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Abstract: A time-fractional space-nonlocal reaction-diffusion equation in a bounded domain is considered. First,
the existence of a unique local mild solution is proved. Applying Poincaré inequality it is obtained the existence and
boundedness of global classical solution for small initial data. Under some conditions on the initial data, we show that
solutions may experience blow-up in a finite time.
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1. Introduction
The purpose of this paper is to study Cauchy problem for the time-fractional space-nonlocal reaction-diffusion
equation

∂α
+0,tu(x, t)− uxx(x, t) + εuxx(1− x, t) = u(x, t)(u(x, t)− 1), x ∈ (0, 1), t > 0, (1.1)

supplemented with boundary conditions

u(0, t) = 0, u(1, t) = 0, t ≥ 0, (1.2)

and initial condition
u(x, 0) = u0(x), x ∈ [0, 1], (1.3)

where ε ∈ R, ∂α
+0,t is the Caputo fractional derivative of order α ∈ (0, 1] (see. Def. 1.3).

When 0 < α < 1 and ε = 0, equation (1.1) is the time-fractional reaction-diffusion equation. When
α = 1, ε = 0, it represents the classical reaction-diffusion equation. Let us mention that with the change of
variable v := 1− u, (1.1) is transformed to the Fisher equation, if α = 1, ε = 0.

Differential equations with modified arguments are equations in which the unknown function and its
derivatives are evaluated with modifications of time or space variables; such equations are called, in general,
functional differential equations. Among such equations, one can single out, equations with involutions [7, 14].
Furthermore, for the equations containing transformation of the spatial variable in the diffusion term, we can
cite Cabada and Tojo [8], where an example that describes a concrete situation in physics is given. Note that,
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the direct and inverse problems for diffusion and fractional diffusion equations with involutions were studied in
[4, 5, 12, 13].

Our paper is motivated by the recent paper [1] in which the authors considered the questions of global
solutions and blowing-up solutions to the equation (1.1), when ε = 0. Our problem (1.1)-(1.3) is a simple
generalization of results in [1]. We will prove the existence of globally bounded solutions, as well as blowing-up
solutions, according to the condition imposed on the initial data. Note that, similar studies for time-fractional
reaction-diffusion equations were considered in [3, 9].

Thus, let us briefly summarise the results of this paper:

• Existence of local mild solution Suppose that |ε| < 1 and u0 ∈ C([0, 1]), then there exists a unique
local mild solution u ∈ C([0, 1], C(0, Tmax)) of problem (1.1)-(1.3) with the alternative:

• either Tmax = +∞;

• or Tmax < +∞ and lim
t→Tmax

∥u(t)∥L∞([0,1]) = +∞.

• Existence of global classical solution Let |ε| < 1 and u0(x) ∈ C([0, 1]) satisfy the estimates 0 ≤
u0(x) ≤ 1. Then problem (1.1)-(1.3) admits a global classical solution

u ∈ C2,1((0, 1)× R+) ∩ C([0, 1]× R+),

that satisfies
0 ≤ u(x, t) ≤ 1 for (x, t) ∈ [0, 1]× R+.

• Large time behavior of global solutions Assume that |ε| < 1, 0 ≤ u0 ≤ 1 and u0 ∈ C([0, 1]). Then the
global classical solution 0 ≤ u ≤ 1 of nonlocal reaction-diffusion problem (1.1)-(1.3) satisfies the following
estimate

∥u(t, ·)∥2L2([0,1]) ≤
∥u0∥2L2([0,1])

1 + (1−ε)π2

Γ(1+α) t
α
, t ≥ 0. (1.4)

• Blow-up of solution Let |ε| < 1. If 1 + (1 − ε)π2 ≤
√
2

1∫
0

u0(x) sinπxdx = F0, then the classical solution

of problem (1.1)-(1.3) blows-up in a finite time

(
Γ(α+ 1)

4(F0 − 1/2− (1− ε)π2)

) 1
α

≤ T ∗ ≤
(

Γ(α+ 1)

F0 − 1− (1− ε)π2

) 1
α

.

1.1. Preliminaries
Let us give basic definitions of fractional differentiation and integration of the Riemann–Liouville and Caputo
types.

Definition 1.1 [11] Let f be an integrable real-valued function on the interval [a, b], −∞ < a < b < +∞ . The
following integral

Iαa+ [f ] (t) = (f ∗Kα) (t) =
1

Γ (α)

t∫
a

(t− s)
α−1

f (s)ds
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is called the Riemann–Liouville integral operator of the fractional order α > 0. Here Kα = tα−1

Γ(α) , Γ denotes the

Euler gamma function.

Definition 1.2 [11] Let f ∈ L1([a, b]) and f ∗ K1−α ∈ W 1,1([a, b]), where W 1,1([a, b]) is the Sobolev space
defined as

W 1,1([a, b]) =

{
f ∈ L1([a, b]) :

d

dt
f ∈ L1([a, b])

}
.

The Riemann–Liouville fractional derivative of order 0 < α < 1 is defined as

Dα
a+ [f ] (t) =

d

dt
I1−α
a+ [f ] (t).

Definition 1.3 [11] Let f ∈ L1([a, b]) and f ∗K1−α ∈ W 1,1([a, b]). For 0 < α < 1, the fractional derivative

Dα
a+ [f ] (t) = Dα

a+ [f (t)− f (a)]

is the differential operator of the fractional order α (0 < α < 1) in the Caputo sense.
If f ∈ C1([a, b]) , then the Caputo fractional derivative is defined as

Dα
a+ [f ] (t) = I1−α

a+ f ′ (t) .

Proposition 1.4 [2] Let v ∈ C1([0, T ]). Then

2v(t)∂α
+0v(t) ≥ ∂α

+0v
2(t).

1.2. Finite time blow-up of solutions of a fractional differential equation
We consider the fractional differential equation

∂α
0+y(t) = y2(t), t > 0, 0 < α < 1,

y(0) = y0 ∈ R.
(1.5)

The blow-up of solutions to (1.5) is assured by the following.

Proposition 1.5 [10] If y0 > 0, then the solution of problem (1.5) blows-up in a finite time(
Γ(α+ 1)

4(y0 + 1/2)

) 1
α

≤ T ∗ ≤
(
Γ(α+ 1)

y0

) 1
α

,

that is lim
t→T∗

u(t) = +∞.

1.3. Poincaré inequality for the differential operator with involution
We consider the following eigenvalue problem

−e′′(x) + εe′′(1− x) = λe(x), x ∈ (0, 1),

e(0) = 0, e(1) = 0,
(1.6)

where ε ∈ R.
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Proposition 1.6 [13] Let |ε| < 1. Then, the eigenvalue problem (1.6) is a selfadjoint in L2([0, 1]) and it has
the eigenvalues

λk = (1 + (−1)kε)π2k2, k ∈ N,

and corresponding eigenfunctions
ek(x) =

√
2 sinπkx, k ∈ N

which form a complete orthonormal basis in L2([0, 1]).

Below we give the Poincaré inequality for the eigenvalue problem (1.6).

Proposition 1.7 Let |ε| < 1. Then the following inequality is true

1∫
0

|e′(x)|2dx ≥ π2

1∫
0

e2(x)dx ≥ 0. (1.7)

Proof Multiplying scalarly in L2([0, 1]) equation (1.6) by e(x) and integrating by part, we obtain

−λ

1∫
0

e2(x)dx =

1∫
0

e′′(x)e(x)dx− ε

1∫
0

e′′(1− x)e(x)dx

= −
1∫

0

e′(x)e′(x)dx+ ε

1∫
0

e′(1− x)e′(x)dx

≤ −
1∫

0

e′(x)e′(x)dx+ |ε|
1∫

0

e′(1− x)e′(x)dx

≤ −
1∫

0

|e′(x)|2dx+ |ε|

 1∫
0

|e′(x)|2dx

1/2  1∫
0

|e′(1− x)|2dx

1/2

= −(1− |ε|)
1∫

0

|e′(x)|2dx,

thanks to Cauchy-Schwarz inequality, that is

λ

1∫
0

e2(x)dx ≤ (1− |ε|)
1∫

0

|e′(x)|2dx.

Since λ ≥ λ1 = (1− ε)π2, we have

1∫
0

|e′(x)|2dx ≥ (1− ε)

(1− |ε|)
π2

1∫
0

e2(x)dx ≥ π2

1∫
0

e2(x)dx.

The proof is complete. 2
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2. Existence of local mild solutions
By L we denote L2 realization of the operator (1.6), is given by the standard operator calculus for selfadjoint
operators.

Definition 2.1 Let u0 ∈ C([0, 1]) and Tmax > 0. We say u ∈ C([0, 1], C(0, Tmax)) is a mild solution of
(1.1)-(1.3) if u satisfies the following integral equation

u(t) = Eα,1(−tαL)u0 +

t∫
0

sα−1Eα,α(−sαL)f(u(t− s))ds, t ∈ (0, Tmax), (2.1)

where f(u(s)) = u(s)(u(s)− 1) and Eα,β(z) is the Mittag-Leffler function (see, e.g. [11]):

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
.

Theorem 2.2 Suppose that uo ∈ C([0, 1]), then there exists a unique local mild solution u ∈ C([0, 1], C(0, Tmax))

of problem (1.1)-(1.3) with the alternative:

• either Tmax = +∞;

• or Tmax < +∞ and lim
t→Tmax

∥u(t)∥L∞([0,1]) = +∞.

Proof The following properties [6]

0 < Eα,1(−z) ≤ 1, 0 < Eα,α(−z) ≤ 1

Γ(α)
, z ≥ 0, 0 < α ≤ 1,

implies that
∥Eα,1(−tαL)u0∥L∞([0,1]) ≤ ∥u0∥L∞([0,1]) (2.2)

and

∥Eα,α(−tαL)u0∥L∞([0,1]) ≤
1

Γ(α)
∥u0∥L∞([0,1]). (2.3)

The proof is based on Banach fixed point theorem. Let us define the following Banach space

B =

{
u ∈ C([0, τ ] : C([0, 1])) : sup

t∈[0,τ ]

∥u(t)∥L∞([0,1]) ≤ 2∥u0∥L∞([0,1]),

}

where τ will be determined later. We consider the equation

Iu(t) ≡ Eα,1(−tαL)u0 +

t∫
0

sα−1Eα,α(−sαL)f(u(t− s))ds = u(t), t ∈ [0, τ ].

Note that f(u(t− s)) = u(t− s)(u(t− s)− 1) is locally Lipschitzian function.
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Firstly, we need to show that I : B → B. Let there exist τ such that the following inequality holds

∥f(u(t))∥L∞([0,1]) ≤ M∥u(t)∥L∞([0,1]), M > 0. (2.4)

If u ∈ B, then by (2.2), (2.3) and (2.4), we obtain

∥Iu(t)∥L∞([0,τ ],L∞([0,1])) ≤ ∥Eα,1(−tαL)u0∥L∞([0,τ ],L∞([0,1]))

+
τα

α
∥Eα,α(−sαL)f(u)∥L∞([0,τ ];L∞([0,1]))

≤ ∥u0∥L∞([0,1]) +
2Mτα

Γ(α+ 1)
∥u0∥L∞([0,1]).

Now, choosing τ small enough such that τα ≤ Γ(α+1)
2M , we conclude that

∥Iu(t)∥L∞([0,τ ];L∞([0,1])) ≤ 2∥u0∥L∞([0,1]),

and then Iu(t) ∈ B.
Next, we show that I is a contraction map. Letting u, v ∈ B, we have

∥Iu(t)− Iv(t)∥L∞([0,1]) ≤
tα

Γ(α+ 1)
sup

0≤s≤t
∥f(u(t− s))− f(v(t− s))∥L∞([0,1])

≤ tαM

Γ(α+ 1)
sup

0≤s≤t
∥u(t− s)− v(t− s)∥L∞([0,1])

thanks to the locally Lipschitz property of function f. Consequently

∥Iu− Iv∥L∞([0,τ ],L∞([0,1])) ≤
ταM

Γ(α+ 1)
∥u− v∥L∞([0,τ ],L∞([0,1]))

Chosen τ so that ταM
Γ(α+1) < 1, we conclude that I the contraction map on B. So, by the Banach fixed point

theorem, problem (2.1) admits a unique mild solution u ∈ B. 2

3. Existence of global solutions

Theorem 3.1 Let |ε| < 1 and u0(x) ∈ C([0, 1]) satisfy the estimates 0 ≤ u0(x) ≤ 1. Then problem (1.1)-(1.3)
admits a global classical solution

u ∈ C2,1((0, 1)× R+) ∩ C([0, 1]× R+),

that satisfies
0 ≤ u(x, t) ≤ 1 for (x, t) ∈ [0, 1]× R+.

Proof Firstly, we show that u ≥ 0. Multiplying scalarly in L2([0, 1]) equation (1.1) by ũ := min (u, 0) , we
obtain

1∫
0

∂α
+0,tũ(x, t) · ũ(x, t)dx−

1∫
0

ũxx(x, t) · ũ(x, t)dx+ ε

1∫
0

ũxx(1− x, t) · ũ(x, t)dx

=

1∫
0

ũ2(x, t) (ũ(x, t)− 1) dx.
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Integrating by part and using Poincaré’s inequality (1.7) imply

−
1∫

0

ũxx(x, t) · ũ(x, t)dx+ ε

1∫
0

ũxx(1− x, t) · ũ(x, t)dx ≤ 0

for |ε| < 1. Then, using Proposition 1.4, we have

∂α
+0,t

1∫
0

ũ2 (x, t) dx ≲
1∫

0

ũ2 (x, t) dx. (3.1)

By denoting
1∫
0

ũ2 (x, t) dx = E(t) in (3.1), we obtain

{
∂α
+0E(t) ≲ E(t),

E(0) = 0,

which implies
1∫
0

ũ2 (x, t) dx = 0. Consequently u ≥ 0.

Now we show that u ≤ 1. Multiplying scalarly in L2([0, 1]) equation (1.1) by û := min (1− u, 0) , we get

1∫
0

∂α
+0,tû(x, t) · û(x, t)dx−

1∫
0

ûxx(x, t) · û(x, t)dx+ ε

1∫
0

ûxx(1− x, t) · û(x, t)dx

=

1∫
0

û2(x, t) (û(x, t)− 1) dx.

As the above calculations, for the function û := min (1− u, 0) we have

∂α
+0,t

1∫
0

û2 (x, t) dx ≲
1∫

0

û2 (x, t) dx.

Hence
1∫
0

û2 (x, t) dx = 0, which implies u ≤ 1. The result follows as 0 ≤ u ≤ 1. 2

3.1. Large time behavior of global solutions

Theorem 3.2 Assume that 0 ≤ u0 ≤ 1 and u0 ∈ C([0, 1]). Then the global classical solution 0 ≤ u ≤ 1 of
nonlocal reaction-diffusion problem (1.1)-(1.3) satisfies the following estimate

∥u(t, ·)∥2L2([0,1]) ≤
∥u0∥2L2([0,1])

1 + (1−ε)π2

Γ(1+α) t
α
, t ≥ 0. (3.2)
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Proof As 0 ≤ u ≤ 1 , the right hand side of (1.1) satisfies −u+ u2 < 0, so u satisfies

∂α
+0,tu(x, t)− uxx(x, t) + εuxx(1− x, t) ≤ 0, x ∈ (0, 1), t > 0,

u(0, t) = 0, u(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ [0, 1],

By multiplying scalarly in L2([0, 1]) equation (1.1) by u and using Poincaré’s inequality (1.7), we obtain

∂αE(t) + (1− ε)π2E(t) ≤ 0, t > 0,

E(0) = E0 = ∥u0∥2L2([0,1]) ≥ 0.

where E(t) =
1∫
0

u2(x, t)dx. Let Ē(t) be the solution of problem

∂αĒ(t) + (1− ε)π2Ē(t) = 0, t > 0, Ē(0) = E0 ≥ 0,

which has the unique solution

E(t) ≤ E0Eα(−(1− ε)π2tα), t ≥ 0,

where Eα,1(z) is the Mittag-Leffler function. Since E(t) ≤ Ē(t), then, using the following estimate for the
Mittag-Leffler function (see [6])

Eα(−z) ≤ 1

1 + 1
Γ(1+α)z

, z ≥ 0, 0 < α ≤ 1,

we have

E(t) ≤ E0

1 + (1−ε)π2

Γ(1+α) t
α
, t ≥ 0.

The proof is complete. 2

4. Blow-up of solutions

In [13] it was proved that the first eigenvalue and the first eigenfunction of problem (1.6), respectively, have the

form λ1 = (1− ε)π2 and e1(x) =
√
2 sinπx, where

1∫
0

e1(x)dx = 1.

Theorem 4.1 If 1+(1−ε)π2 ≤
1∫
0

u0(x)e1(x)dx = F0, then the classical solution of problem (1.1)-(1.3) blows-up

in a finite time (
Γ(α+ 1)

4(F0 − 1/2− (1− ε)π2)

) 1
α

≤ T ∗ ≤
(

Γ(α+ 1)

F0 − 1− (1− ε)π2

) 1
α

.
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Proof Multiplying equation (1.1) by e1(x) and integrating over [0, 1], leads to

∂α

1∫
0

u(x, t)e1(x)dx+

1∫
0

uxx(x, t)e1(x)dx− ε

1∫
0

uxx(1− x, t)e1(x)dx

=

1∫
0

u(x, t) (u(x, t)− 1) e1(x)dx.

(4.1)

Let us set F (t) =
1∫
0

u(x, t)e1(x)dx.

Since
1∫

0

(uxx(x, t)− εuxx(1− x, t))e1(x)dx =

1∫
0

u(x, t)(e′′1(x)− εe′′1(1− x))dx

= −λ1

1∫
0

u(x, t)e1(x)dx,

for u(0, t) = u(1, t) = 0, e1(0) = e1(1) = 0, and

F 2(t) ≤
1∫

0

u2(x, t)e1(x)dx

via Hölder’s inequality, we have for (4.1) that

∂αF (t) + (1 + λ1)F (t) ≥ F 2(t). (4.2)

Let F̃ (t) = F (t)− (1 + λ1), then from (4.2) we get

∂αF̃ (t) ≥ F̃ (t)
(
F̃ (t) + 1 + λ1

)
≥ F̃ 2(t). (4.3)

Since 0 ≤ F̃0 = F̃ (0), from the results in [10] (see Proposition 1.5) the solution of inequality (4.3) blows-up in
a finite time. 2
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