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Abstract: In this paper, regular and singular fourth order differential operators with distributional potentials are
investigated. In particular, existence and uniqueness of solutions of the fourth order differential equations are proved,
deficiency indices theory of the corresponding minimal symmetric operators are studied. These symmetric operators are
considered as acting on the single and direct sum Hilbert spaces. The latter one consists of three Hilbert spaces such that
a squarely integrable space and two spaces of complex numbers. Moreover all maximal self-adjoint, maximal dissipative
and maximal accumulative extensions of the minimal symmetric operators including direct sum operators are given in

the single and direct sum Hilbert spaces.
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1. Introduction
Weyl theory is an important tool to understand the nature of the solutions of an differential equation on an

unbounded domain. In 1910, Weyl proved that following second order differential equation
—(pyM) Y +qy = Ay, w€[0,00), (1.1)

where p, ¢ are real-valued and p~!,q are locally integrable functions on [0,00), has at least one solution that
must be squarely integrable on [0,00) [20]. Beside this, two linearly indpendent solutions of (1.1) and any
combinations of them may be squarely integrable. These results are based on the nested property of the
corresponding circles which are related with the regular boundary conditions. Indeed, if these circles converge
to a circle at the singular point, then the equation (1.1) is said to be in limit-circle case. Otherwise, i.e., if
these circles converge to a point, then the equation (1.1) is said to be in limit-point case. This classification
has an alternative. Namely, one can find the number of the linearly independent solutions of (1.1) belonging to
the squarely integrable space with the help of the deficiency indices of the corresponding minimal symmetric

operator. Recall that the numbers (m,n) defined as
m:dlle, n:dimN_i,

where
Ny=Ho (Ly— M), Ny=Ho (L —XI)7
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are called the deficiency indices of the minimal symmetric operator Ly acting on a Hilbert space H [17]. For
a second order differential operator, (1,1) is known as limit-point case and (2,2) is known as limit-circle case.

In 2013, Eckhardt et al. [3] investigated the number of the squarely integrable solutions of the equation

— {p (y(l) + sy)} @ + sp (y(l) + sy) +qy =Ary, (a,b) CR, (1.2)

where p, ¢, and s are real-valued, Lebesgue measurable functions on (a,b), p~!,q,r and s are locally integrable
functions on (a,b), r > 0 for almost all = € (a,b) and y, p(y(!) 4 sy) are locally absolutely continuous functions
on (a,b). Such an investigation has been done with the aid of the deficiency indices theory. Clearly, for s = 0
on (a,b) the differential equation (1.2) takes the form

)
—~ (py“)) +qy =Xy, (a,b)CR, (1.3)

which is the well-known second order Sturm-Liouville equation.

The equations being of the form (1.2) are called second order differential equation with distributional
potentials. The readers may find some papers that are related with the differential equations with distributional
potentials in [1], [5], [18], [19]. However, they are defined on the compact intervals.

In 2012, Maozhu et al investigated the number of the squarely integrable solutions of the equation

1)
— (py™) +qy Ty
— A , (1.4)

—Bry(a) + Ba(py™)(a) ary(a) — az(py™)(a)

where a is the regular point and b is the singular point for the equation (1.3) and oy, as, 51,82 are real num-
bers [16]. Moreover, they characterized self-adjoint extensions of the minimal symmetric differential operator
generated by (1.4).

In this paper, we investigate the number of the squarely integrable solutions of the following fourth order

differential equation

(1)
{[42 (¥ — s1y™ + 529)](1) +qas1 (y® —s19W) — (¥ + s4y) + 53y}

(1.5)
+¢252y@ — s3yM + qrs4 (YU + s4y) + qoy = Awy
defined on the interval (a,b) C R. For s; =0, 1 < j <4, equation (1.5) is reduced to
(2)y() )
((@2y™)® ~ (@y™) " +aoy = Mwy, =€ [0,00) (1.6)
or
(029 — (uy™) P + goy = My, =z € [0,00) (1.7)

provided that the first sum in (1.6) is differentiable. Clearly, (1.7) is the well-known fourth order Sturm-Liouville
equation and it should be noted that the number of the squarely integrable solutions of (1.7) with w = 1 was

investigated by Everitt in 1963 [4]. However, this investigation was done with the help of the nested property
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of the corresponding surfaces. In this paper, we investigate the number of the squarerly integrable solutions of
(1.5) with deficiency indices theory. Note that, such an investigation was done by Naimark for the equation
(1.7) with w = 1.

This paper is organized as follows. In section 2, we introduce the fourth order differential expression with
distributional potentials and some results on the solutions or the fourth order equation. In section 3, regular
and singular minimal symmetric differential operators are introduced and some results are given without proof
because the methods are similar with the proofs of Naimark. In section 4, some expansions are introduced. In
section 5, deficiency indices of the fourth order operators are investigated. Moreover some additional theorems
are proved. The main results are given in sections 6-8. In particular, in section 6, direct sum Hilbert spaces and
associated minimal and maximal operators are introduced and some results are given. In section 7, deficiency
indices of the direct sum operators are investigated. In section 8, maximal self-adjoint, maximal dissipative and
maximal accumulative extensions of the minimal operators defined on the single and direct sum Hilbert spaces

are studied.

2. Basic results

Let us consider the differential expression

1

®
Tlyl = w{ { [ (4 — 515D + 529)] Y+ @251 (4@ — 519D) — [ (V) + sa9)] + 83y}

+ q2s2y® — s3y™ + qusa (Y + say) + qoy},

on the interval (a,b) C R. Throughout the paper, we assume that qo, g1, g2, $1, ..., S4 are real-valued functions
on (a,b), qo,q1,q5 ", 51,52, 83,q154, 4153, ¢25152, q255 and w are locally integrable functions on (a, b). Note that
for s; =0, 1 < j <4, these are the ordinary assumptions on coefficients.

Now let us adopt the notations

Yy =y,
1 =y,
Y =g (y@ — 51y + s0y)

1
yll = — {fh (y® — sy + 82?/)} —q251 (Y@ — 519W) + @1 (¥ + s4y) — s3y.

We shall call yI"! as the r—th quasi-derivative of y. Moreover we assume that y["l, 0 < r < 3, are locally
absolutely continuous functions on (a,b), i.e., y!"! € ACo.(a,b).

Consider the following set
D={yeACuclat) : yy ¥ € ACic(a,b)}.
Then we obtain the following theorem.

Theorem 2.1 Let y belong to D, f be a measurable function on (a,b) and wf be locally integrable on (a,b).

Then the equation
Tyl - Ay =f (2.1)
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has one and only one solution y(x,\) satisfying the conditions
YNz, N) =a,, 0<r<3, (2.2)

where X\ is a complex number, zo € (a,b) and «,. are arbitrary complex numbers.

Proof Equation (2.1) with the initial conditions (2.2) can be handled as the following first order system

YU (2, 0) = A(z, )Y (2, \) + F(z)

with
Y (29, \) = a,
where
y[o] 0 a1
y[l] 0 Qg
Y = , F = , o= ,
yt? 0 as
yt! wf Q4
0 1 0 0
—82 81 ' 0
A =
G184 — S3 + q25152 @ —-s1 —1

Q13421 +qo — CJ2S% — AW q1S4 — 83+ @25152  Sa2 0

Note that the elements of the matrix A(z, \) are measurable on the interval (a,b) and moreover || A(z, A)]|
and ||F(z)| are locally integrable on (a,b). Hence using the method of successive approximations we complete

the proof. O

Definition 2.2 A linearly independent system of solutions vy, ...,ys of the equation
Tyl =Ny, € (a,b) CR, (2.3)
is called a fundamental system.

Let us define the Wronskian of the set of functions {1 (z), ..., ¢¥4(x)} as follows

Oy - )
Wa[th1, .oy a] == det | : ;
Bl - o)

Then following results follow from the results of [17].
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Theorem 2.3 (i) Let yi(z,A),...,y1(x,\) be the solutions of (2.3). If yi(z,A), ..,ya(x,\) are linearly
dependent, then Wylyi,...,ysa] vanishes identically in (a,b). Conversely, if Wy,ly1,...,ya] = 0 at a point
xo € (a,b), then y1(z, A),...,ya(x, A) are linearly dependent;

(1) An arbitrary solution p(xz,\) of (2.3) is a linear combination of a fized fundamental system;

(14i) The solutions of (2.3) form a linear space of dimension 4.
We denote by [y, x| the Lagrange form of the functions y and y defined as

(3] (3]

[y, x] = YO — yBINOT 4y Iy ) — I (2.4)

Let L2 (a,b) be the Hilbert space consisting of all functions y satisfying

b
/ ly|? wdz < oo
a

with the inner product
b
(y,x) = / yxwdz.
a

Consider the set
D= {y IS Li)(a,b) : ye DTy € Li(a,b)}.

For arbitrary two functions y, xy € D we have the following Green’s formula

/ab {T[y}x - yT[X]}wdx = [y, xI(b) — [y, x](a).

Green’s formula implies the fact that if y(a,\) and x(z,\) are the solutions of (2.3) corresponding to
the same value of A, then [y, x| is independent of z and depends only on A on (a,b). Moreover, in the case
that one of the end points is singular or both of them are singular for 7, then the values [y, x](a), [y, x](b)
and [y,x](a), [y,X](b) exist and are finite. Secondary values also follow from the Green’s formula. In fact, it is

sufficient to get the second factors with their complex conjugates.

3. Minimal and maximal differential operators

3.1. Regular case

At first we assume that a and b are regular points for 7. Then we have the following result [17].

Theorem 3.1 Assume that a and b are reqular points for 7 and f € L2 (a,b). Then followings are equivalent:
(1) y is a solution of T[y] = f satisfying y!" (a) =yl (b) =0, 0 <7 < 3.

(i3) f is orthogonal to all solutions of the equation T[y] = 0.

Consider the following set
Do = {y e D:y(a) = ") = 0}
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where 0 <r < 3. We define the operator Tj the restriction of the operator T' to the set Dy, where T, = 7[y],
y€D.

In the case that a and b are regular points for 7, all solutions of the equation 7[y] = 0 belong to L2 (a,b).
Therefore the set S consisting of all solutions of the equation 7[y] = 0 is a subset of L2 (a,b). From Theorem
2.3 (iti) we get that S is of dimension 4. Let Ry denote the range of the operator Ty. A solution y of 7[y] = f
satisfying y("l(a) = y[l(b) = 0, 0 < r < 3, is an element of Dy. Therefore the existence of such a solution y
implies that f € Ry. Theorem 3.1 implies that f € L2 (a,b) lies in Ry if and only if it is orthogonal to S.

Following results can be obtained using the method of Naimark [17].
Theorem 3.2 (i) There is a function y € D satisfying
yla) =c, YO)=d, 0<r <3, end €C
(ii) Do is dense in L2 (a,b);
(iii) T =Ty

(iv) Ty =T*.

3.2. Singular case

Now we consider that a and b are singular points for 7. Let
B = {y €D : y has compact support in (a, b)}
We denote by Nj the restriction of T' to the set Bj. One has the following results [17].

Theorem 3.3 (i) N is Hermitian;

(ii) B is dense in L2 (a,b).

Theorem 3.3 (i7) implies that N{ admits a closure. We denote it by Ny with domain By. Together with

Theorem 3.3 (i) we get that Ny is a closed, symmetric operator. Then we have the following [17].

Theorem 3.4 (i) Nj =T;

(i) B={yeD : IO -X=0, xeD}.
Now let us consider that the left end point a is regular and right end point b is singular for 7. Let
Ch = {y €D : y has compact support in (a, b)}
We denote by M| the restriction of T to Cj. Then we obtain the following theorem [17].

Theorem 3.5 (i) M| is Hermitian,

(ii) Cf is dense in L2 (a,b).

We denote by My the restriction of T to Cy the closure of the operator M{;. Then following results are

obtained.
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Theorem 3.6 (i) Mj =T,
(@) Co={yeD : WO -bY(@)=0, xeDf;

(i) Coz{yeD @) =0, [y,X](b) =0, xeD}, 0<r<3.

If one chooses as a is singular point and b is regular point for 7, then following results are obtained for

the corresponding operators M| and Mj.

Corollary 3.7 (i) M§ =T;
(@) Co={veD : TG -bY()=0, xeDf;

(i) Co={yeD : X@=0, y'(®)=0, xeD}, 0<r<s.

4. Some identities

Following theorem describes the Wronskian in terms of the Lagrange forms. In fact, such an expansion for the
ordinary Wronskian of solutions of arbitrary even order Sturm-Liouville equations was given by Kodaira [15].

However, it seems that there is not a proof. For the following theorem we give a proof.

Theorem 4.1 Let ¢.(x) € D, 1 <r <4. Then for x € (a,b)

Welp1, 02,03, 4] = @01, 02](2) @3, wa](x) = [01, 3](x)[02, pa](x) + [@1, pa] (@) [p2, @3] (). (4.1)

Proof Let ¢, € D, 1 <r <4. Then for z € (a,b) we get

A [ (P — B l) — O (D510 — BV + ol (Bl — Bl

_¢[20] _ [1] (Sﬁ[ ]90[ ] 80[3]%[;2]) [1] (80[12]90£1] cp[?’]cpf]) + cp[ ] (cp[z]gog] <P[13]80é2]>_
) (4.2)
‘PgO] ] [l] (SO[ ]QD[ ] ‘P[ ]904[12]) [1] (‘P[12]‘P£1] <P[5]‘P£12]) + %[11] (‘P[f]@[;] - ‘P[lg]@[;])_
o[ 2] [3 3] ]2 2 3] [2 1 2] [3 3] 121\ ]
0 ol (1 1) = ) () )+ () 1Y),
On the other side, (4.2) is the Wronskian of {1, ..., 4} . Therefore the proof is completed. O

Theorem 4.1 gives the following corollary.

Corollary 4.2 Let ¢.(z,\), r = 1,4, be the solutions of (2.3). Then the Wronskian W,[p1, ..., 4] is

independent of x and depends only on .

831



UGURLU and BAIRAMOV /Turk J Math

Let us consider the solutions w,(x), 1 <r <4, of the equation 7[y] =0, = € (a,b), satisfying

ey ufle) ule) ull(e) 100 0
ey uble) ufle) ull(e) 0100
W)y ue) ule) (e 0010
il(e) (o) ui(e) ul(o) 000t

where c€ (a,b). Then one can immediately get that

[u17u4] - [u27u3] = 1a [U7«7U7-] = 07 1 S r S 4a
[Uhuz] = [U1,U3] = [Uz,uzd = [u37u4] =

Following Fulton’s idea [6] let us associate the function y € D with Y as follows

0
il
Yy Y =
e
2
Note that [y,z] = Z!JY, where
0 0 -1 0
0 0 O -1
J =
1 0 0 0
01 0 0

Consider the following association

U, = U, 1<r <4,
and let us construct the matrix Uy as follows

Up = (Uy,U2,Us,Uy) .

A direct calculation shows that
Ub(z)JUo(z) = J.

Let us define the transformation

SY =U; Y.
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Since Uy.SY =Y, we obtain from Cramer’s rule that
Waly, ug, us, us]

Wx [ula Y, us, U4}
SY =
Wa: [ula uz,Y, U4}

Ww [Ul, Uz, U3, y]
Using (4.1) and (4.3) we obtain the transformation SY in the form
[y, ua)(2)

[y,ug}(x)
SY =

—[y, u2] (@)
—ly, m](x)
Finally, with the aid of the equation [6]
(S2)'J(SZ)=Z'JY

we get the following theorem.
Theorem 4.3 For y,x € D we have

[y, X] = [y, wal[x, us] — [y, us][x, u1] + [y, ua][x, ua] — [y, wal[x, uz]. (4.4)

5. Deficiency indices of the fourth order operators

In this section we investigate the deficiency indices of the minimal symmetric operators using the idea of Naimark
[17].

Theorem 5.1 (i) Let a and b be regular points for 7. Then Ty is a closed, symmetric operator with deficiency
indices (4,4);

(i¢) Let a and b be singular points for 7. Then Ny is a closed, symmetric operator and has the deficiency
indices of the form (n,n), where 0 <n < 4;

(731) Let a be regular point and b be singular point for 7. Then My is a closed, symmetric operator and has
the deficiency indices of the form (n,n), where 2 <n < 4;

(iv) Let b be regular point and a be singular point for 7. Then My is a closed, symmetric operator and has the

deficiency indices of the form (n,n), where 2 <n < 4.

In the case that the deficiency indices of My are (4,4), the set Cy can be described with the help of the

real solutions of 7[y] = 0 satisfying (4.3) as follows.

Theorem 5.2 Let a be regular point and b be singular point for T, the deficiency indices of My be (4,4) and
up(x), 1 <r <4, be the solutions of T[y] =0 satisfying (4.3). Then Coy can be described as follows

Co={vep : Y@ =0, ul®) =0}
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Proof Since the deficiency indices of Ny are (4,4), u, belong to L2 (a,b) and D. Using (4.4), we obtain that
[y, X1(0) = [y, url ()X, us)(0) — [y, us] (D) [X; wa] () + [y, u2] () [X; wa] (b) — [y, ual (B)[X, w2l (b) = O.

Since [x,u,](b), 1 <r <4, can be chosen as arbitrarily, the proof follows from Theorem 3.6 (i3 ). O

Corollary 5.3 Let a be singular point and b be reqular point for T, the deficiency indices of My be (4,4) and
ur(x), 1 <r <4, be the solutions of T[y] =0 satisfying (4.3). Then Cy can be described as follows

Co = {y eD : [yu)a)=0, Yy HB) =0 r= 174}.

Theorem 5.4 Let the deficiency indices of Ny be (4,4) and let u,(x), 1 <r <4, be the solutions of T[y] =0
satisfying (4.3). Then By can be described as follows

Bo={yeD : [pula=lul®)=0, r=T1}.
Proof From Theorem 3.4 (ii), By consists of those functions y such that
[y, X](b) = [y, X](a) = 0 (5.1)

for arbitrary y € D. Since the deficiency indices of Ny are (4,4), wu, belong to L2 (a,b) and D. Therefore
using (4.4), (5.1) can be written as

[y, X](b) — [y, X](a) = [y, ua](b) [X; us](b) — [y, us](b)[X, ua] (b) + [y, ua)(b)[X, ual (b)
- [y> U4] (b) [Y? U’Q] (b) - [y7 ul] (a) [Y7 ’LL?J (a’) + [y’ ’LLg] (a) [Y’ ul] (a) (52)
—ly, uz)(a)[X; ual(a) + [y, ua] (a)[X, uz](a) = 0.

Since [x,u,](b) and [x,u,](a) can be chosen arbitrarily, (5.2) is satisfied only if [y, u,](b) = [y, u,](a) = 0.

Therefore the proof is completed.

In the case that the deficiency indices of My are (2,2), following theorem is obtained.

Theorem 5.5 (i) Let a be regular point and b be singular point for T and let the deficiency indices of My be
(2,2). Then for y,x € D, [y,Xx]|(b) = 0;

(i7) Let a be singular point and b be regqular point for T and let the deficiency indices of My be (2,2). Then
for y,x €D, [y, X|(a) = 0.

Now consider that a and b are singular points for 7 and let £ be any number in (a,b). In this case the
operator Ny can be handled as the direct sum of the operators M, and M, generated by 7 in the intervals

(a,&) and (&,b), respectively. Following theorem is obtained [17].

Theorem 5.6 Let n,n_ and ny be the deficiency indices of Ny, My and MJ, respectively. Then

n=n_+nsy —4.
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We shall give some results associated with the deficiency indices (4,4) of the corresponding operators.

Note that we construct the real solutions wu,, 1 < r <4, defined on the corresponding intervals satisfying (4.3).

Theorem 5.7 Let a be reqular point and b be singular point for T and let the deficiency indices of My be
(4,4). Then for y € D there exists complex numbers c,,d,, 1 <r <4, such that

yr ) = e [y, u]) = dy

Proof Let f € L2 (a,b) and consider the equation 7[y] = f, where y € D satisfying

yra)=¢,, r=114, (5.3)
and ¢, are arbitrary constants. Moreover assume that following equalities hold

(fvul):d1+c47 (f7u2):d2+c37
(5.4)
(fyug) =dsz —c2, (f,us) =dy—ca,

where dj are complex numbers. Note that u, belong to L2 (a,b) and D since the deficiency indices of My are
(4,4). Since 7[u,] =0, 1 <r <4, we have

(fsur) = (rlyl, ur) = [y, ur)(0) = [y, ur](a).

Since a is regular point for 7 we have

[ya ul](a) = —C4, [y»UZ](a) = —Cs, [y7u3](a) = C2, [yaul](a> =C1.
Therefore
(fyua) = [y, wa](b) + ca,  (f,u2) = [y, u2)(b) + cs,
(5.5)
(fus) = [y, us](b) —c2, (fsua) = [y, ua](b) — c1.
Comparing (5.4) and (5.5) we have
[y7 ul](b> = d17 [y7 u2](b) = d27 [yu ud](b) = d37 [y7 u4](b) = d4' (56)
Therefore there exits a function y € D satisfying (5.3) and (5.6). This completes the proof. O

Corollary 5.8 Let a be singular point and b be reqular point for T and let the deficiency indices of My be
(4,4). Then for y € D there exists complex numbers c,,d,, 1 <r <4, such that

[y3 UT](Q) = Cr, y[ril] (b) = dr-

Theorem 5.9 Let a and b be singular points for 7 and let the deficiency indices of Ny be (4,4). Then for

y € D there exists complex numbers c,,d,, 1 <r <4, such that
[ya ur](a) = Cr, [y’ uT](b) =d,.
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Proof It is better to note that u, belong to L2 (a,b) and D since the deficiency indices of Ny are (4,4).

w

Let ¢ € (a,b) and 7~ (71) be the restriction of 7 to the interval (a,¢] ([¢,b)). Then from Corollary 5.8 there

exists a function y~ € D™, where

D™ ={y eli(@C) : y ' €ACu(a), Tly]eLi@0)],

1 < k < 3, satisfying
[y ud(@) = e, Y =6

Here ¢, and e, are complex numbers. Similarly there exists a function y™ € DF, where
pt={yt e 12(¢t) : ¥ € ACLC ), Ty € LGB},

1 < k < 3, satisfying
Yy =€ T u](b) = d,.

Here e, and d, are complex numbers. Let

Since y is continuous at ¢, we obtain that there exists a function y € D satisfying

[y, url(a) = ¢, [y, u,](b) = d.

6. Direct sum Hilbert spaces

In this section, our main aim is to decribe the corresponding direct sum operators defined on the vectors. These

operators are useful when studying eigenparameter dependent boundary value problems.

Denote by H = L2 (a,b) © C @ C being the Hilbert space with the inner product

b
1 1
W, Z2)= / yzwdr + aylzl + Byg@,

where (a,0) CR, a,8 >0 and

y z
Y= Y1 s Z= 21 € H.
Y2 22

It can be considered that the points a and b are regular or a or b or both of them are singular for 7.
Hence we shall investigate for these four cases.
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6.1. Regular end points a and b for 7

Let a and b be regular points for 7. Consider the following set

y y1 = o1y%(a) — azylt(a)
D=<¢{Y= Y1 €eH : yeD, ,
Y2 Y2 = ﬂlym (a) - 521/[2] (a)

where a1, as, 81, P2 are real numbers.
We define the operator T on D as

y Ty
T Y1 = yi )
Y2 Yy

where Ty = 7[y], y € D, = € (a,b), y; = a’ly[o} (a) — agy[?’} (a), vh = Biy[l](a) — ﬂéym (a), of,ab, By, B are
real numbers satisfying

a = ajah — dfag >0,

B = P18y — B1P2 > 0.
Let

Dy={Y=|y |eD : y®)y=0 r=0,3
Y2

and Ty be the operator the restriction of T to Dy.
Theorem 6.1 Dg is dense in H.

Proof The domain Dy of the operator Ty consists of those functions y € D satisfying y!"!(a) = yl"l(b) = 0,
0 < r < 3. Therefore for y € Dy we get that y; = y2 =0 and

Y=1 nn | €Dy.

Hence for

g2

which is orthogonal to Dy we have
b
X,G) = / ygwdx = 0,
a

and this implies that g =0 a.e. on (a,b). Thus

g2
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Let
z
Z = 21 € Dy
zZ2
Then Z L G and
1 1
(2,G) = a21§1 + BZQ§2 =0. (6.1)

Since z; = a12[%(a) — az2Pl(a) and 2z, = B121(a) — B221(a) can be chosen as arbitrarily, (6.1) is satisfied

only if g1 = go = 0. This implies that Dy is dense in H. O

Theorem 6.2 (i) Ty is symmetric,

(i) Tj =T.
Proof For
y z
Y= Y1 e Dy, Z-= 21 eD
Y2 %)
we get that
1 1
(T, 2) = (¥, TZ) = —[y, z|(a) + 5(9151 —n7zy) + B(yéfz — Yo74). (6.2)

On the other hand direct calculations give

v — % = a(y7 (@7 (0) -y (@)= (@),
(6.3)
vs72 — 1% = B(y1(@)7P(a) -y (@)1 (a)).

Substituting (6.3) in (6.2) and using (2.4) we obtain that

(ToY, 2) = (¥, TZ)

and therefore T C T§. In particular the last equation implies that T is symmetric. In fact, it is sufficient to
get Z € Dy (hence Z € D). This proves (i).

Now for
Yy z
Y= wn eDy, Z=| = € D;
Y2 Z)
we get that
. P LEN e L= (5,71 e
(ToZ2,Y) = / (T"z)gwdz + % (qu (a) — a2y (a)> g (5111 (a) — B2y (a)) : (6.4)

Beside this we get that

1.

b 1
(ToZ2,Y) =(2,ToY) = / zTywderEEl (a’lﬂ[o](a)—aé?[g’](a))Jr Z2 (ﬁi@m(a)—ﬂéﬁm(a))' (6.5)

=
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Let y"l(a) =0, r =0,3. Then (6.4), (6.5) and Theorem 3.2 (iv) gives

~

(T"z,9) = (2, Toy) = (T'2,y)
and therefore z € D. From (6.4) and (6.5) we obtain that
(T52,Y) = (2, To)) = [2,?](5) — [z 7)(a) .
+— % (07(a) - 027 (@)) = =2 (047 (0) — 057 () (6.6)

+57(0 @) — 5277 (a)) - §52 (817" (@) — 37 (@)

I
e

Since y["l(b) = 0, r =0, 3, we obtain from (6.6) that

=2a)gP(a) + ()5 (a) = 2 ()7 (@) + 2P(@)7 (a) + é%y[‘” (a) (n — af)
~ 2 ETPa) (a2 — ) + 523 (@) (61 - 5) - 520 (@) (52 - B) =0,

At first we assume that a; —aj # 0, 8; — 85 # 0, j =1,2. Let yl(a) =1, yM(a) = yP(a) = yBl(a) = 0.
Then we have from (6.7) that

1_
2B(a) + e (ag —af) = 0. (6.8)
Now consider that y®l(a) = 1, y%(a) = y!!l(a) = y!?(a) = 0. Then from (6.7) that

1
2%a) + 551 (g — ) = 0. (6.9)

Using (6.8) and (6.9) we obtain
a12%a) — ax2Bl(a) = 7. (6.10)

Let yM(a) =1, yl%a) =y (a) = yPI(a) = 0. Then we have from ( 6.7) that
2(g) + 13 =
z%(a) + 5 (BL—pB1) =0. (6.11)
Now consider that y[?(a) = 1, yl%(a) = y!!(a) = yPl(a) = 0. Hence (6.7) gives that
(1] 1 N
2% (a) + EZQ (B2 — B3) =0. (6.12)
Therefore using (6.11) and (6.12) we get that

B12M(a) — B22(a) = %. (6.13)

Now let a1 —aj =0, az —ay #0, B; = B; #0, j =1,2, and yO(a) =1, yM(a) = y?(a) = yPl(a) = 0. Then
from (6.7) we arrive at

2Bla) = 0.

839



UGURLU and BAIRAMOV /Turk J Math

Therefore (6.8) is true. If yl®¥l(a) = 1, y1%(a) = y(a) = y!?(a) = 0, then (6.7) gives that

1_
2(a) + ~Zi(as - ab) = 0. (6.14)
Hence from (6.8) and (6.14) we obtain the equality (6.10) and (6.13) still holds.
Similar arguments hold in the cases that

Oél—O/l:O, ()42_0/27&07 ﬁl_ﬁi:07 ﬁ2_ﬁé#07

o —a) =0, ax—ay#0, B—p;=0, Bi—p#0,

a2—a/2:05 051_0/1¢0a /8]—/8;#07

062—04/220, 041—0/1750, Bl_ﬁi:07 52_657507

062—0/2:0, 051_0/1750’ 62_/85:()’ Bl_ﬁi#oa

/81751:07 627557&07 0@—049#07

52_65207 61_6£#07 aj_a;#o
Note that since « > 0, the case that a; —af = 0 and az — a4 = 0 can not occur at the same time. Similarly
since 8 >0, f1 — ] =0 and By — 85 = 0 can not occur at the same time. Consequently Z € D and hence
T§ C T. This completes the proof. O

Note that since Dg = Dy @ F, where F' is a finite-dimensional space, Ty is a closed operator.

6.2. Regular end point ¢ and singular end point b

In this section we consider that a is regular point and b is singular point for 7.

Let
Yy z
Co=1Y= Y1 eD : [y,Z](b) =0, Z= 21 eD
Y2 22

We denote by My the restriction of T to Cl.

Theorem 6.3 C is dense in H.

Proof Let y € Co. Then from Theorem 3.6 (iii) we have yl"l(a) = 0, » = 0,3, [y,2](b) = 0 for arbitrary
z € D, and therefore y; = yo = 0. Hence

Yy
Y= Y1 c Cj.
Y2

Therefore for

g
g= g1 cH

g2

which is orthogonal to Cy we have g =0 a.e. on (a,b). Consequently we obtain for

that Z 1 G and g1 = g = 0. O
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Theorem 6.4 (i) My is symmetric,

(15) Mg =T.
Proof For
y z
Y= Y1 eCy, Z= 21 €D
Y2 Z2
we have

(M), Z2) = (), TZ)

and therefore T C Mj. Hence My is symmetric. This proves (i).

Now let
y z
Y= Y1 S Co, Z = Z1 € CS
Y2 Z2
Then we obtain that
* b AT N\ 1 =10] (3] 1 (1] 712l
MiZ2,Y) = / (M™2)gwdz + azl (aly (a) — oy (a)) + 522 (51y (a) — B2y (a)) (6.15)
and
b 1 1

(M52.Y) = (2,MoY) = | 2Tywdz + 7 (i7%a) - a57(@)) + 5% (817" (@) - 877 (@)) . (6.16)

T~

s

Consider that y"l(a) = 0, 7 =0,3. Then (6.15), (6.16), Theorem 3.6 (i) and (4ii) imply that

(M*z,y) = (2, Moy) = (T,y)
and therefore z € D. Hence using (6.15) and (6.16) we have

(Mj2,Y) = (2, Mo)) = [2,7](b) — [2,7](a)

—&-;51 (041?[0] (a) — 042?[3](@)) - ;51 (0/1?[0] (a) — 0/2?[3](@) (6.17)
+572(0 @) - 5:77(@)) ~ 5% (5" (@) - B =0.

Since [y,Z](b) =0, for z € D, we obtain from (6.17) that

20 (@)g 9 a) + 29(@)5) @) — (@5 (@) + 2 (@)5 (@) + > 57 ) (0~ )

L 1y 4 Lzoan) iy _ Lo i) g (6.18)
— A1y (a) (a2 —ap) + 520 (@) (B = f1) = 5277 (a) (B2 = B2) = 0.
(6.18) implies that Z € D and hence M§ C T. This completes the proof. O

Note that since Cy = Cy @ F, where F' is a finite-dimensional space, M is a closed operator.
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6.3. Singular end point a and regular end point b

In this section we consider that a is singular point and b is regular point for 7. Moreover let the deficiency
indices of My be (4,4).

Now consider the set FE as follows

Yy Y1 = iy, ur](a) — az(y, usl(a)
E = y = yl S H N y S D7 ?
Y2 Y2 = P1ly, u2](a) — Baly, u4](a)

where u,(z), 1 <r < 4, are the solutions of 7[y] =0, z € (a,b), a1,aq9, 1,52 are real numbers. Note that
since the deficiency indices of My are (4,4), u,, 1 <r <4, belong to L2 (a,b) and D.
Define the operator T on FE as

y Ty
Ty | =] u ;
Y2 y’z

where Ty = T[y]a Yy € D7 HAS (avb)7 yll = all[yaul](a) - aé[y,u3](a)7 y/2 = 61[1/7”2](0’) - ﬁé[y7u4](a)7
o, o, B1, B4 are real numbers satisfying

a=aah — ajag >0,
B = BBy — B1B2 > 0.

Consider the set

Ey=<Y= U1 cFE ym(b):o, r=20,3

and define the operator Ky the restriction of T to Ej.

Theorem 6.5 E| is dense in H.

Proof Let y be an element of Cy. Then from Corollary 3.7 (éii) , we have for y € D that [y, u,|(a) = 0,
r =1,4, and yl"=1(b) = 0. Therefore for y € D we have y; = yo = 0 and

Y=1 yn | €E,.

Hence for

g = g1 cH
g2

which is orthogonal to Eq we have

b
Y,9) = / ygwdz = 0
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and this implies that ¢ =0 a.e. on (a,b). Thus

0
G=| a1 | €H.
g2
Let
z
Z = 21 € Ey
22
Then Z 1 G and
1 1
(2,6) = o A% + 52292 =0. (6.19)

Since z1 = aq [y, u1](a) — azly, us](a), and z2 = P1[y, uz|(a) — Ba[y, ua](a) can be chosen as arbitrarily, (6.19) is

satisfied only if g; = go = 0. This implies that Eg is dense in H. O

Theorem 6.6 (i) K is symmetric,

(i) Ki="T.
Proof For
Yy Yy
Y= wn |€Ey Z=| yn |€E
Y2 Y2
we have
1 1
(Ko, 2) = (¥, 12) = [y, 2l(a) + - (571 %) + 5 (4% — %)), (6.20)

Direct calculations give

vz - 17 = o[y, w(@) 2, us)(0) — [y, usl (@7 wi)(@)),
(6.21)

72~ 157 = B( wal @), wal(@) ~ [y, wil(@)]3, wal(@)).
Using (2.4), (6.20) and (6.21) we obtain that
Koy, 2) = (1, TZ)

and T C K. In particular the last equation implies that K is symmetric. In fact, it is sufficient to get Z € Ej
(hence Z € E). This proves ().

Taking
Y z
Y= Y1 S Eo, Z= 31 S ES
Y2 Zo
we get that

b A~
K;2.9) = [ (@ 2guds + 5 (@)@ - afs. @) + 57(A 5wl - BF @) 622)
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On the other side we have

162,9) = (2.KoY) = [ Tywde + 12 (o4l — b, 0s)@) + 53 (311 wale) ~ 841wl

5
(6.23)
Let [y,ug](a) =0, k=1,4. Then (6.22), (6.23), Corollary 3.7 (i) and (i) give
(T*2.y) = (2 Moy) = (Tz.y)
and therefore z € D. Using (6.22) and (6.23) we get that
(KGZ2,Y) = (2, KoY) = [2,7)(0) - [2,7](a)
£25) (ol m)(0) — nfF us)(@) — 31 (07 w)0) —ohFws)@) (g
572 (1[5 ua)(@) = Balg @) = 5% (87 wal(@) = B35 (@) =0,
Since [y,Z](b) = 0, we obtain from (2.4) and (6.24) that
[z, us)(@) 7 us)(@) + [2 us)(@)[F, u1)(@) — [z, us)(@)F, ual (@) + [2, ua)(@) 7 us)(o)
P2 A () (o — ad) = ws(e) (a2 — o) + Zal7, uel(a) (51 — ) (6.25)

—%52[@ ws)(a) (B — B4) = 0.

At first we assume that o; — o # 0, 85 — B; # 0, j = 1,2. Let [y,w](a) = 1, [y,u2](a) = [y,us](a) =
[y, uq](a) = 0. Then we have from (6.25) that

[z, us] (a) + é'za (a1 — ) = 0. (6.26)
Now consider that [y, us](a) =1, [y,u1](a) = [y, uz2](a) = [y, us](a) = 0. Then from (6.25) we obtain that
[z,u1](a) + é?l (ag —ab) = 0. (6.27)

Using (6.26) and (6.27) we arrive at
[z, ur](a) — aslz,usl(a) = z3. (6.28)

Now let [y,us](a) =1, [y,u1](a) = [y,us](a) = [y, us](a) = 0. Then (6.25) gives

(2, u)(a) + %32 (61— ) =0. (6.29)
If [y,uq](a) =1, [y,ui](a) = [y,us](a) = [y, us](a) = 0, then we get from (6.25) that
(2, ua](a) + %32 (B> — ) = 0. (6.30)
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Using (6.29) and (6.30) we get that

Bilz,u2](a) — B[z, u4(a) = 2. (6.31)

Let aq — all = 07 Qg — 0/2 7& 07 ﬂj - B; 7é 07 ] = 1a27 and [yvul](a) = 17 [y7u2](a) = [y7u3}(a’> = [y,u4](a) =0.
Then from (6.25) we obtain
[z, us](a) = 0.

Therefore (6.26) is true. Now let [y, us](a) =1, [y,u1](a) = [y, us](a) = [y, us4](a) = 0. Then (6.25) gives
(6.32)

[z, u1](a) + ézl (s — ay) = 0.

Hence we have from (6.25) and (6.32) that (6.28) is true and ( 6.31) still holds.

Similar arguments hold in the cases that

a—a) =0, az—ay#0, f1—p1 =0, B2—p5#0,
ar—a) =0, aw—ay#0, fo—py=0, B1—p]#0,
ag—ay =0, a;—ay#0, B;j—p;#0,
ar—ay=0, ag—a]#0, =B =0, Bo—p5#0,
az—ay =0, ay—a;#0, Po—py=0, B1—p#0,
=B =0, B2—p5#0, a;—a;#0,
B2—PBy=0, B1—pB1#0, a;—a;#0.

Note that since « > 0, the case that ay —af =0 and az — a4y = 0 can not occur at the same time. Similarly
since 8 >0, f1 — B8] =0 and B2 — 85 = 0 can not occur at the same time. Consequently Z € E and hence
K{ C T. This completes the proof. O

Note that since Eg = Cy @ F, where F is a finite-dimensional space, K is a closed operator.

6.4. Singular end points a and b
Consider that a and b are singular points for 7 and let the deficiency indices of Ny be (4,4).

Let
Y z
Fo={Y=| 1 |€E [v,2](b) =0, Z=| 21 | €E
Y2 Z2

and Ny be the operator which is the restriction of T to F.

The following theorems can be proved similar with the proofs given in section 6.3.

Theorem 6.7 F is dense in H.

Proof Let y € By. Then Theorem 5.4 implies for y € D that [y,u,](a) = 0 and [y, u,](b) = 0. Therefore
y1 = y2 = 0 and for arbitrary z € D using (2.4) we obtain that [y,z](b) = 0. Hence

Yy
y1 | € Fo.

Y2

<
I
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Consequently for

g
G=| g | €H

g2

which is orthogonal to Fy we have g =0 a.e. on (a,b). Thus for

z
Z = 21 c Fy
22
we have Z 1 G and
1 _ 1
(2,9) = o9 + 52292 =0. (6.33)

Since z1 = aq [y, u1](a) — azly, us](a), and z2 = P1[y, uz|(a) — Ba[y, ua](a) can be chosen as arbitrarily, (6.33) is

satisfied only if g; = go = 0. This implies that Fy is dense in H. O

Theorem 6.8 (i) Ny is symmetric,

(15) N =T.
Proof For
Yy Y
Y=\ w1 |€Fg, Z=| y1 | €FE
Y2 Y2
we have

(No), Z2) = (), TZ2)

and T C N§. Hence Ny is symmetric. This proves ().
Consider that

y zZ
= |eFy, z=| 32 |eF:
Y2 Zo

Then one obtains that
b 1 1
(NGZ,Y) = / (N"2)gwdz + —21 (en[y, il (a) — azlg, us](a)) + 552 (B1[Y, u2l(a) = Ba[y, usl(a)).  (6.34)

and

b

(NGZ,) = (2,NoY) = /

a

__ 1_ _ _ 1_ _ _
Tywdz + 2 (af[7,u1)(a) — ab[7, us)(@) ) + =2 (81 (5, w2l (@) — B3l5, ua)(a)).
o B
(6.35)
Let [y,u,](a) =0, r =1,4. Hence from (6.34), (6.35 ), Theorem 3.4 (i) and Theorem 5.4 we obtain that

~

(N*Z’y) = (ZaNOy) = (Tzay)
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and consequently z € D. Using (6.34) and (6.35) give that

(NG Z,Y) = (2,NoY) = [2,5](b) — [2,7](a)

53 (0 o) — sl wl(@) — 23 (o4 wl0) — bl wl@) (s
+372 (AT el(0) — Bl @) = 55 (3 l(0) — B @) =0

Since [y,z](b) = 0, we obtain from (2.4) and (6.36) that

=z wl(a)[g, usl(a) + [z, us](a) [7, w1l (@) = [z, us](a) [y, ual(a) + [z, ua](a)[7; ua](a)

1. 1. . 1. .
L5105, (@) (01— af) — 235, wsl(0) (02 — ) + S0 ua)0) (51— ) 637
1 = 7 /
—Bzz[y, us)(a) (B2 — B3) = 0.
(6.37) implies that Z € E and hence N§ C T. This completes the proof. O

Note that since Fg = By ® F, where F is a finite-dimensional space, Ny is a closed operator.

7. Deficiency indices of the direct sum operators

We shall remind that a boundary value for the operator L is a continuous linear functional on the Hilbert space
Dom(L*) which vanishes on Dom(L). Let L be a symmetric operator with deficiency indices (m,n). Then

the space of boundary values for L is a Hilbert space of dimension m +n (see [2], p. 1234).

Theorem 7.1 Let a and b be regular points for 7. Then the deficiency indices of Ty are (2,2).

Proof Consider the equation

Y Y
To| v | =i| wn (7.1)
Y2 Y
or equivalently (see Theorem 6.2, (i3))
Ty = 1y,
7 [0] _ 8] _ [0] _ (3]
09 (0) — (@) = i [a1y9) (@) — a2l (0)] (72)

By (@) - Bl (@) = i [B1y1 (@) - Banf ()]
From Theorem 5.1 (i), the equation Ty = 4y has four linearly independent solutions belonging to L2 (a,b).

However only two of them satisfy the equation (7.2). Therefore the first deficiency index of Ty is 2. To obtain

the second one, it is sufficient to get —¢ instead of 7 in (7.1). Therefore the second deficiency index is 2. O
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Theorem 7.2 Let a be regular point and b be singular point fort.

(¢) If the deficiency indices of My are (4,4), then the deficiency indices of My are (2,2).
(ii) If the deficiency indices of My are (3,3), then the deficiency indices of My are (1,1).
(2i1) If the deficiency indices of My are (2,2), then the deficiency indices of Mgare (0,0).

Proof Consider the equation

Y Y
Mg | vi | =i| w0 (7.3)
Y2 Ya
or equivalently (see Theorem 6.4, (i7))
Ty = 1y,
oy a) - aby(a) = i [y (@) — azyf’ (@), (7.4)

Biut(a) — B3 (@) = i [ By (@) — Bavf(a)|

From Theorem 5.1 (4ii), we have that the deficiency indices of My may be (4,4), (3,3) or (2,2). Therefore
two, one or none of them satisfy the conditions given (7.4).

(¢) If the deficiency indices of My are (4,4) then there are four linearly independent solutions of Ty = iy
but only two of them satisfy the equation (7.4). Therefore the first deficience index of My is 2. The second
one follows from taking —i instead of ¢ in (7.3).

(i4) Let the deficiency indices of My be (3,3). This implies that there are six boundary values of M.
Since a is regular for My, four of them occur at a. Hence only two of them are given at b. If the deficiency
indices of M were (2,2) then there would four boundary values at b. Similarly if the deficiency indices of M,
were (0,0), then there would not be any boundary value at b. Consequently the deficiency indices of M, are
(1,1).

(74i) Let the deficiency indices of My be (2,2). The result follows from (i1). O

Theorem 7.3 Let a be singular point and b be reqular point for T and let the deficiency indices of My be
(4,4). Then the deficiency indices of Ko are (2,2).

Proof Consider the equation

Y ()
Kol v | =i ui (7.5)
Y2 Ys
or equivalently (see Theorem 6.6, (i7))
Ty =iy,
aily, wml(a) — ably, us)(a) = ilaafy, wa](a) — azly, usl(a)], (7.6)

Pily, usl(a) — Baly, ual(a) = i [Bi[y, ua](a) — Paly, ual(a)]-
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Since the deficiency indices of My are (4,4), the equation Ty = iy has four linearly independent solutions
2

w

belonging to L2z (a,b). However only two of them satisfy the conditions given in (7.6). Therefore the first

deficiency index of Kg is 2. The second deficiency index follows from (7.5) but taking —i¢ instead of ¢ in (7.5).

Hence the second deficiency index of Kq is 2. O

Theorem 7.4 Let the deficiency indices of No be (4,4). Then the deficiency indices of No are (2,2).

Proof Consider the equation

Y Y
Ny [ | =i w (7.7)
Y2 Ya
or equivalently (see Theorem 6.8, (i))
Ty = iy,
a1y, ur)(a) — ably, us)(a) = ifon [y, w](a) — a2y, usl(a)], (7.8)

Bily, usl(a) = Boly, ual(a) = i [Bi[y, ua](a) — Paly, ual(a)]-

Since the deficiency indices of Ny are (4,4), the equation Ty = iy has four linearly independent solutions
belonging to L2 (a,b). However only two of them satisfy the conditions given in (7.8). Therefore the first
deficiency index of Ny is 2. The second deficiency index follows from (7.7) but taking —i instead of 4 in (7.7).

Hence the second deficiency index of Ny is 2. O

8. Extensions of the operators
In this section, we shall describe all the self-adjoint, dissipative and accumulative extensions of the corresponding
minimal operators. Therefore we shall remind that a linear operator L acting on a Hilbert space H with domain
Dom(L) is called dissipative if

S(Ly,y)g >0, forall ye Dom(L),

and is called accumulative if
S(Ly,y)g <0, forall ye Dom(L).

To describe these (and self-adjoint) extensions, we shall use Gorbachuks’ theorem. In fact, let T’y and T’y
be the linear mappings of D(A*) into the Hilbert space S, where A is a closed symmetric operator with equal
deficiency indices acts in the Hilbert space S;. Then (S,T'1,T'3) is called a space of boundary values (SBV) of
the operator A if
(i) for any f,g € D(A*), (A*f,g)s, — (£, A"g)s, = (U1 £, T2g)s — ('of. Tig)s;

(ii) for every Fy, Fy € S, there exists a vector f € D(A*) such that T’y f = Fy and T'ayf = Fo.

They have introduced the following theorem [7].

Theorem 8.1 For any contraction K in S the restriction of the operator A* to the set of functions f € D(A*)

satisfying the boundary conditions
(K — D1 +i(K + D)Taf =0, (8.1)
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or

(K — DT\ f —i(K + D)Dsf =0, (8.2)

is respectively, a maximal dissipative or maximal accumulative extension of the operator A, where A 1is
the restriction of the operator A* to the domain D(A). Conversely every mazimal dissipative (mazimal
accumulative) extension of A is the restriction of A* to the set of vectors f € D(A*) satisfying (8.1) ((8.2))
and the contraction K is uniquely determined by the extension. These conditions give self-adjoint extension if

K is unitary. In the latter case (8.1) and (8.2) are equivalent to the condition
(cos C)I'\f — (sin C)I',f =0,

where C' is a self-adjoint operator on S. The general form of the dissipative and accumulative extensions of the

operator A is given by the conditions

K(I' f +ilyf) =1 f —ilyf, Inf+ilyf € D(K), (8.3)

K(I\f —ilof) = I'yf +ilyf, Iif —ilsf € D(K), (8.4)
respectively, where K is a linear operator satisfying |Kf|| < ||fll, f € D(K). The general form of symmetric

extensions is given by the formula (8.3) and (8.4), where K is an isometric operator.

We should note that Ismailov and his colleagues studied the self-adjoint extensions of the minimal
symmetric operators with equal deficiency indices (r,r), 0 < r < oo, generated by the ordinary differential
expressions with operator coeffcients [8], [9], [10], [11], [12], [13], [14].

8.1. Extensions in the single Hilbert space

In this section, we shall give the extensions in the single Hilbert space.

Theorem 8.2 Let a and b be reqular points for T and let Ty = (yPl(a), yP(a), 3 (), y1(b)) and
oy = (y%a), y!M(a), yB(b), yPl(b), where y € D. Then the triplet (C*,T'1,T5) is a space of boundary

values of Tp.

Proof From Theorem 3.2 (i) we have that there exists a function y € D satisfying

ym (a) = ¢y, y[r] b =d.,, r=0,3, (8.5)

where ¢, and d, are arbitrary complex numbers. On the other hand for y, x € D, direct calculations give

(Toy, x) = (9, Tox) = [y; X)(0) = [v: X](a) (8.6)

and
(T1y, Tax) = T2y, T1x) = [y, X1(b) — [y, X](a). (8.7)
Therefore (8.5)-(8.7) completes the proof. O
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Theorem 8.3 Let a and b be reqular points for . Then for y € D, the boundary conditions

yO(a) + h,yBl(a) = 0,
yU(a) + hyy(a) = 0,
yBI(b) + hyyl(0) = 0,

yPl(b) + hyytM(b) = 0,

where all Sh,. > 0, all Sh, < 0 and all Sh, = 0 describe all mazimal dissipative, all maximal accumulative

and all maximal self-adjoint extensions, respectively, of the operator Ty.

Theorem 8.4 Let a be regular point and b be singular point fort and let the deficiency indices of My be (4,4).
Moreover consider the mappings Tvy = (y(a), y?(a), [y, u1](b), [y, u2] (b)) and Ty = (y1%(a), y!™(a), [y, us](b), [y, ua] (b)),
where y € D. Then the triplet (C*,T1,Ts) is a space of boundary values of M.

Proof From Theorem 5.7, there exists a function y € D satisfying
yrla) = ¢, lyuwl) =d,, 1<r<4, (88)

where ¢, and d, are complex numbers.

For y,x € D, using Green’s formula and (2.4) we have

(Mgy, x) = (v, Mg x) = [y, X1(0) = [y,X](a) (8.9)

and
Ty, Tax) = T2y, T1x) = [y, X1(b) — [y, X](a). (8.10)
Therefore (8.8)-(8.11) completes the proof. O

Corollary 8.5 Let a be regular point and b be singular point for T and let the deficiency indices of My be
(4,4). Then for y € D, the boundary conditions

ya) + hyyPl(a) = 0,
/(@) + hyyP(a) = 0,
[y’ u3]<b) + hS[y7 ul](b) =0,

[y: ua](0) + hyly, uy](b) = 0,

where all Sh, > 0, all Sh, < 0 and all Sh,. = 0 describe all mazimal dissipative, all maximal accumulative

and all mazimal self-adjoint extensions, respectively, of the operator M.

Using Corollary 5.8 we obtain the following.
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Corollary 8.6 Let a be singular point and b be reqular point for T and let the deficiency indices of My be
(4,4). Then for y € D, the boundary conditions

[y, uyl(a) + hyly, usl(a) = 0,
[y, up](a) + hyly, uy](a) = 0,
yBl(b) + hyyl(b) = 0,
yPl(b) + hyytM(b) = 0,

where all Sh,. > 0, all Sh, < 0 and all Sh, = 0 describe all mazximal dissipative, all maximal accumulative

and all maximal self-adjoint extensions, respectively, of the operator M.

Theorem 8.7 Let a be reqular point and b be singular point for T and let the deficiency indices of My be (2,2).
Moreover let Ty = (y[3] (a),yl? (a)) and Toy = (y[o] (a),ytM (a)), where y € D. Then the triplet ((CQ,Fl,Fz)

1s a space of boundary values of My.
Proof From Theorem 2.1 there exists a function y € D satisfying
y"a)=c,, 0<r<4, (8.11)
where ¢, are complex numbers. Moreover for y, x € D we have
(Mgy, x) — (v, Mg x) = —ly,X](a), (8.12)

since the deficiency indices of My are (2,2) and [y,X](b) =0 from Theorem 5.5 (7). On the other side we get
that
(T1y, Tax) — T2y, Tax) = —[y, XI(a)- (8.13)

Therefore (8.11)-(8.13) completes the proof. O

Corollary 8.8 Let a be regular point and b be singular point for T and let the deficiency indices of My be
(2,2). Then for y € D, the boundary conditions

y[o] (a) + hly[?’] (a) = O’
y[l] (a) + h2y[2] (a) = O7

where all Sh,. > 0, all Sh,. < 0 and all Sh, = 0 describe all mazimal dissipative, all mazximal accumulative

and all maximal self-adjoint extensions, respectively, of the operator M.

Theorem 8.9 Let a and b be singular points for T and let the deficiency indices of Ny be (4,4).
Moreover consider the mappings T'yy = ([y, us](a), [y, ua)(a), [y, u1](b), [y, ug](b)) and
Pay = ([y (@), [y, ua(0), [y, us)(b), [y ua)(b) ), where y € D. Then the triplet (CL,T1,T3) s a space of

boundary values of Ny.
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Proof From Theorem 5.9, there exists a function y € D satisfying
ly,u(a) = vy [y,ur(b) =dp, 1<7 <4, (8.14)

where ¢, and d,. are complex numbers. Using (2.4), we have for y,x € D that

(Mgy,x) — (y, Mgx) = [y, X](b) — [y, X](a) (8.15)

and
Ty, Pax) — (Tay, Fix) = [y, X1(0) — [y, X](a). (8.16)
Therefore (8.14)-(8.16) completes the proof. O

Corollary 8.10 Let a and b be singular points for T and let the deficiency indices of Ng be (4,4). Then for
y € D, the boundary conditions

[ya ul](a) + hl[y, u3](a) =0,
[y, us)(a) + hyly, uy)(a) = 0,
[y, ug](b) + hyly, uy](b) = 0,

[y, U’4](b) + h4[y7 ’U’Q}(b) =0,

where all Sh,. > 0, all Sh, < 0 and all Sh, = 0 describe all mazximal dissipative, all maximal accumulative

and all maximal self-adjoint extensions, respectively, of the operator Ny.

8.2. Extensions in the direct sum Hilbert space

In this section, we shall construct the extensions in the direct sum Hilbert space.
Theorem 8.11 Let a and b be regular points for T and

Yy
Y= Y1 e D.
Y2

Consider the mappings I'1Y = (y[o] (b),y[l](b)) and I'yY = (y[g] (b),y[2](b)>. Then (CQ,Fl,Fg) is a space of

boundary values of T.

Proof T'; and I'y are linear mappings from D into C2. Moreover for y € D we have form Theorem 2.1 that
Yy U0y =d,, 1<r<4, (8.17)

where d, are complex numbers.We have for

y V4
Y= wn |, 2= -1 | €D,
Y2 22
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that
(T, 2) = (V, TG Z) = [y, Z](b). (8.18)
On the other side we get that
(T, T22) — (T2, 1 2) = [y, Z](b). (8.19)
Therefore (8.17)-(8.19) completes the proof. O

Corollary 8.12 Let a and b be reqular points for 7. Then the boundary conditions
yPI(b) + hyy(b) = 0,
yPl(b) + hyyltl(b) = 0,

where all Sh,. > 0, all Sh, < 0 and all Sh, = 0 describe all mazimal dissipative, all maximal accumulative

and all maximal self-adjoint extensions, respectively, of the operator Ty.

Theorem 8.13 Let a be regular point and b be singular point for T and let the deficiency indices of My be
(4,4). Consider the mappings 'Y = ([y, u1](b), [y, u2](b)) and T3y = ([y, us](b), [y, us] (b)), where

Yy
Y= »n | eD.
Y2
Then (C2,T'1,T9) is a space of boundary values of M.
Proof T; and I'y are linear mappings from D into C2. From Theorem 5.7 we have for y € D that the values
[y, u.](b) =d,, r=1,4, (8.20)

where d, are complex numbers, exist. Moreover for

y z

Y= Y1 ,Z = 21 S D,

Y2 22

using (2.4) we obtain

(MY, 2) = (¥, M Z) = [y, z](b) (8.21)
and

([, T2 2) = (02,11 2) = [y, 2] (D). (8.22)

Therefore (8.20)-(8.22) completes the proof. o

Corollary 8.14 Let a be reqular and b be singular point for T and let the deficiency indices of My be (4,4).

Then the boundary conditions
[y, us)(b) + hy [y, wa](b) = 0,

[y, ua] (B) + holy, u2](b) = 0,
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Theorem 8.15 Let a be singular point and b be reqular point for T and let the deficiency indices of My be
(4,4). Consider the mappings 'Y = (y[o](b),y[l](b)> and 'Y = (ym (b),y! (b)), where

Y
V= Y1 cFE.
Y2

Then ((C27F1,F2) s a space of boundary values of Ky.

Proof T'; and I'y are linear mappings from E into C2. From Corollary 5.8, we have for y € D that the

values

yr o) =d,, r=1/4, (8.23)

where d, are complex numbers, exist. We obtain for

y z
y = Y1 )Z = 21 S E7
Y2 22
that
Koy, 2) — (V, KG2) = [y, Z](b) (8.24)
and
(1Y, T22) — (T2, 1M 2) = [y, Z](b). (8.25)
Hence (8.23)-(8.25) completes the proof. O

Corollary 8.16 Let a be singular and b be regular point for T and let the deficiency indices of My be (4,4).

Then the boundary conditions

yPl(b)+h1yPl(0) = 0,
y2(b) + hyyt(b) = 0,

where all Sh, > 0, all Sh, < 0 and all Sk, = 0 describe all maximal dissipative, all maximal accumulative

and all maximal self-adjoint extensions, respectively, of the operator Ng.
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