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Abstract: In this paper, we study the following critical growth Schr ödinger–Poisson system with concave-convex
nonlinearities term {

−∆u+ u+ ηφu = λf(x)uq−1 + u5, in R3,

−∆φ = u2, in R3,
(0.1)

where 1 < q < 2 , η ∈ R , λ > 0 is a real parameter and f ∈ L
6

6−q (R3) is a nonzero nonnegative function. Using the
variational method, we obtain that there exists a positive constant λ∗ > 0 such that for all λ ∈ (0, λ∗) , the system has
at least two positive solutions.
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1. Introduction and main results
In this paper, we are interested in the existence of multiple positive solutions to the following Schr ödinger–

Poisson system {
−∆u+ u+ ηφu = λf(x)uq−1 + u5, in R3,

−∆φ = u2, in R3,
(1.1)

where 1 < q < 2 , η ∈ R , λ > 0 is a real parameter and f ∈ L
6

6−q (R3) is a nonzero nonnegative function. The
first Schr ödinger equation coupled with a Poisson equation means that the potential is determined by the charge
of the wave function. The general term f(x)uq−1 models the interaction between particles. The nonlocal term
ηφu concerns the interaction with the electric field. For detailed mathematical and physical interpretation, we
refer readers to [2, 8, 9] and the references therein.

In recent years, the following form of Schrödinger–Poisson system with critical growth{
−△u+ V (x)u+K(x)φu = Q(x)u5 + f(x, u), in R3,
−△φ = K(x)u2, in R3,

has been investigated extensively. For previous related results, please refer to [1, 4, 12, 15, 17–19, 23]. Further,
the Schrödinger–Poisson system with concave-convex nonlinearities has attracted much attention. For example,
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on bounded domain, Guo and Liu in [12] were concerned about the following system
−∆u+ ωu+ λφu = µf(u) + u5, in Ω,

−∆φ = u2, in Ω,

φ = u = 0, on ∂Ω,

where |f(u)| ≤ c1 + c2|u|q−1 with 1 < q < 2 and infinitely many negative energy solutions were established for
every µ > 0 small enough and λ > 0 . In [15], Lei and Suo established two positive solutions to the system

−∆u+ λφu = λuq−1 + u5, in Ω,

−∆φ = u2, in Ω,

φ = u = 0, on ∂Ω,

for λ > 0 enough small when 1 < q < 2 .
On unbounded domains, Sun et al. in [21] considered the following Schrödinger–Poisson system{

−∆u+ V (x)u+ λφu = K(x)|u|q−2u+ f(x, u), in R3,

−∆φ = u2, in R3,

where λ > 0 is a parameter, 1 < q < 2 and f(x, u) is linearly bounded in u at infinity. They established the
existence and multiplicity of solutions (when λ is enough small) under suitable assumptions on V,K, f .

Recently, Li and Tang [18] proved the existence of λ∗ > 0 such that the system{
−∆u− ηl(x)φu = λf(x)|u|q−2u+ |u|4u, in R3,

−∆φ = l(x)u2, in R3

with η = 1 , 1 < q < 2 , f ∈ L
6

6−q (R3), f ≥ 0, f ̸≡ 0 , l ∈ L2(R3)∩L3(R3), l ≥ 0, l ̸≡ 0 has two positive solutions
for λ ∈ (0, λ∗) . However, the authors did not consider the cases of η = −1 or on the whole space H1(R3) .
Indeed, it is very difficult to estimate the critical value level in the cases when η = −1 or on the space H1(R3)

if we use the extremal function

Ψ(x) =
3

1
2

(1 + |x|2) 1
2

, x ∈ R3.

Observing these results, it is natural to ask if system (1.1) has multiple positive solutions since system
(1.1) has a concave and convex nonlinearity. In this paper, we study the existence of multiple positive solutions
of system (1.1) in the case of η ∈ R through variational method. We have the following results.

Theorem 1.1 Assume η ∈ R , 1 < q < 2 and f ∈ L
6

6−q (R3), f ≥ 0, f ̸≡ 0 . Then there exists a positive
constant λ∗ > 0 such that for all λ ∈ (0, λ∗) , system (1.1) has at least two positive solutions.

Remark 1.2 On one hand, as we shall see, Theorem 1.1 extends the result in [15] to unbounded domains.
Moreover, we get rid of the restriction of the coefficient of the nonlocal term. On the other hand, our result
extends the result in [18] to the whole space H1(R3) and two positive solutions are still obtained. Besides,
assume l ∈ L2(R3) ∩ L∞(R3), l ≥ 0, l ̸≡ 0 in R3 , we have the following result.
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Corollary 1.3 Assume 1 < q < 2 and f ∈ L
6

6−q (R3), f ≥ 0, f ̸≡ 0 . Then there exists a positive constant
λ∗ > 0 such that for all λ ∈ (0, λ∗) , system

{
−∆u+ l(x)φu = λf(x)|u|q−2u+ |u|4u, in R3,

−∆φ = l(x)u2, in R3,
(1.2)

has at least two positive solutions.

Throughout this paper, we make use of the following notation:

• The space in H1(R3) is equipped with the norm ∥u∥ = (
∫
R3(|∇u|2 + |u|2)dx) 1

2 , the norm in Lp(R3) is

denoted by |u|p = (
∫
R3 |u|pdx)

1
p ;

• We denote by Br (respectively, ∂Br ) the closed ball (respectively, the sphere) of center zero and radius
r , i.e. Br = {u ∈ H1(R3) : ∥u∥ ≤ r}, ∂Br = {u ∈ H1(R3) : ∥u∥ = r};

• C,C0, C1, C2, ... denote various positive constants, which may vary from line to line;

• For each p ∈ [2, 6) , by the Sobolev embeddings, we denote

Sp = inf
u∈H1(R3)\{0}

∥u∥2

|u|2p
; S := inf

u∈D1,2(R3)\{0}

∫
R3 |∇u|2dx

|u|26
.

2. Proof of Theorem 1.1
With the help of the Lax–Milgram theorem, for every u ∈ H1(R3) , the second equation of system (1.1) has
a unique solution φu ∈ H1(R3) . We substitute φu to the first equation of system (1.1), then system (1.1)
transforms into the following equation

−∆u+ u+ ηφuu = λf(x)|u|q−2u+ |u|4u, in R3. (2.1)

The energy functional corresponding to equation (2.1) is given by

Iλ(u) =
1

2
∥u∥2 + η

4

∫
R3

φu|u|2dx− λ

q

∫
R3

f(x)|u|qdx−
∫
R3

|u|6dx.

So for all u, v ∈ H1(R3) , it holds∫
R3

(∇u∇v + uv)dx+ η

∫
R3

φuuvdx−
∫
R3

|u|4uvdx− λ

∫
R3

f(x)|u|q−2uvdx = 0.

Before proving our Theorem 1.1, we need the following lemma (see [8, 10, 11] ).

Lemma 2.1 For every u ∈ H1(R3) , there exists a unique φu ∈ D1,2(R3) solution of

−∆φ = u2, in R3
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and the following results hold:
(1) ∥φu∥2 =

∫
R3 φuu

2dx .
(2) φu ≥ 0 . Moreover, φu > 0 when u ̸= 0 .
(3) For each t ̸= 0 , φtu = t2φu . For every u, v ∈ H1(R3) , it holds∫

R3

φuv
2dx =

∫
R3

φvu
2dx.

(4) ∫
R3

φuu
2dx =

∫
R3

|∇φu|2dx ≤ C|u|412/5.

(5) Assume that un ⇀ u in H1(R3) , then φun
→ φu in H1(R3) and

∫
R3 φun

unvdx →
∫
R3 φuuvdx for every

v ∈ H1(R3) .
(6) Set F(u) =

∫
R3 φuu

2dx , then F : H1(R3) → R is C1 and

⟨F ′(u), v⟩ = 4

∫
R3

φuuvdx ∀v ∈ H1(R3).

Lemma 2.2 There exist ρ,Λ0 > 0 , such that for each λ ∈ (0,Λ0) , then it holds

d ≜ inf
u∈Bρ(0)

Iλ(u) < 0 and Iλ|u∈∂Bρ(0) > 0. (2.2)

Proof By the Sobolev and H ö lder inequalities, we obtain

Iλ(u) =
1

2
∥u∥2 + η

4

∫
R3

φu|u|2dx− λ

q

∫
R3

f(x)|u|qdx− 1

6

∫
R3

|u|6dx

≥ 1

2
∥u∥2 − 1

6S3
6

∥u∥6 − λ

q
S
− q

2
6 |f | 6

6−q
∥u∥q

= ∥u∥q
{
1

2
∥u∥2−q − 1

6S3
6

∥u∥6−q − λ

q
S
− q

2
6 |f | 6

6−q

}
.

Set g(t) = 1
2 t

2−q − 1
6S3

6
t6−q . We see that there exists a constant ρ =

(
3S3

6(2−q)
6−q

) 1
4−q such that maxt>0 g(t) =

g(ρ) > 0 . Let Λ0 =
qS

q
2
6

2|f | 6
6−q

g(ρ) . Consequently, Iλ|∥u∥=ρ ≥ g(ρ)
2 ρq for any λ ∈ (0,Λ0) . Moreover, for

u ∈ H1(R3)\{0} , it holds

lim
t→0+

Iλ(tu)

tq
= −λ

q

∫
R3

f(x)|u|qdx

< 0.

Thus, there exists u small enough such that Iλ(u) ≜ d < 0 . The proof is complete. 2

Theorem 2.3 Suppose 0 < λ < Λ0 (Λ0 defined in Lemma 2.2). Then system (1.1) has a positive solution
(u1, φu1

) ∈ H1(R3)×D1,2(R3) satisfying Iλ(u1) < 0 .
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Proof First, we claim that there exists u1 ∈ BR(0) such that Iλ(u1) = d < 0 .
Indeed, by (2.2), we can deduce that

1

2
∥u∥2 − 1

6

∫
R3

|u|6dx ≥ ρ, for u ∈ ∂BR(0),

and
1

2
∥u∥2 − 1

6

∫
R3

|u|6dx ≥ 0, for u ∈ BR(0). (2.3)

In view of the definition of d , there exists a bounded minimizing sequence {un} ⊂ BR(0) such that limn→∞ Iλ(un) =

d < 0 . Up to a subsequence, there exists uλ ∈ H1(R3) such that

un ⇀ u1, weakly in H1(R3), un(x) → u1(x), a.e. in R3.

From [18], it holds that ∫
R3

f(x)|un|qdx =

∫
R3

f(x)|u1|qdx+ o(1).

Set wn = un − u1. By Br ézis–Lieb’s Lemma (see [6]), one has

{∫
R3 |∇un|2dx =

∫
R3 |∇wn|2dx+

∫
R3 |∇u1|2dx+ o(1),∫

R3 u
6
ndx =

∫
R3 w

6
ndx+

∫
R3 u

6
1dx+ o(1).

If u1 = 0, then wn = un, which follows that wn ∈ BR(0). If u1 ̸= 0, we also get wn ∈ BR(0) for n large
sufficiently. Hence, from (2.3) one has

1

2
∥wn∥2 −

1

6

∫
R3

|wn|6dx ≥ 0. (2.4)

Therefore, by Lemma 2.1, it follows from (2.4) that

d = Iλ(un) + o(1)

= Iλ(u1) +
1

2
∥wn∥2 −

1

6

∫
R3

|wn|6dx+ o(1)

≥ Iλ(u1) + o(1).

As n → ∞ , it holds that d ≥ Iλ(u1) . Since BR(0) is closed and convex; thus, u1 ∈ BR(0) . Hence, we obtain
Iλ(u1) = d < 0 and u1 ̸≡ 0 . It follows that u1 is a local minimizer of Iλ . Then for any ψ ∈ H1(R3), ψ ≥ 0,

setting t > 0 small enough such that u1 + tψ ∈ BR(0) , one obtains

0 ≤ Iλ(u1 + tψ)− Iλ(u1)

=
1

2
∥u1 + tψ∥2 + η

4

∫
R3

φu1+tψ|u1 + tψ|2dx− 1

6

∫
R3

|u1 + tψ|6dx

−λ
q

∫
R3

f(x)|u1 + tψ|qdx− 1

2
∥u1∥2

−η
4

∫
R3

φu1
|uλ|2dx+

1

6

∫
R3

|u1|6dx+
λ

q

∫
R3

f(x)|u1|qdx.

(2.5)
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By Lemma 2.1, we have

lim
t→0+

1

t

∫
R3

[φu1+tψ|u1 + tψ|2 − φu1
|u1|2]dx

= lim
t→0+

1

t

∫
R3

[φu1+tψ|u1 + tψ|2 − φu1
|u1 + tψ|2]dx

+ lim
t→0+

1

t

∫
R3

[φu1(u1 + tψ)2 − φu1 |u1|2]dx

= lim
t→0+

1

t

∫
R3

[φu1+tψ(u1 + tψ)2 − φu1+tψu
2
1]dx

+ lim
t→0+

1

t

∫
R3

[φu1(u1 + tψ)2 − φu1u
2
1]dx

= 4

∫
R3

φu1
u1ψdx.

Dividing by t > 0 and passing to the limit as t→ 0+ in (2.5), we get∫
R3

(∇u1∇ψ + u1ψ)dx+ η

∫
R3

φu1
u1ψdx−

∫
R3

u51ψdx− λ

∫
R3

f(x)uq−2
1 ψdx ≥ 0.

By the arbitrariness of ψ , the above inequality also holds for −ψ . Hence, (u1, φu1) is a nonzero solution of
system (1.1). Moreover, similar to the discussion of Theorem 3.3 in [14], we can also obtain that (u1, φu1

) is a
positive solution of system (1.1) with Iλ(u1) < 0. This completes the proof of Theorem 2.3. 2

Lemma 2.4 The functional Iλ satisfies the (PS)c condition provided c < 1
3S

3
2 − Dλ

2
2−q , where D =(

(4−q)
4q |f | 6

6−q
S
− q

2
6

) 2
2−q

(2q)
q

2−q .

Proof Let {vn} ⊂ H1(R3) be a (PS)c sequence for Iλ , i.e.

Iλ(vn) → c, I ′λ(vn) → 0, as n→ ∞. (2.6)

Consequently,

1 + c+ o(∥vn∥) ≥ Iλ(vn)−
1

6
⟨I ′λ(vn), vn⟩

=
1

3
∥vn∥2 +

1

12

∫
R3

φvn |vn|2dx− λ

(
1

q
− 1

6

)∫
R3

f(x)|vn|qdx

≥ 1

3
∥vn∥2 − λ

(
1

q
− 1

6

)
S
− q

2
6 |f | 6

6−q
∥vn∥q,

which implies that {vn} is bounded in H1(R3) . Note that Iλ(vn) = Iλ(|vn|) . Thus, there exist a nonnegative
subsequence, still denoted by itself, and v∗ ∈ H1(R3) such that vn ⇀ v∗ weakly in H1(R3) as n → ∞ . Set
wn = vn− v∗ , then

∫
R3 |∇wn|2dx→ 0 . Otherwise, there exists a subsequence (still denoted by itself) such that

lim
n→∞

∫
R3

|∇wn|2dx = l > 0.

From (2.6), as n→ ∞ , for every φ ∈ H1(R3) , it follows∫
R3

(∇v∗∇φ+ v∗φ)dx+ η

∫
R3

φv∗v∗φdx−
∫
R3

v5∗φdx− λ

∫
R3

f(x)vq−1
∗ φdx = 0. (2.7)
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Take the test function φ = v∗ in (2.7), then it holds that

∥v∗∥2 + η

∫
R3

φv∗v
2
∗dx−

∫
R3

v6∗dx− λ

∫
R3

f(x)v1−γ∗ dx = 0. (2.8)

Putting φ = vn in (2.6) and using the Br ézis–Lieb’s lemma, we obtain

o(1) =

∫
R3

|∇wn|2dx+ ∥v∗∥2 + η

∫
R3

φv∗v
2
∗dx

−
∫
R3

w6
ndx−

∫
R3

v6∗dx− λ

∫
R3

f(x)vq∗dx.
(2.9)

It follows from (2.8) and (2.9) such that∫
R3

|∇wn|2dx−
∫
R3

w6
ndx = o(1). (2.10)

Note that |wn|26 ≤ S−1
∫
R3 |∇wn|2dx . Then we have

l ≥ S
3
2 .

On the one hand, from (2.8), by the Young inequality, it holds

Iλ(v∗) =
1

2
∥v∗∥2 +

η

4

∫
R3

φv∗v
2
∗dx− 1

6

∫
R3

v6∗dx− λ

q

∫
R3

f(x)vq∗dx

=
1

4
∥v∗∥2 +

1

12

∫
R3

v6∗dx− λ

(
1

q
− 1

4

)∫
R3

f(x)vq∗dx

≥ 1

4
∥v∗∥2 − λ

(
1

q
− 1

4

)
|f | 6

6−q
S
− q

2
6 ∥v∗∥q

≥ −Dλ
2

2−q ,

where D =
(

(4−q)
4q |f | 6

6−q
S
− q

2
6

) 2
2−q

(2q)
q

2−q . On the other hand, by (2.6) and (2.10), it follows

Iλ(v∗) = Iλ(vn)−
1

2

∫
R3

|∇wn|2dx+
1

6

∫
R3

|wn|6dx+ o(1)

= Iλ(vn)−
1

3

∫
R3

|∇wn|2dx+ o(1)

≤ c− 1

3
l

<
1

3
S

3
2 −Dλ

2
2−q − 1

3
S

3
2

= −Dλ
2

2−q .

This is a contradiction. Therefore, l = 0 implies that
∫
R3 |∇vn|2dx→

∫
R3 |∇v∗|2dx in D1,2(R3) . Note that

0 ≤
∫
R3

v6ndx−
∫
R3

v6∗dx

=

∫
R3

w6
ndx+ o(1)

=

∫
R3

|∇wn|2dx+ o(1)

→ 0,
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which suggests that
∫
R3 v

6
ndx→

∫
R3 v

6
∗dx as n→ ∞ . The proof is complete. 2

We know that the extremal function

U(x) =
3

1
4

(1 + |x|2) 1
2

, x ∈ R3

solves
−∆u = u5 in R3\{0}

and |∇U |22 = |U |66 = S
3
2 . We choose a function ζ ∈ C∞

0 (R3) such that 0 ≤ ζ(x) ≤ 1 in Ω . ζ(x) = 1 near
x = 0 and it is radially symmetric. We define

uε(x) = ε
−1
2 ζ(x)U

(x
ε

)
=

3
1
4 ε

1
2 η(x)

(ε2 + |x|2) 1
2

.

Besides, since (u1, φu1
) is a positive solution of system (1.1), we can see that there exist m,M > 0 such that

m ≤ u1 ≤M for each x ∈ suppζ . 2

Lemma 2.5 Under the assumptions of Theorem 1.1, it holds

sup
t≥0

Iλ(u1 + tuε) <
1

3
S

3
2 −Dλ

2
2−q . (2.11)

Proof It is known (see [7]) that

{
|uε|66 = |U |66 +O(ε3) = S

3
2 +O(ε3);

∥uε∥2 = |∇U |22 +O(ε) = S
3
2 +O(ε).

According to the definition of uε , it follows

∫
R3

upεdx = Cε
p
2

∫ R

0

r2

(ε2 + r2)p/2
dx

≤ Cε
p
2

∫ R

0

1

rp−2
dx

= O(ε
p
2 ),

(2.12)

where the last equality holds provided p < 3 . For 1 < q < 2 , one has

(a+ b)q ≥ aq + qaq−1b, for a, b ≥ 0.

It is obvious that the following inequality

(a+ b)6 ≥ a6 + b6 + 6a5b+ 6ab5,

holds for each a, b ≥ 0 .
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Using the inequalities above, for all t ≥ 0 , we obtain

Iλ(u1 + tuε)

= Iλ(u1) +
t2

2
∥uε∥2 + t

∫
R3

[
(∇u1,∇uε) + ηφu1

u1uε − u51uε − λf(x)uq−1
1 uε

]
dx

+
η

4

∫
R3

[φu1+tuε(u1 + tuε)
2 − φu1u

2
1 − 4φu1u1(tuε)]dx

−1

6

∫
R3

[|u1 + tuε|6 − u61 − 6u51tuε]dx− λ

q

∫
R3

f(x)[(u1 + tuε)
q − uq1 − quq−1

λ tuε]dx

≤ t2

2
∥uε∥2 −

t6

6

∫
R3

|uε|6dx− t5
∫
R3

u1|uε|5dx+ gε(t)

≤ t2

2
∥uε∥2 −

t6

6

∫
R3

|uε|6dx−mt5
∫
R3

|uε|5dx+ gε(t),

where

gε(t) =
η

4

∫
R3

[φu1+tuε
(u1 + tuε)

2 − φu1
u21 − 4φu1

u1(tuε)]dx.

By Lemma 2.1 (3), we have∫
R3

[φu1+tuε
(u1 + tuε)

2 − φu1
u21 − 4φu1

u1(tuε)]dx

=

∫
R3

[φu1+tuε(u
2
1 + 2tu1uε + t2u2ε)− φu1u

2
1 − 4φu1u1(tuε)]dx

=

∫
R3

[φu1+tuε
u21 + 2tφu1+tuε

u1uε + t2φu1+tuε
u2ε − φu1

u21 − 4φu1
u1(tuε)]dx

=

∫
R3

[φu1(u1 + tuε)
2 + 2tφu1+tuεu1uε + t2φuε(u1 + tuε)

2 − φu1u
2
1 − 4φu1u1(tuε)]dx

=

∫
R3

[φu1
(u21 + 2tu1uε + t2u2ε) + t2φuε

(u21 + 2tu1uε + t2u2ε)− φu1
u21 − 4φu1

u1(tuε)]dx

+

∫
R3

2tu1uε
4π

∫
R3

[u1(y) + tuε(y)]
2

|x− y|
dydx

=

∫
R3

[t2φu1
u2ε + t2φu1

u2ε + 2t3φuε
u1uε + t4φuε

u2ε − 2φu1
u1(tuε)]dx

+

∫
R3

2tu1uε
4π

∫
R3

u21(y) + 2tu1(y)uε(y) + t2u2ε(y)

|x− y|
dydx

=

∫
R3

[2t2φu1
u2ε + 2t3φuε

u1uε + t4φuε
u2ε − 2φu1

u1(tuε)]dx

+

∫
R3

2tu1uε[φu1
+ t2φuε

]dx+
t2

π

∫
R3×R3

u1(x)uε(x)u1(y)uε(y)

|x− y|
dxdy

=

∫
R3

[2t2φu1
u2ε + 4t3φuε

u1uε + t4φuε
u2ε]dx+

t2

π

∫
R3×R3

u1(x)uε(x)u1(y)uε(y)

|x− y|
dxdy.

It follows from Hölder’s inequality and (2.12) such that∫
R3

φu1
u2εdx ≤ |φu1

|6|uε|212/5 ≤ C|uε|212/5 ≤ Cε;

∫
R3

φuε
u1uεdx ≤ |φuε

|6|u1|12/5|uε|12/5 ≤ C|uε|312/5 ≤ Cε
3
2 ;

∫
R3

φuε
u2εdx ≤ |φuε

|6|uε|212/5 ≤ C|uε|412/5 ≤ Cε2.
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According to [20], we have ∫
R3×R3

u1(x)uε(x)u1(y)uε(y)

|x− y|
dxdy ≤ Cε.

Therefore, one obtains
gε(t) ≤ Ct2ε+ Ct3ε

3
2 + Ct4ε2.

Set

hε(t) =
t2

2
∥uε∥2 −

t6

6

∫
R3

|uε|6dx−mt5
∫
R3

|uε|5dx+ Ct2ε+ Ct3ε
3
2 + Ct4ε2.

Now, we prove that there exist tε > 0 and positive constants t1, t2 independent of ε, λ , such that supt≥0 hε(t) =

hε(tε) and
0 < t1 ≤ tε ≤ t2 <∞. (2.13)

Indeed, we see that limt→+∞ hε(t) = −∞ and hε(0) = 0 . Then there exists tε > 0 such that

hε(tε) = sup
t≥0

hε(t), and h′ε(t)|t=tε = 0.

It is similar to the paper [16] that (2.13) holds. Note that
∫
R3 |uε|5dx = Cε

1
2 +O(ε

5
2 ) . Then it follows

sup
t≥0

hε(t) ≤ sup
t≥0

{
t2

2
S

3
2 − t6

6
S

3
2

}
+ C1ε− C2ε

1
2

≤ 1

3
S

3
2 + C1ε− C2ε

1
2 ,

where C1, C2 > 0 (independent of ε, λ). Let ε = λ
2

2−q , 0 < λ < Λ1 :=
(

C2

C1+D

)2−q
. Then it holds that

C1ε− C2ε
1
2 = C1λ

2
2−q − C2λ

1
2−q

= λ
2

2−q (C1 − C2λ
−1
2−q )

< −Dλ
2

2−q ,

which implies that supt≥0 hε(t) <
1
3S

3
2 −Dλ

2
2−q . From the above information, we can deduce that (2.11) holds

true when λ < Λ1 . The proof is complete. 2

Theorem 2.6 Under the assumptions of Theorem 1.1, the system (1.1) admits another positive solution
(u2, φu2

) with Iλ(u2) > 0 .

Proof Let λ∗ = min

{
Λ0,Λ1, (

S
3
2

3D )
2−q
2

}
. By Lemma 2.5, we can choose a sufficiently large T0 > 0 such that

Iλ(u1 + T0uε) < 0 , with the fact that Iλ(u1) < 0 . Then we apply the mountain-pass lemma [5] to obtain that
there is a sequence {un} ⊂ H1(R3) such that

Iλ(un) → c > 0 and I ′λ(un) → 0,

where
c = inf

γ∈Γ
max
t∈[0,1]

Iλ(γ(t)),
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and
Γ =

{
γ ∈ C([0, 1],H1

0 (Ω)) : γ(0) = u1, γ(1) = u1 + T0uε
}
.

From Lemma 2.4, {un} has a convergent subsequence (still denoted by {un}) and there exists u2 ∈ H1(R3)

such that un → u2 in H1(R3) . Moreover, we can obtain (u2, φu2
) is a nonnegative weak solution of system

(1.1) and
Iλ(u2) = lim

n→∞
Iλ(un) = c > 0.

Therefore, we infer that u2 ̸≡ 0 . It is similar to Theorem 2.3 that u2 > 0 in R3 . The proof is complete. 2

3. Proof of Corollary 1.3

Proof From Lemma 2.5, when estimating the critical value level, we know that the nonlocal term does not
work. Consequently, similar to the proof of Theorem 2.3 and 2.6, we can prove that system (1.2) has two
positive solutions. The proof is complete. 2
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