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1. Introduction and preliminaries
Special functions is a branch of mathematics which is of utmost importance for scientists and engineers who are
concerned with actual mathematical calculations. It has applications in specific problems of physics, engineering,
and computer science.

The theory of special functions has been developed by C. F. Gauss, C. G. J. Jacobi, F. Klein, and
many others in 19th century. However, in the twentienth century, the theory of special functions has been
overshadowed by other fields such as real and functional analysis, topology, algebra and differential equations.
Special functions play an important role in geometric function theory. An example of special function is an
activation function. An activation function acts as a squashing function which is the output of a neuron in
a neural network taking certain values (usually 0 and 1 , or −1 and 1). There are three types of activation
functions, namely threshold function, piecewise-linear function, and Sigmoid function.

The most popular activation function is the Sigmoid function. There are different methods to evaluate
this function, such as truncating series expansion, looking-up tables, or piecewise approximation.

The Sigmoid function of the form

g (z) =
1

1 + e−z
(1.1)

is differentiable and has the following properties.

• It outputs real numbers between 0 and 1 .

• It maps from a very large input domain to a small range of outputs.
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• It never loses information because it is a one-to-one function.

• It increases monotonically.

These properties enable us to use Sigmoid function in univalent function theory.
Let A denote the class of analytic functions of the form

f (z) = z +

∞∑
n=2

anz
n (z ∈ U) (1.2)

normalized by the conditions f (0) = f ′ (0) − 1 = 0 which are defined in the open disc U = {z ∈ C : |z| < 1} .
Also, let S be subclass of A consisting of functions the form (1.2) which are univalent in U.

We briefly recall the following results and definitions needed our investigation.

Lemma 1.1 [8] If a function p ∈ P is given by

p (z) = 1 + p1z + p2z
2 + .... (z ∈ U) ,

then |pk| ≤ 2, k ∈ N where P is the family of all analytic functions in U for which p (0) = 1 and ℜ{p (z)} > 0 .

Lemma 1.2 [6] Let g be a Sigmoid function defined in (1.1) and

φ (z) = 2g (z) = 1 +

∞∑
m=1

(−1)
m

2m

( ∞∑
n=1

(−1)
n

n!
zn

)m

,

then φ (z) ∈ P, |z| < 1 where φ (z) is a modified Sigmoid function.

Lemma 1.3 [6] Let

φn,m(z) = 1 +

∞∑
m=1

(−1)
m

2m

( ∞∑
n=1

(−1)
n

n!
zn

)m

,

then |φn,m (z)| < 2.

Lemma 1.4 [6] Let φ (z) ∈ P and be starlike, then f is a normalized univalent function of the form (1.2).
Setting m = 1 , Fadipe et al. [6] remarked that

φ (z) = 1 +

∞∑
n=1

cnz
n

where cn = (−1)n+1

2n! , then |cn| ≤ 2, n = 1, 2, 3, ... and the result is sharp for each n.

Definition 1.5 Let f (z) = z+
∑∞

k=2 akz
k and g (z) = z+

∑∞
k=2 bkz

k. The modified Hadamard product of two
functions f and g which belong to A is defined by

F (z) = (f ∗ g) (z) = z +

∞∑
k=2

akbkz
k. (1.3)
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Definition 1.6 Let f ∈ A. Then the qth Hankel determinant of f is defined for q ≥ 1 and n ≥ 1 by

Hq (n) =

∣∣∣∣∣∣∣∣∣
an an+1 ... an+q−1

an+1 an+2 ... an+q

...
...

...
...

an+q−1 an+q ... an+2q−2

∣∣∣∣∣∣∣∣∣ .

Thus, the second Hankel determinant

H2 (2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23.

C. Ramachandran and K. Dhanalakshmi [9] studied the following various classes of analytic and univalent
functions defined by Sigmoid function.

For two analytic functions f and g , the function f is subordinate to g , written as follows:

f(z) ≺ g(z)

if there exists an analytic function w , with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)) . In particular,
if the function g is univalent in U , then f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(U) ⊂ g(U) .

Definition 1.7 [9] Let b ∈ C\ {0} and the class Mλ (b, φn,m) denote the subclass of A consisting of functions
f of the form (1.2), and satisfying the following subordination condition

1 +
1

b

{
zf ′ (z) + λz2f ′′ (z)

(1− λ) f (z) + λzf ′ (z)
− 1

}
≺ φn,m(z) (1.4)

for 0 ≤ λ ≤ 1 and φn,m is a simple logistic Sigmoid activation function.

Definition 1.8 [9] Let b ∈ C\ {0} and the class ℑλ (b, φn,m) denote the subclass of A consisting of functions
f of the form (1.2), and satisfying the following subordination condition

1 +
1

b

{
zf ′ (z)

f (z)
+ λ

z2f ′′ (z)

f (z)
− 1

}
≺ φn,m(z) (1.5)

for 0 ≤ λ ≤ 1 and φn,m is a simple logistic Sigmoid activation function.

Definition 1.9 Let γ ∈ C\ {0} and the class Mλ(∗) (γ, φn,m) denote the subclass of A consisting of functions
F (z) of the form (1.3), and satisfying the following subordination condition

1 +
1

γ

{
z (f ∗ g)′ (z) + λz2 (f ∗ g)′′ (z)

(1− λ) (f ∗ g) (z) + λz (f ∗ g)′ (z)
− 1

}
≺ φn,m(z) (1.6)

for 0 ≤ λ ≤ 1 and φn,m is a simple logistic Sigmoid activation function.

1018



KAMALİ et al./Turk J Math

Definition 1.10 Let γ ∈ C\ {0} and the class ℑλ(∗) (γ, φn,m) denote the subclass of A consisting of functions
F (z) of the form (1.3), and satisfying the following subordination condition

1 +
1

γ

{
z (f ∗ g)′ (z)
(f ∗ g) (z)

+ λ
z2 (f ∗ g)′′ (z)
(f ∗ g) (z)

− 1

}
≺ φn,m(z) (1.7)

for 0 ≤ λ ≤ 1 and φn,m is a simple logistic Sigmoid activation function.

As can be seen from the definitions of the classes Mλ(∗) (γ, φn,m) and ℑλ(∗) (γ, φn,m) , for λ = 0 the
equality Mλ(∗) (γ, φn,m) = ℑλ(∗) (γ, φn,m) holds.

2. Some coefficient estimates for the classes of Mλ(∗) (γ, φn,m) and ℑλ(∗) (γ, φn,m)

At first, we will find the estimates on the coefficients a2b2, a3b3, a4b4 , and a5b5 for functions in the classes
Mλ(∗) (γ, φn,m) and ℑλ(∗) (γ, φn,m) .

Theorem 2.1 Let

φn,m (z) = 1 +

∞∑
m=1

(−1)
m

2m

( ∞∑
n=1

(−1)
n

n!
zn

)m

where φn,m (z) ∈ A is a modified logistic Sigmoid activation function and φ
′

n,m (0) > 0. If F (z) = (f ∗ g) (z)
given by (1.3) belongs to the class Mλ(∗) (γ, φn,m) then,

a2b2 =
γ

2 (1 + λ)
, (2.1)

a3b3 =
γ2

8 (1 + 2λ)
, (2.2)

a4b4 =

(
3γ2 − 2

)
γ

144 (1 + 3λ)
, (2.3)

a5b5 =

(
3γ2 − 8

)
γ2

1152 (1 + 4λ)
. (2.4)

Proof Let f (z) = z +
∑∞

k=2 akz
k and g (z) = z +

∑∞
k=2 bkz

k. Then, we can write the following equalities:

(f ∗ g) (z) = z +

∞∑
k=2

akbkz
k ⇒ (f ∗ g)′ (z) = 1 +

∞∑
k=2

kakbkz
k−1 ⇒ (f ∗ g)′′ (z) =

∞∑
k=2

k (k − 1) akbkz
k−2,

z(f ∗ g)′ (z) = z +

∞∑
k=2

kakbkz
k,

z2(f ∗ g)′′ (z) =
∞∑
k=2

k (k − 1) akbkz
k.

Thus, we obtain

z(f ∗ g)′ (z) + λz2(f ∗ g)′′ (z) = z +

∞∑
k=2

k {1 + λ (k − 1)} akbkzk
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and

(1− λ) (f ∗ g) (z) + λz(f ∗ g)′ (z) = z +

∞∑
k=2

{1 + λ (k − 1)} akbkzk.

If F ∈ Mλ(∗) (γ, φn,m) , then we have

1

γ

{
z (f ∗ g)′ (z) + λz2 (f ∗ g)′′ (z)

(1− λ) (f ∗ g) (z) + λz (f ∗ g)′ (z)
− 1

}
= φn,m (z)− 1, (2.5)

where φn,m (z) is a modified Sigmoid function given by

φn,m (z) = 1 +
1

2
z − 1

24
z3 +

1

240
z5 − 17

40320
z7 + .... (2.6)

In view of (2.5) and (2.6), expanding in series forms we have

1

γ

∞∑
k=2

(k − 1) {1 + λ (k − 1)} akbkzk =

{
z +

∞∑
k=2

{1 + λ (k − 1)} akbkzk
}{

1

2
z − 1

24
z3 +

1

240
z5 − 17

40320
z7 + ...

}

⇒ 1

γ

{
(1 + λ) a2b2z

2 + 2 (1 + 2λ) a3b3z
3 + 3 (1 + 3λ) a4b4z

4 + 4 (1 + 4λ) a5b5z
5 + ...

}
(2.7)

=
{
z + (1 + λ) a2b2z

2 + (1 + 2λ) a3b3z
3 + (1 + 3λ) a4b4z

4 + (1 + 4λ) a5b5z
5 + ...

}
×
{
1

2
z − 1

24
z3 +

1

240
z5 − 17

40320
z7 + ...

}
.

Comparing the coefficients of z2, z3, z4 , and z5 in (2.7), we obtain

a2b2 =
γ

2 (1 + λ)
,

a3b3 =
γ2

8 (1 + 2λ)
,

a4b4 =

(
3γ2 − 2

)
γ

144 (1 + 3λ)
,

a5b5 =

(
3γ2 − 8

)
γ2

1152 (1 + 4λ)
.

2

Corollary 2.2 For coefficient a2b2,

|a2b2| =
|γ|

2 (1 + λ)

is written and since φ (λ) = 1
1+λ , φ′ (λ) < 0 in the interval 0 ≤ λ ≤ 1 and φ (λ) is decreasing, it will be

|γ|
4

≤ |a2b2| ≤
|γ|
2

(2.8)
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for 1
2 ≤ 1

1+λ ≤ 1.

Similarly, since the coefficients a2b2, a3b3, a4b4 , and a5b5 depend on λ and are decreasing with respect
to λ, the following inequalities can be written easily:

|γ|2

24
≤ |a3b3| ≤

|γ|2

8
, (2.9)∣∣3γ3 − 2γ

∣∣
576

≤ |a4b4| ≤
∣∣3γ3 − 2γ

∣∣
144

, (2.10)∣∣3γ4 − 8γ2
∣∣

5760
≤ |a5b5| ≤

∣∣3γ4 − 8γ2
∣∣

1152
. (2.11)

Theorem 2.3 Let

φn,m (z) = 1 +

∞∑
m=1

(−1)
m

2m

( ∞∑
n=1

(−1)
n

n!
zn

)m

where φn,m (z) ∈ A is a modified logistic Sigmoid activation function and φ
′

n,m (0) > 0. If F (z) = (f ∗ g) (z)
given by (1.3) belongs to the class ℑλ(∗) (γ, φn,m) then,

a2b2 =
γ

2 (1 + 2λ)
, (2.12)

a3b3 =
γ2

8 (1 + 2λ) (1 + 3λ)
, (2.13)

a4b4 =

{
3γ2 − 2 (1 + 2λ) (1 + 3λ)

}
γ

144 (1 + 2λ) (1 + 3λ) (1 + 4λ)
, (2.14)

a5b5 =

{
3γ2 − 2 (1 + 3λ) (14λ+ 4)

}
γ2

1152 (1 + 2λ) (1 + 3λ) (1 + 4λ)
. (2.15)

Proof If F (z) = (f ∗ g) (z) ∈ ℑλ(∗) (γ, φn,m) , then we have

1 +
1

γ

{
z (f ∗ g)′ (z)
(f ∗ g) (z)

+ λ
z2 (f ∗ g)′′ (z)
(f ∗ g) (z)

− 1

}
= φn,m (z) (2.16)

where φn,m (z) is a modified Sigmoid function given by

φn,m (z) = 1 +
1

2
z − 1

24
z3 +

1

240
z5 − 17

40320
z7 + .... (2.17)

In view of (2.16) and (2.17), expanding in series forms we have

1 +
1

γ

{
z (f ∗ g)′ (z)
(f ∗ g) (z)

+ λ
z2 (f ∗ g)′′ (z)
(f ∗ g) (z)

− 1

}
= φn,m (z)

⇒ 1

γ

{∑∞
k=2 (k − 1) (1 + λk) akbkz

k

z +
∑∞

k=2 akbkz
k

}
= 1 +

1

2
z − 1

24
z3 +

1

240
z5 − 17

40320
z7 + ...

1021
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⇒ 1

γ

{
(1 + 2λ) a2b2z

2 + 2 (1 + 3λ) a3b3z
3 + 3 (1 + 4λ) a4b4z

4 + 4 (1 + 5λ) a5b5z
5 + ...

}
=

{
z + a2b2z

2 + a3b3z
3 + a4b4z

4 + a5b5z
5 + ...

}{1

2
z − 1

24
z3 +

1

240
z5 − 17

40320
z7 + ...

}

⇒ 1

γ
(1 + 2λ) a2b2z

2 +
2

γ
(1 + 3λ) a3b3z

3 +
3

γ
(1 + 4λ) a4b4z

4 +
4

γ
(1 + 5λ) a5b5z

5 + ... (2.18)

=
1

2
z2 +

1

2
a2b2z

3 +

{
− 1

24
+

a3b3
2

}
z4 +

{
−a2b2

24
+

a4b4
2

}
z5 + ...

Thus, comparing the coefficients of z2, z3, z4 , and z5 in (2.18), we obtain

a2b2 =
γ

2 (1 + 2λ)
,

a3b3 =
γ2

8 (1 + 2λ) (1 + 3λ)
,

a4b4 =

{
3γ2 − 2 (1 + 2λ) (1 + 3λ)

}
γ

144 (1 + 2λ) (1 + 3λ) (1 + 4λ)
,

a5b5 =

{
3γ2 − 4 (1 + 3λ) (7λ+ 2)

}
γ2

1152 (1 + 2λ) (1 + 3λ) (1 + 4λ) (1 + 5λ)
.

2

Corollary 2.4 Since the coefficients a2b2, a3b3, a4b4 , and a5b5 depend on λ and are decreasing with respect
to λ, the following inequalities can be written as the result of Theorem 2.1.

|γ|
6

≤ |a2b2| ≤
|γ|
2
, (2.19)

|γ|2

96
≤ |a3b3| ≤

|γ|2

8
, (2.20)∣∣γ3 − 8γ

∣∣
2880

≤ |a4b4| ≤
∣∣3γ3 − 2γ

∣∣
144

, (2.21)∣∣γ4 − 48γ2
∣∣

138240
≤ |a5b5| ≤

∣∣3γ4 − 8γ2
∣∣

1152
. (2.22)

3. Some results connected with the Fekete–Szegö inequality and Hankel Determinant
The Fekete-Szegö problem may be considered one of the most important results about univalent functions,
which is related to coefficients an of a function’s Taylor series and was introduced by Fekete and Szegö [1].

We state it as:
If f ∈ S given by (1.2), then

∣∣a3 − µa22
∣∣ ≤


3− 4µ , µ ≤ 0

1 + 2 exp
(

2µ
µ−1

)
, 0 ≤ µ ≤ 1

4µ− 3 , µ ≥ 1

.
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The problem of maximizing the absolute value of functional a3 − µa22 is called the Fekete–Szegö problem. This
result is sharp and is studied thoroughly by many researchers. The equality holds true for the Koebe function.
In 1969, Keogh and Merkes [2] obtained the sharp upper bound of the Fekete–Szegö functional

∣∣a3 − µa22
∣∣ for

some subclasses of univalent function.
Recently, Murugusundarmoorthy and Janani [3], Olantunji et al. [5], Olantunji [4], and Orhan and Çağlar

[7] have studied Sigmoid function for various classes of analytic and univalent functions.
In this section, we first prove the following Fekete–Szegö result for the function in the classes Mλ(∗) (γ, φn,m)

and ℑλ(∗) (γ, φn,m) with the values of a2b2 and a3b3.

Theorem 3.1 If F ∈ A given by (1.3) is in the class Mλ(∗) (γ, φn,m) , then

∣∣∣a3b3 − µ (a2b2)
2
∣∣∣ ≤ |γ|2

8
(1 + 2 |µ|) . (3.1)

Proof If the values of a2b2 and a3b3 determined by (2.1) and (2.2) are written instead of a3b3 − µ (a2b2)
2
,

the absolute value of both sides of the equation is taken and triangle inequality is applied, we get

a3b3 − µ (a2b2)
2
=

γ2

8 (1 + 2λ)
− µ

(
γ

2 (1 + λ)

)2

∣∣∣a3b3 − µ (a2b2)
2
∣∣∣ ≤ |γ|2

8 (1 + 2λ)
+ |µ| |γ|2

4 (1 + λ)
2 .

Here ζ1 (λ) = 1
1+2λ and ζ2 (λ) = 1

(1+λ)2
are taken and these functions depending on λ are considered to be

decreasing in the interval 0 ≤ λ ≤ 1, since max
0≤λ≤1

{
1

1+2λ

}
= 1 and max

0≤λ≤1

{
1

(1+λ)2

}
= 1,

∣∣∣a3b3 − µ (a2b2)
2
∣∣∣ ≤ |γ|2

8
+ |µ| |γ|

2

4
,

then we obtain ∣∣∣a3b3 − µ (a2b2)
2
∣∣∣ ≤ |γ|2

8
(1 + 2 |µ|)=

{
|γ|2
8 (1 + 2 |µ|) ; µ ≥ 0

|γ|2
8 (1− 2 |µ|) ; µ < 0

.

2

Theorem 3.2 If F ∈ A given by (1.3) is in the classℑλ(∗) (γ, φn,m) , then

∣∣∣a3b3 − µ (a2b2)
2
∣∣∣ ≤ |γ|2

8
(1 + 2 |µ|) . (3.2)

Proof If the values of a2b2 and a3b3 determined by (2.12) and (2.13) are written instead of a3b3 −µ (a2b2)
2
,

the absolute value of both sides of the equation is taken and triangle inequality is applied, we have

a3b3 − µ (a2b2)
2
=

γ2

8 (1 + 2λ) (1 + 3λ)
− µ

(
γ

2 (1 + 2λ)

)2

1023
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⇒
∣∣∣a3b3 − µ (a2b2)

2
∣∣∣ ≤ |γ|2

8 (1 + 2λ) (1 + 3λ)
+ |µ| |γ|2

4 (1 + 2λ)
2 .

Here ζ3 (λ) =
1

(1+2λ)(1+3λ) and ζ4 (λ) =
1

(1+2λ)2
are taken and these functions depending on λ are considered

to be decreasing in the interval 0 ≤ λ ≤ 1, since max
0≤λ≤1

{
1

(1+2λ)(1+3λ)

}
= 1 and max

0≤λ≤1

{
1

(1+2λ)2

}
= 1,

∣∣∣a3b3 − µ (a2b2)
2
∣∣∣ ≤ |γ|2

8
+ |µ| |γ|

2

4
,

then we obtain ∣∣∣a3b3 − µ (a2b2)
2
∣∣∣ ≤ |γ|2

8
(1 + 2 |µ|) =

{
|γ|2
8 (1 + 2 |µ|) ; µ ≥ 0

|γ|2
8 (1− 2 |µ|) ; µ < 0

.

2

In what follows, we will give some results related to by Hankel determinant for the functions belonging
to classes Mλ(∗) (γ, φn,m) and ℑλ(∗) (γ, φn,m) .

Theorem 3.3 If F ∈ A given by (1.3) is in the class Mλ(∗) (γ, φn,m) , then

∣∣∣(a2b2) (a4b4)− (a3b3)
2
∣∣∣ ≤ |γ|2

576

{
2
∣∣(3γ2 − 2

)∣∣+ 9 |γ|2
}
. (3.3)

Proof From (2.1), (2.2), and (2.3), we get

H2 (2) =

∣∣∣∣ a2b2 a3b3
a3b3 a4b4

∣∣∣∣ = (a2b2) (a4b4)− (a3b3)
2
=

{
γ

2 (1 + λ)

}{ (
3γ2 − 2

)
γ

144 (1 + 3λ)

}
−
{

γ2

8 (1 + 2λ)

}2

=

{ (
3γ2 − 2

)
γ2

288 (1 + λ) (1 + 3λ)

}2

−

{
γ4

64 (1 + 2λ)
2

}

and thus

|H2 (2)| =
∣∣∣(a2b2) (a4b4)− (a3b3)

2
∣∣∣ ≤ ∣∣3γ4 − 2γ2

∣∣
288 (1 + λ) (1 + 3λ)

+
|γ|4

64 (1 + 2λ)
2 .

Here ζ3 (λ) =
1

(1+λ)(1+3λ) and ζ4 (λ) =
1

(1+2λ)2
are taken and these functions depending on λ are considered

to be decreasing in the interval 0 ≤ λ ≤ 1, since max
0≤λ≤1

{
1

(1+λ)(1+3λ)

}
= 1 and max

0≤λ≤1

{
1

(1+2λ)2

}
= 1, then we

obtain ∣∣∣(a2b2) (a4b4)− (a3b3)
2
∣∣∣ ≤ |γ|2

576

{
2
∣∣(3γ2 − 2

)∣∣+ 9 |γ|2
}
.

2

Theorem 3.4 If F ∈ A given by (1.3) is in the class Mλ(∗) (γ, φn,m) , then

∣∣∣(a2b2) (a4b4)− µ (a3b3)
2
∣∣∣ ≤ |γ|2

576

{
2
∣∣(3γ2 − 2

)∣∣+ 9 |γ|2 + 72 |λ− 1|
}
. (3.4)
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Proof Since
(a2b2) (a4b4)− µ (a3b3)

2
= (a2b2) (a4b4)− (µ− 1) (a3b3)

2 − (a3b3)
2

can be written, the absolute value of both sides of this equation is taken and triangle inequality is applied, then
we obtain ∣∣∣(a2b2) (a4b4)− µ (a3b3)

2
∣∣∣ = ∣∣∣(a2b2) (a4b4)− (a3b3)

2 − (µ− 1) (a3b3)
2
∣∣∣

≤
∣∣∣(a2b2) (a4b4)− (a3b3)

2
∣∣∣+ |(µ− 1)| |(a3b3)|2 .

If (3.3) and (2.9) are used in this inequality, we get

∣∣∣(a2b2) (a4b4)− µ (a3b3)
2
∣∣∣ ≤ |γ|2

576

{
2
∣∣(3γ2 − 2

)∣∣+ 9 |γ|2 + 72 |λ− 1|
}
.

2

Remark 3.5 Setting λ = µ = 1 in Theorem 3.4, we obtain Theorem 3.3.

Theorem 3.6 If F ∈ A given by (1.3) is in the class ℑλ(∗) (γ, φn,m) , then

∣∣∣(a2b2) (a4b4)− (a3b3)
2
∣∣∣ ≤ |γ|2

288

{
15 |γ|2 + 4

}
. (3.5)

Proof From (2.12), (2.13), and (2.14), we get∣∣∣∣ a2b2 a3b3
a3b3 a4b4

∣∣∣∣ = (a2b2) (a4b4)− (a3b3)
2

=

{
γ

2 (1 + 2λ)

}{ [
3γ2 − 2 (1 + 2λ) (1 + 3λ)

]
γ

144 (1 + 2λ) (1 + 3λ) (1 + 4λ)

}
−
{

γ2

8 (1 + 2λ) (1 + 3λ)

}2

=

{ [
3γ2 − 2 (1 + 2λ) (1 + 3λ)

]
γ2

288 (1 + 2λ)
2
(1 + 3λ) (1 + 4λ)

}
−
{

γ2

8 (1 + 2λ) (1 + 3λ)

}2

and thus

|H2 (2)| =
∣∣∣(a2b2) (a4b4)− (a3b3)

2
∣∣∣

≤ |γ|2

288

∣∣∣∣∣ 3γ2

(1 + 2λ)
2
(1 + 3λ) (1 + 4λ)

− 2

(1 + 2λ) (1 + 4λ)

∣∣∣∣∣+
∣∣∣∣∣ γ4

(8 (1 + 2λ) (1 + 3λ))
2

∣∣∣∣∣
≤ |γ|2

288

{
3 |γ|2

(1 + 2λ)
2
(1 + 3λ) (1 + 4λ)

+
2

(1 + 2λ) (1 + 4λ)

}
+

|γ|4

(8 (1 + 2λ) (1 + 3λ))
2

≤ |γ|2

288

{
3 |γ|2 + 2

}
+

|γ|4

64
=

|γ|2

288

{
15 |γ|2 + 4

}
.

2
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