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Abstract: Let f be a continuous function which is periodic with respect to the hexagon lattice, and let A be a lower

triangular infinite matrix of nonnegative real numbers with nonincreasing rows. The degree of approximation of the

function f by matrix means T (f) of its hexagonal Fourier series is estimated in terms of the modulus of continuity

of f.
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1. Introduction

Estimation of the degree of approximation is one of the most important problems in approximation theory.
Especially, mathematicians are interested in the degree of approximation of periodic functions. Fourier series
and their summation methods are most useful tools in study of approximation problems of such functions. The
degree of approximation by Cesaro, Norlund, Riesz, and more general matrix means of trigonometric Fourier
series of continuous 27— periodic functions was investigated by many authors in recent decades (see, for example
[1, 2,9, 10, 13, 14, 18, 19]).

Investigation of the degree of approximation of functions of several real variables is also important.
Summation methods of multiple trigonometric Fourier series are used for studying approximation problems of
such functions (see, for example [15-17]), [20, Sections 5.3 and 6.3], [23, Vol II, Chapter XVII], [22, Part 2]. In
all of these studies it was assumed that the functions are 27— periodic in each of their variables.

Approximation problems on nontensor product domains, for example on hexagonal domains of R?, are
studied by using another kind of periodicity. The periodicity defined by lattices allows us to study approximation
problems on such domains. In the Euclidean plane RZ, besides the standard lattice Z? and the rectangular

domain [—%7 %)2 , the simplest lattice is the hexagon lattice and the simplest spectral set is the regular hexagon.
The hexagon lattice has importance, since it offers the densest packing of the plane with unit circles. Now, we
give basic information about hexagonal lattice and hexagonal Fourier series. More detailed information can be
found in [11] and [21].

The generator matrix and the spectral set of the hexagonal lattice HZ? are given by

- (41)
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and

3 1
Qg = {(:L’l,xg) € R2 =1 < xo, gxl + 5.%2 < 1} .
It is more convenient to use the homogeneous coordinates (t1,ts,t3) that satisfies t1 + to +t3 = 0. As it is

pointed out in [21], using homogeneous coordinates reveals symmetry in various formulas. If we set

T2 \/gacl 2 \/3951

t = —— — 1y = ta i= —— —
1 2-1- 5 v b2 Ta, t3 5 5

the hexagon Qp becomes
Q= {(t1,ta,t3) €R®: =1 <y, by, —t5 <1, 1y + 1y + L3 =0},

which is the intersection of the plane t, + t5 + t3 = 0 with the cube [—1,1]°.

We use bold letters t for homogeneous coordinates and we set
R‘i] = {t = (tl,tg,t3) S R3 : t1 +i2+ 13 = 0}

and
73 =72 NR3,.

A function f:R? — C is called H—periodic (or periodic with respect to the hexagon lattice) if
f @+ Hk) = f (2)
for all k € Z? and z € R2. If we define t =s (mod3) as
t1 — 81 =tg — 82 =tz — s3 (Mmod3)

for t = (t1,t2,t3), s = (s1,82,83)€ R%,, it follows that the function f is H—periodic if and only if
f(t) = f(t+s) whenever s =0 (mod3), and

/f(t+s)dt:/f(t)dt (s eRY)
Q Q

for H—periodic integrable function f [21].

L? (Q) becomes a Hilbert space with respect to the inner product
1 _
(f.9)y = 9] f(t) g (t)dt,
Q

where || denotes the area of 2. The functions

27

g (t) =309 (teRY),
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where (j, t) is the usual Euclidean inner product of j and t, are H—periodic, and by a theorem of B. Fuglede,
the set

{e;:ieziy}
becomes an orthonormal basis of L? () [3] (see also [11]).

For every natural number n, we define a subset of Z%; by

Hy, == {j = (j1,j2,J3) € Z} : —n < ji1, ja, js < n}.
The subspace
M, =span{p;:je€ H,} (neN)

has dimension #H,, = 3n% +3n + 1, and its members are called hexagonal trigonometric polynomials of degree
n.

The hexagonal Fourier series of an H—periodic function f € L (Q) is
t)~ > fies (t), (1.1)
jezy,
where
. 1 - . .
fim g [1©a W0 Gezh).
Q
The nth hexagonal partial sum of the series (1.1) is defined by
)i=>_ fipi(t) (neN).
jeHR

It is clear that
S () (6) = ;“/f (t — w) Dy (w) du,

where
=) ¢t
JjeH,

is the Dirichlet kernel of order n.
It is known that the Dirichlet kernel can be expressed as

Dn(t) =0, (t) — 01 (t) (n>1), (1.2)

where
(n-‘,—l)(f,l—tg)ﬂ' . (n+1)(t2—t3)7r . (n+1)(t3—t1)ﬂ'
n Sin Sin
O, (t) = 3 3 3 (1.3)

. (1t . (ta—t . (ta—t
sm(l32)7Ts1n(233‘)‘”3111(3‘31)7r

for t = (tl,tQ,t:j) € R%—I [11] .
The degree of approximation of H— periodic continuous functions by Cesaro, Riesz, and Noérlund means
of their hexagonal Fourier series was investigated by the author in [4-8]. In the present paper, approximation

properties of more general means of hexagonal Fourier series are studied and generalizations of previous results
are obtained.
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2. Main results
Let Cy (ﬁ) be the Banach space of complex valued H —periodic continuous functions defined on R%;, whose

norm is the uniform norm:

1l @) = sup {If (®)] : t € O}
The modulus of continuity of the function f € Cy (Q) is defined by

WH (.fa 5) ‘= sup Hf - f( +t)||CH(§)7

0<|It][<é

where
[t]] := max {[t], [t2], [ts|}

for t = (t1,t2,t3) € R%. wy (f,-) is a nonnegative and nondecreasing function, and satisfies

for A >0 [21].
A function f € Cy (ﬁ) is said to belong to the Holder space H® (ﬁ) O<a<l)if

A® (f) - sup'f(t) — f(S)|

< 0
s It —s[”

H~ (ﬁ) becomes a Banach space with respect to the Hélder norm
1AW e @) = 1Nl (@) + A" () -

Let A= (ank) (n,k=0,1,...) be a lower triangular infinite matrix of real numbers. The A—transform

of the sequence (S, (f)) of partial sums the series (1.1) is defined by
TV () (£) = Y JansSk () (£) (n€N).
k=0

We shall assume that the lower triangular matrix A = (a, %) satisfies the conditions

k>0 (n=0,1,..,0 <k <n), (2.2)
Qn, k Zan,k—‘rl (TLZO,l,,OSkSTL*]_), (23)
and
Y tnp=1(n=01,.). (2.4)
k=0
Further, we use the notations
k
An,k = Zan,u (0 <k< n), An (u) = An,[u] y n (U) = Qp ) (u > 0) ’
v=0
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where [u] denotes the integer part of w.

In the rest of the paper, the relation z < y will mean that there exists an absolute constant ¢ > 0 such
that = < cy holds for quantities x and y.

Main results of this paper are the following.

Theorem 2.1 Let f € Cy (Q) and let A= (ani) (n,k=0,1,...) be a lower triangular infinite matriz of real
numbers which satisfies (2.2), (2.3), and (2.4). Then the estimate

| =i )] ~wn (f,1/k)

() <log(n+1) ;TAM (n € N) (2.5)

holds.

Corollary 2.2 Let f € H* (Q) (0 < a <1) and let the matriz A = (anx) (n,k=0,1,...) satisfies conditions
of Theorem 1. Then we have
- An,k:

|7 =7 (f)HCH(ﬁ) Slog(n+1)Y 7% (neN). (2.6)
k=1

Theorem 2.3 Let 0 < f < a <1, f € H® (ﬁ) and let A = (an) (n,k=0,1,...) be a lower triangular
infinite matriz of real numbers which satisfies (2.2), (2.3), and (2.4). Then,

|- )

<log(n+1) iﬂ e Zn:A"»’“ o (n €N) (2.7)
o) < k =UaS | |

k=1

For means of trigonometric Fourier series of continuous 27— periodic functions, analogue of Theorem 1
was proved in [2] and analogue of Theorem 2 was proved in [14]. In these theorems, analogues of estimates (2.5)

and (2.7) do not contain the multiplier log (n +1).

3. Proofs of main results

Proof [Proof of Theorem 2.1] It is clear that

O -1 (0] < g [1£0 =7t =w][S 0D ()] du
Q k=0
1 n
S T / (. ol) [y ()]

If we set ©_1 (u) :=0, by (1.2) we get

/ wi (f, [ul)

Q

du = / wi (f, Jul) du.

Q

Zan,ka (u)
k=0

Zan,k (Ok (0) — Ok_1 (u))
k=0
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The function

t = wa (f 1t]) D> _ank (O (£) — Or_1 (t))

k=0

is symmetric with respect to variables t1,ta, and ¢35, where t = (t1,t2,t3) € 2. Hence it is sufficient to estimate

the integral over the triangle

A o ={t=(t,ta,t3) ERY 10 <ty g, —t3 < 1}

= {(tlatQ):t1207 t2207 tl+t2§1},

which is one of the six equilateral triangles in Q. By considering the formula (1.3), we obtain

Jeon (218D

iamk (®k (t) —Or_1 (t)) dt
k=0

A
. sin BV —t)r G (D —ta)r ) (K1) (t=t))m
(it ... Ga—ta)7 . (z—t~
sin sin sin
= /WH (fa t1 + t2) E Qn K k(b St)w . k(te—ta)w . k(ig—t)w dt.
_s1n 3 sin 3 sin 3
A k=0 sin (t1*3t2)7" sin (t2*3f3)7r sin <t373t1>w
If we use the change of variables
ty —t3 2t + 1o to —t3 1+ 2o
51 = = s 52 = = 5 (3,1)
3 3 3 3

the integral becomes

3/wH (f,Sl +82)

A

dSldSQ,

n sin((k+1)(s1—s2)m) sin((k+1)som) sin((k+1)(—s17))
Za A sin((s1—s2)m) sin(sam) sin(—sy17)
n, __sin(k(s1—s2)m) sin(ksam) sin(k(—=s17))
k=0

sin((s1—s2)7) sin(sam) sin(—sym)

where A is the image of A in the plane, that is

A= {(s1,52) : 0 <51 <259, 0< 53 <251, 51+ 52 < 1}.

Since the integrated function is symmetric with respect to s; and s,, estimating the integral over the triangle
A* = {(81,82) EA:s < 52} = {(s1,82) 1 51 <52 <251, 51+ 52 < 1},

which is the half of 87 will be sufficient. The change of variables

5= (51 ;U27 - U1 + ug (3.2)

transforms the triangle A* to the triangle
I':= {(ul,ug):OSugg—, Ogulgl}.
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Thus, we have to estimate the integral

dU1 dUQ,

n
> an i Dj (u1, u2)

k=0

Iy = /WH (fyu1)

T

where

Di (un,un) = sin ((k + 1) (ug) ) sin ((k + 1) 27y sin ((k + 1) (“5%2 7))
k ) sin ((uz) ﬂ-) sin (m;uz ﬂ.) sin (ulqu 77)
_sin (k (ug) ) sin (kww) sin (k (%ﬂ.)) |

sin ((UQ) 7r) sin (u1;u2 7T) sin (u1 E’MQ 71')

By elementary trigonometric identities, we obtain
Dy (u1,u2) = Dy 4 (u1,u2) + Dy o (u1,u2) + Dy, 5 (u1,u2)

where

1
Dy (u1,uz) @ =2cos <(k + 2) uzﬂ)

)i (51 ) s (41 )
sin (ug) sin (%W) sin (%w)

1
Dy 5 (u1,uz) - 2cos<<k+2) ul—;u27r)

)

sin (kupr) sin (5152 7) sin ((k + 1) *15*27)

s vz i (7] s (557

)

and

1 _
DZ,:& (up,ug) : =2cos ((k—i— 2) “ 5 u27r>

sin (kug) sin (k242 1) sin (4 9542 7)

sin (ug7) sin (%W) sin (“1;2“270

We partition the triangle I' as I' =11 UT's UT'3, where

1
ry : :{(ul,uQ)GF:ulg }7

n+1
Iy + =4( yeTl:u > 1 1
2 I = Ui, U2 .ul_n+17u2_3(n+1) ,
Iy @ =4 )yel: >_ L > __ 1
3 = U1, U2 .ul_n+17u2_3(n+l) .
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Hence, I, = I, 1 + I 2 + I, 3, where

In,j = /WH (f,u)

Zan,kD,’; (u1,u9)|durdusy (j =1,2,3).

T, k=0
We shall use the inequalities
sinnt
4
sng | S (nEN), (3.4)
and
sint > 2t <0<t<f) (3.5)
jeil T b —_ —_ 2 .

to estimate integrals I, 1,1, 2, and I, 3. By (3.4),

n
> an i Djs (u1, uz)

I’ﬂ,l = /UJH (fvul) duldu2
T k=0
< /WH frur) (Z (k+1) an,k> duidus
T k=0
3(’L+1) n+1 1
< n+1 / /wH (f,u1) durdus < wpg <f’n+1>
0 3us
If we divide I'y into two parts as
an,0
r, : = I's: <
2 {(Ul,UQ)G 2 u2_3(n+1)},
Ty ¢ = (up,up) €Ty rup > 0 L
2 {(Ul U2) 2 U2 2 3(n—|—1)

we have I, 2 = I}, 5 + I 5, where

n,2»

n
> an i Dj (u1,u2)

17/1,2 = /WH (f,u1) duidug
T k=0
and
I;LIQ - /wH faul Zan ka (Ul,uz) duidus.
l‘\//
We also need the inequality
wnlhd) penlh0) (5 gy (36)

0o - 01
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which is obtained from (2.1). By (3.5) and (3.6),

n
/WH (fu1) Zan,kD;;,l (u1, u2)| durdus
T k=0
2
An,0
3(n+1) 1 1 (f )
An 0 wWH U1
< du dus n’ / " du
~ / / ! —3 (n+1) u? !
0 1 1
CES T

=

< 23(::?1)(n+1)w1{< )]il (n+1)wn (fn}k1>

By (3.4), (3.5), and (3.6) we obtain

/wH (f,u1) | an Dy (ur, up)| duydus
- k=0
2
3?";3—01) 1 1
S n / /WH(f7ul>duldu2:n /WH faul
U1
0 71«1#1 T
1w (1) 1
we \J,u1
< D duy <1 -
> / ul U 3 Og(?’l—‘r ) (f7n+1>7

1
n+41

for j = 2,3. These last two estimates yield

1
n2~10g(n+1)wH <f77’H-1>

Since
sin 2z + sin 2y + sin2z = —4sinxsiny sin 2

for z +y+ 2z = 0, we also get the expression

Dy, (u1,u2) = Hy 1 (w1, u2) + Hio (u1,u2) + Hy 3 (u1, u2),

where

1 cos ((2k + 1) ugm)
~ 2sin (7“1;“2 71') sin (7“1;“2 7r) ’

Hi 1 (u1,u2)

1 cos ((2k + 1) “1fvzr)

2 sin (uyn) sin (uter)’

Hpo (u1,u2) @ =

1 cos ((2k + 1) 11542 7)

Hy 3 (ui,u o=z .
k3 (u1,u2) 2 sin (ugm) sin (7““;“277)
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By the method used in [12, p.179], we get

Zan,k cos (2k + 1)t
k=0

1 1 1
<A, |- [
S "<t>+a"<t> o 0<t<m)

and

Zan,k cos(2k+ 1)t
k=0

gAnC) (0<t§g).

By (3.9) we obtain

n
Zan,ka,1 (u1, u2)

k=0

1,
~ou? TUs

and

n
Zan,ka,s (u1,u2)
k=0

<L, (3
NU1U2 UL

for (u1,ue) € THUT3. Also, for (u1,us) € I'y UTs, the relation (3.8) and the fact

sin (ulTﬂ) S sin <(u1 +2U2) W)

yield

If we consider (3.5) and (3.6), we get

/WH (f,u1) E an ks Hi,1 (U1, u2)| durdus
F// k:O
2
1 1
3(nf+1) 1 (f ) 1 3(nf+1) 1
wWH , U1
< / /u%dulduz<2(n+1)wH (f, n—&—l) / /
An,0 1 An,0 1
3(n+1) nt+1 3(n+1) nt1
< log(n+1) f 1
og (n w — .
> g "\ ntl

(3.8)

(3.10)

(3.11)

(3.12)
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(3.11) and (3.12) give

1
w , U 3
/wH (f,u1) Zan kHy j (w1, u2)| durdug S / /7Hu(1i2 1)An (7ru1> duydus

1—‘,, k=0 an .0 1

1 . 2 (nt1) 53
/ wn (frm) 4 <3> duy = log () / wir (Fo2) o 1) a
uq TUY an,0 t

n %(k+1) n 1
— ()Y o (Fx) 4 o) ae <log< 1> wi (£5) 4 (3(k+1)>
ano /) +— t ano) =k
B
n l n
< log (a10>ZwH (]j’k)An,k+1<10g n+1 ZwH (/5 Ak
U k=1 k=1

for 7 = 2,3. Hence, we get

n 1
I;;leog(nﬂ){ (f,nl>+ “’H(kﬁ’“)An’k}.
k

By considering (3.10) and (3.6),

E an eHia (w1, u2)

/wH fyur)

1
dU1dUQ / /WH f’ UI <7ru2> dU1dUQ

T3 3(n+1)3u2
2 3 1 2 y 3 1 1
< / /wH (f,3uz) () duyduy = = / Mlog () A, () dus
3 UiU2 U2 3 u2 3UQ U2
D oU2 T
3 2(n+1) 5
3 1 w , =
< log(n+1) / wH(f7U2)An(>du2:10g(n+1) / MAn(t)dt
U9 TU2 / t
3T =
2 (k+1)
- wWH (fu %) - WH f7 k 3
= log(n+1)) —— A () dt | <log (n+ 1 Z nl = (k41
k=1 5 =1
1
S log(n+1 ZwH (kﬂ k)An’k.

=

=1
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For j = 2,3 have

/wH fiur)

E an k Hy 5 (u1,u2)

\w‘f

1
)| duqdus /

f?ul) <z3> duzdul
U

Uiz 1
s h=0 n+1 3(71+1)
| 3 | 3
= / wi (f,u1) log (n+1)u1) Ay () duy <log(n+1) / MA,L () duy
Uy U U1 TUL
}rl ”L‘l"l
n 1
< log(n+1) MAWC
k=1
by (3.11) and (3.12). Thus, we get
n £
I3 Slog(n+1) wH k
k=1
Since the sequence (Ak"> is nonincreasing with respect to k we have
1 1\ nww (f5) v (£ 5)
< _ — n — 3
wH(f,nH) < wH<f,n) . kZ:l -
. 1\ Avp 1\ Ay
= 2 < _ 5 .
ZWH <f’ n) n =4 (f’ k) k
k=1 k=1
(2.5) follows from estimates of I, ; (j =1,2,3) and from the last estimate. O
Proof [Proof of Theorem 2.3] By the same method used in proof of Theorem 1, we obtain
- Ank
u)|du Slog(n+1) k’ (3.13)
o k=0 k=1
and
/Hu|| Zan wDi (u)|du < Po<a<). (3.14)
k=0 =1
We set e, (t) := f(t) — 7Y (f) (t). Hence,
-1 (5) = H T ()| AP (en). 3.15
|7 =10 D] gy = 1 = TP D, g + 47 ) (3.15)
Since
1 n
len (t) —en ()] < 0] [F(6) = f (=)= f(s)+ f (s —w)]|[D_aniDx (w)|du,
o =
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we have to estimate the integral

T ::/lﬂt)—f(t—u)—f<s>+f<s—u>l D _nxDr (w)| du.
Q k=0
Since f € H¢ (ﬁ) we have
f®)—ft—u)—f(s)+f(s—w)| [t —s|" (3.16)
and
[f (&) = fE—u)—f(s)+ f(s—w) < ul”. (3.17)

Hence, by (3.16) and (3.13) we get

()f = (/If(t)—f(t—U)—f(S)+f(s—u)| S i Di (w) du)
o k=0
S lle—s)” ) an 1Dy (u)| du
< e-s)’ (log (n+1) ZH:AZ’]“>Q
k=1

Also, by (3.17) and (3.14) we obtain

-2 1-£
=2 g (/ Jul® ) <1og (n+1) Zkl+a)
9 k=0 k=1
Since
8 _B8
len (t) —en(s)] < Jn=(Jn)" (Jn)l “
B 1-8
< B - n,k ° - Ank °
~ ||t - SH ]‘Og (n + 1) Z k k1+a )
k=1 k=1
we get
B8 1-8
len (t) — en (s)] ~Ank | (A |
ﬁsl()g(n‘i‘l) & ZkHa (t#s),
[t — s k=1 k=1
which implies
B 1-8
n A [e7 n A @
B n,k n,k
AP (ep) Slog(n+1) (Z p ) (Zk1+a>
k=1 k=1
The proof is finished by combining (2.6) and (3.15). O
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4. Remarks

Remark 4.1 Let p = (pr) be a nonincreasing sequence of positive real numbers. If we take

where P, := > pk, then the matrizc A = (anx) satisfies (2.2), (2.3), and (2.4). In this case T\ becomes
k=0

the Riesz mean

Ry (p; f) = PinkSk (f)-
" k=0

Theorem 1 gives

_ 1 P\ <= Pewr (f,1/k)
I = R 35 ) 5 o ) ST (4.1)

for feCqy (ﬁ) , and Theorem 2 yields

B 1-8

1 P, " P\ [~ P °

15 = R 5 )y 5 o (1) (Z;) ( klj) (12
n n k=1 k=1

forfeHo‘(ﬁ), 0<fB<a<l).

Remark 4.2 Let p = (pr) be a nondecreasing sequence of positive real numbers. In this case the matriz

A = (an,) with entries

K

Bk 0<Ek<n
0, k>n

satisfies (2.2), (2.3), and (2.4), and T{Y becomes the Norlund mean

Nu (:.6) = 5> pu ik (£).
" k=0

n
If we set Q= Y. pu, we conclude from Theorem 1

v=n—k

1 P\ ~=Quniwr (f,1/k
1 = N 5 sy 5 o (2 Z“’Hk“ (43)

for feCy (Q) , and by Theorem 2 we get

B 1—
1 Pn n n [e% n n.
|f — Nu (p; f)HHﬁ(ﬁ) S an log <p0> (};_1: Qk k) < 1521-1-5) (4.4)

k=1

=
Qw

forfEHo‘(ﬁ) 0<fB<a<l).
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Remark 4.3 If we take pp, =1 (k=0,1,...), R, (p; f) and N, (p; f) become (C,1) means Sg) (f), and both
of (4.1) and (4.3) reduce to

Hfisr(‘l) (f)HCH(ﬁ) ~ 1ognj—tl Zl ( >

for f € Cy (Q). Furthermore, (4.2) and (4.4) give the estimate

10g(n+1) a<1

=58 ]y | i 55,

)

for (C,1) means offeHa(ﬁ) 0<fB<a<l).
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