thus,
I2 =

∩
M∈Max(R)(I

2)M ⊆
∩t

i=1(I
2)Mi

⊆
∩t

i=1(JI)Mi
= JI . Therefore, I2 ⊆ JI .

2
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Lemma 4.3 Let R be a completely integrally closed domain of finite character and I a nonzero ideal of R . If
R is locally ES-stable, then R is SV-stable and I is invertible in R .

Proof If R is locally ES-stable, then I is SV-stable and I2 = JI for some finitely generated ideal J ⊆ I

and (E : J) is the inverse of I in E(I) = (I : I) by Lemma 4.2. Since E = R ([13, Theorem 2.4.8]) and
(R : J) = J−1 , IJ−1 = R so that I is invertible. 2

Theorem 4.4 Let R be a completely integrally closed domain of finite character and I a nonzero ideal of R .
Then R is locally ES-stable if and only if R is ES-stable.

Proof Suppose that R is locally ES-stable. Then, by Lemma 4.3, I is invertible so that I is finitely generated.
Moreover, R is SV-stable. Hence, by [9, Prpoposition 7.4.4], R is ES-stable. 2

Theorem 4.5 Let R be a Krull domain and I a nonzero ideal of R . Then R is locally ES-stable if and only
if R is ES-stable if and only if R is locally weakly ES-stable if and only if R is weakly ES-stable.

Proof Follows immediately from Theorem 4.4 and Theorem 3.5. 2

We recall that a Prüfer domain is strongly discrete if PRP is a principal ideal for each prime ideal P of
R . It is shown in [18, Theorem 4.6] that, for an integrally closed domain R , R is SV-stable if and only if it is
a strongly discrete Prüfer domain of finite character.

Theorem 4.6 Let R be a Prüfer domain of finite character and I a nonzero ideal of R .

(i) R is locally ES-stable if and only if R is ES-stable if and only if R is strongly discrete.

(ii) If R is strongly discrete, then R is weakly ES-stable.

(iii) If R is locally weakly ES-stable, then there exists an invertible ideal J of R such that I2 ⊆ JI with
J = (x, y) for some x ∈ J and y ∈ I .

Proof

(i) In a Prüfer domain, SV-stability and ES-stability coincide [9, Lemma 7.4.1]. So, by [19, Theorem 3.3], R

is locally ES-stable of finite character if and only if R is ES-stable. From Theorem [18, Theorem 4.6], the
latter holds if and only if R is strongly discrete.

(ii) If R is strongly discrete, then by part (i), R is ES-stable, and hence weakly ES-stable.

(iii) By Lemma 4.2(ii), I2 ⊆ JI for some finitely generated ideal J of R . Since R is Prüfer, J is invertible.
Furthermore, since R is a Prüfer domain, J is 1 1

2 -generated, so one of the generators of J can be chosen
arbitrarily. Since I2 ⊆ J , J = (x, y) for some x ∈ J and y ∈ I2 .

2

Remark 4.7 A weakly ES-stable Prüfer domain (of finite character) R is not necessarily strongly discrete,
and hence ES-stable, since the maximal ideal PRP of the valuation domain RP , for any prime ideal P of R ,
is either principal or idempotent.
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Proposition 4.8 Let R be a Prüfer domain of finite character and I a locally weakly ES-stable ideal of R .
Then there exixts an invertible fractional ideal B of (I : I) such that I2 = BI .

Proof Let I be an ideal of R . Let M1, . . . ,Mt be the maximal ideals containing I . Then (I2)Mi = (Ji)MiIMi

for some invertible ideal of RMi
for each i . We observe that these are the only maximal ideals which contain

I2 , also. For all other maximal ideals N ̸= Mi , for each i , I2N = RN = IN . So, for each i , (I2)Mi
= jiIMi

for some ji ∈ J . Thus, by [10, Lemma III.2.6], there exists a finitely generated ideal B of (I : I) such that
I2 = BI . Since (I : I) is a fractional overring of R , it is Prüfer, and hence B is an invertible fractional ideal
of (I : I) . 2

Theorem 4.9 Let R be a completely integrally closed Prüfer domain of finite character. Then R is locally
weakly ES-stable if and only if R is weakly ES-stable.

Proof Follows immediately from Proposition 4.8 since (I : I) = R for any ideal I of R . 2

Theorem 4.10 Let R be an h-local domain and I a flat ideal of R . Then I is locally weakly ES-stable if and
only if I is weakly ES-stable.

Proof If I is locally weakly ES-stable, then (I2)M = JMIM for some invertible ideal JM of RM for
each maximal ideal M of R . Since R has finite character, I is contained in at most finitely many maximal
ideals, say M1, . . . ,Mt . We have I2N = JNIN = RN for each maximal ideal N of R not containing I , and
(I2)Mi = aiIMi for some ai ∈ R for each i ∈ {1, 2, . . . , t} . Let A = R ∩ a1RM1 ∩ . . . ∩ atRMt . We observe
that A is a fractional ideal of R . Then AI = I ∩ a1IM1

∩ . . . ∩ atIMt
by the flatness of I . Hence, we have

AI =
∩

M∈Max(R) IM ∩ I2M1
∩ . . .∩ I2Mt

=
∩

N I2N ∩ I2M1
∩ . . .∩ I2Mt

= I2 , where Max(R) is the set of all maximal

ideals of R . Now, we claim that A is locally principal, and hence invertible. Since R is h-local, (RMi)N = Q

[10, Lemma IV.3.2], and hence AN = RN ∩ (a1RM1
)N ∩ . . . ∩ (atRMt

)N = RN . Also, (RMj
)Mi

= Q for i ̸= j ,
we have AMi = RMi ∩ (a1RM1)Mi ∩ . . . ∩ aiRMi ∩ . . . ∩ (atRMt)Mi = aiRMi . Thus, A is an invertible ideal of
R so that I is weakly ES-stable. 2

Theorem 4.11 Let R be a Prüfer h-local domain. Then R is locally weakly ES-stable if and only if R is
weakly ES-stable.

Proof Since all ideals of a Prüfer domain are flat ([10, Theorem VI.9.10]), it follows from Theorem 4.10
immediately. 2

Next we prove that Noetherian domains, which are locally (weakly) ES-stable, already have finite
character, in deed, they are h-local.

Theorem 4.12 Let R be a Noetherian domain. If R is locally (weakly) ES-stable, then R is

(i) SV-stable,

(ii) one dimensional,

(iii) h-local,
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Proof Suppose that R is locally (weakly) ES-stable.

(i) Since every ideal of a Noetherian domain is finitely generated, by Theorem 2.10, R is SV-stable.

(ii) Follows immediately from part (i) and [12, Lemma 2].

(iii) Follows immediately from part (i) and [12, Lemma 2].

2

Theorem 4.13 Let R be a commutative ring such that the endomorphism ring of each finitely generated regular
ideal of R is local-global. R is locally finitely (weakly) ES-stable if and only if R is finitely (weakly) ES-stable.

Proof Suppose R is locally finitely (weakly) ES-stable. Let I be a finitely generated regular ideal of R . Then
I is SV-stable, by Theorem 2.10. Since (I : I) is local-global, I is ES-stable by Lemma 2.7. 2

Since, for a Noetherian ring, the regular ideals are finitely generated, and ES-stability coincides with
weakly ES-stability (Theorem 3.2), the following corollary immediately follows from Theorem 4.13.

Corollary 4.14 Let R be a Noetherian ring such that the endomorphism ring of each ideal of R is local-global.
Then R is locally (weakly) ES-stable if and only if R is (weakly) ES-stable.

In [15], it is proven that a semilocal Noetherian one dimensional domain is SV-stable if and only if it is
ES-stable. So, Corollary 4.14 generalizes this fact for one-dimensional local-global Noetherian rings.

We conclude that, over Noetherian local-global rings, locally (weakly) ES-stability, (weakly) ES-stability,
locally SV-stability and SV-stability coincide. Moereover, these notions also coincide for one dimensional
integrally closed Noetherian rings (Dedekind rings) [9, Proposition 7.4.4].

We observe that, at least for Noetherian rings, the finite character property does not seem to be useful
to prove that locally (weakly) ES-stability implies (weakly) ES-stability. We provide an example of a one
dimensional Noetherian ring of finite character in which there is an SV-stable (and hence locally ES-stable)
ideal which is not (weakly) ES-stable. First we recall that an integral domain R has the trace property (or is a
TP domain) if, for every ideal I of R , either II−1 = R or II−1 is a prime ideal. An ideal I of R is strongly
divisorial if I is divisorial, that is (I−1)−1 = I , and strong, that is II−1 = I .

Example 4.15 Let R be a Noetherian TP domain which is not Dedekind. So, by [9, Theorem 4.2.48], R is
one dimensional (so that R is h-local by [20, Example 3.1]), and it has a unique noninvertible maximal ideal
M . In fact, M is stongly divisorial, and M−1 = R̄ , the integral closure of R . Hence

MM−1 = MR̄ = M.

By [1, Proposition 2.4] and [9, Proposition 7.3.2], each nonzero prime ideal is SV-stable. So, M is SV-stable.
Suppose M is (weakly) ES-stable. Then M = JE for some invertible fractional ideal J of R and an idempotent
fractional ideal E of R . Let T = (M : M) . By Proposition 2.1, E = M(T : M) , E is a trace (integral)
ideal of T which is idempotent. Since T is Noetherian, E = T . So, M = JT . Since MM−1 = M ,
(R : M) = M−1 ⊆ T . Also, T ⊆ (R : M) = M−1 . Thus, M−1 = T . Hence,

MR̄ = M = JE = JM−1 = JR̄.
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So,
MR̄J−1 = RR̄ = R̄

which implies that J−1 is the inverse of MR̄ in R̄ . Since MM−1 = M ,

MJ−1 = MM−1J−1 = MR̄M−1J−1 = R̄,

so M−1J−1 the inverse of MR̄ in R̄ . Therefore, J−1 = M−1J−1 which implies that M−1 = R . Since
M−1 = R̄ , R = R̄ so that R is integrally closed, but R is not Dedekind. Hence, M is SV-stable, but not
ES-stable.
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