

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2020) 44: 957 – 959 © TÜBİTAK doi:10.3906/mat-2003-37

Research Article

Erratum to "Study on quasi- Γ -hyperideals in Γ -semihypergroups"

Niovi KEHAYOPULU^{*}

Nikomidias 18, 16122 Kesariani, Greece

Received: 06.03.2020	•	Accepted/Published Online: 06.04.2020	•	Final Version: 08.05.2020
		- ,		

Abstract: We wrote this note to show that the definition of Γ -hypersemigroups in [2] should be corrected, and that it is not enough to replace the hyperoperation \circ of the hypersemigroup by Γ to pass from a hypersemigroup to a Γ -hypersemigroup. Care should be taken about the definitions of (m, n)-quasi- Γ -hyperideal, the *m*-left Γ -hyperideal and the *n*-right Γ -hyperideal as well.

Key words: Γ -semihypergroup, (m, n)-quasi- Γ -hyperideal

According to Definition 1.1 of the paper, "if H and Γ are two nonempty sets, any mapping $H \times \Gamma \times H \to \mathcal{P}^*(H)$ is called a Γ -hypermultiplication in H and denoted by $(\cdot)_{\Gamma}$. The result of this hypermultiplication for $a, b \in H$ and $\alpha \in \Gamma$ is denoted by $a\alpha b$. A Γ -semihypergroup S is an ordered pair $(H, (\cdot)_{\Gamma})$ where H and Γ are nonempty sets and $(\cdot)_{\Gamma}$ is a Γ -hypermultiplication on H which satisfies the following property: For all $(a, b, c, \alpha, \beta) \in H^3 \times \Gamma^2$, $(a\alpha b)\beta c = a\alpha(b\beta c)$. If every $\gamma \in \Gamma$ is an operation, then H is a Γ -semigroup. Let A and B are two nonempty subsets of H. Then, we define

$$A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$
 (*)

So $a\alpha b$ is defined as a nonempty subset of S (as it was expected to be). That being so, the expression of the form $(a\alpha b)\beta c$ should be corrected, there is no sense in the way is stated. According to this definition, "if every $\gamma \in \Gamma$ is an operation", but we have to clarify here what " γ " is an operation means. Is it an operation between elements or an operation between sets? The $A\gamma B$ in (*) shows that γ is an operation between sets while $a\gamma b$ in (*) shows that it is an operation between elements. As a result, the definition of Γ -semihypergroup is wrong and a correct definition of Γ -hypersemigroups is needed.

A Γ -hypersemigroup H is called "regular" [2] if for every $x \in H$ there exists $y \in H$ such that $x \in x\Gamma y\Gamma x$ without any explanation what the $x\Gamma y\Gamma x$ means. What is the $x\Gamma y\Gamma x$? What is the " Γ " in it? It seems like an operation between elements, but even in that case, what is the $x\Gamma y\Gamma x$? According to [2], the most possibly case concerning the concept of regularity is the following: A Γ -hypersemigroup H is called regular if for every $x \in S$, there exist $y \in H$ and $\alpha, \beta \in \Gamma$ such that $x \in x\alpha y\beta x$; but as we already said expression of the form $x\alpha y\beta x$ should be corrected.

²⁰¹⁰ AMS Mathematics Subject Classification: 20M99, 06F05

^{*}Correspondence: nkehayop@math.uoa.gr

KEHAYOPULU/Turk J Math

For the sake of simplicity, throughout the paper, $\underbrace{H\Gamma H\Gamma ...\Gamma H}_{n-\text{times}}$ is denoted by H^n . But what the

 $H\Gamma H\Gamma ...\Gamma H$ means? First of all, do we have the right to write $H\Gamma H\Gamma ...\Gamma H$ without using parentheses? There is nothing about it in the bibliography.

According to Definition 2.2 in [2], a nonempty subset Q of a Γ -semihypergroup H is called (m, n)quasi- Γ -hyperideal of H is $H^m \Gamma Q \cap Q \Gamma H^n \subseteq Q$. This is true for m = n = 1, but what about arbitrary m, n? Considering that this definition is a generalization of the concept of the (m, n)-quasi-ideals of semigroups introduced by Lajos (see, for example [4]), an (m, n)-quasi- Γ -hyperideal should be defined as $Q^m \Gamma H \cap H \Gamma Q^n \subseteq$ Q. The definition of the m-left Γ -hyperideal L is defined as $H^m \Gamma L \subseteq L$; the correct is $L^m \Gamma H \subseteq L$. The n-right Γ -hyperideal of H is defined as $R\Gamma H^n \subseteq R$; the correct is $R^n \Gamma H \subseteq R$. But we have to keep in mind that, for an arbitrary nonempty subset A of S, the A^n is the set $\underbrace{\left(\left((A\Gamma A)\Gamma A\right)\Gamma A\right)\cdots\Gamma A}_{n-\text{times}}$. We are

not in a semigroup or a Γ -semigroup where this is simple. It might be mentioned here that an element q of a poe-groupoid S is called an (m, n)-quasi-ideal element of S if $q^m e \wedge eq^n$ exists in S and $q^m e \wedge eq^n \leq q$ [3] and it is called (0, n) (resp. (m, 0))-ideal element of S if $ea^n \leq a$ (resp. $a^m e \leq a$) [3]. Every (m, 0)-ideal element is a (m, 0)-quasi-ideal and every (0, n)-ideal element is a (0, n)-quasi-ideal element.

In what follows, the aim is to show that is not enough to pass from a semigroup to a hypersemigroup by replacing the multiplication " \cdot " of the semigroup by the hyperoperation " \circ " and to pass from a hypersemigroup to a Γ -hypersemigroup replacing the " \circ " by " Γ ".

The paper in [2] is the paper in [1] with the only difference that the hypeoperation \circ in [1] has been replaced by Γ in [2].

In fact,

Lemma 2.1 in [2] is the Lemma 2.10 in [1];

Proposition 2.1 in [2] is the Proposition 2.11 in [1];

Theorem 2.1 in [2] is the Proposition 2.10 in [1];

Theorem 2.2 in [2] is the Theorem 2.14 in [1];

Theorem 2.3 in [2] is the Theorem 2.16 in [1];

Theorem 2.4 in [2] is the Theorem 2.17 in [1];

Theorem 2.5 in [2] is the Theorem 2.18 in [1];

Theorem 2.6 in [2] is the Theorem 2.19 in [1];

Proposition 2.3 in [2] is the Proposition 2.20 in [1];

Theorem 2.7 in [2] is the Theorem 2.21 in [1];

Proposition 2.3 in [2] is the Proposition 2.22 in [1];

Lemma 3.1 in [2] is the Lemma 3.4 in [1];

Theorem 3.1 in [2] is the Theorem 3.5 in [1];

Corollary 3.1 in [2] is the Corollary 3.6 in [1];

Theorem 3.2 in [2] is the Theorem 3.7 in [1];

Theorem 3.3 in [2] is the Theorem 3.11 in [1];

Theorem 3.4 in [2] is the Theorem 3.12 in [1].

KEHAYOPULU/Turk J Math

The definition of quasi-hyperideals and the definitions of m-left and n-right hyperideals of semihypergroups in [1] should be also corrected; in addition, except of Theorem 2.14, Theorem 2.17 (and the Examples), the results of section 2 in [1] duplicates, without citation, the paper "A note on (m, n)-quasi-ideals in semigroup" by Moin A. Ansari, M. Rais Khan, J. P. Kaushik in International Journal of Mathematical Analysis 3 (2009), 1853-1858 (with the usual change), that is a further indication that is not enough to pass from a semigroup to a hypersemigroup just replacing the \cdot by \circ ; but this is out of the scope of the present note.

The definition of Γ -hypersemigroups, the regularity, and related information has been given by the author of the present note in the paper "Lattice ordered semigroups and Γ -hypersemigroups" submitted to Turkish Journal of Mathematics.

References

- Hila K, Davvaz B, Naka K. On quasi-hyperideals in semihypergroups. Communications in Algebra 2011; 39: 4183-4194.
- [2] Hila K, Abdullah S, Naka K. Study on quasi-Γ-hyperideals in Γ-semihypergroups. Asian-European Journal of Mathematics 2019; 12: 14 pages.
- [3] Kehayopulu N. Generalized ideal elements in *poe*-semigroups. Semigroup Forum 1982; 25: 213-222.
- [4] Lajos S. Generalize ideals in semigroups. Acta Scientiarum Mathematicarum 1961; 22: 217-222.