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Abstract: The analogs of Korovkin theorems in grand-Lebesgue spaces are proved. The subspace Gp)(−π;π) of grand
Lebesgue space is defined using shift operator. It is shown that the space of infinitely differentiable finite functions is
dense in Gp)(−π;π) . The analogs of Korovkin theorems are proved in Gp)(−π;π) . These results are established in

Gp)(−π;π) in the sense of statistical convergence. The obtained results are applied to a sequence of operators generated
by the Kantorovich polynomials, to Fejer and Abel-Poisson convolution operators.

Key words: Grand Lebesgue space, Korovkin theorems, shift operator, statistical convergence, positive linear operator,
approximation process

1. Introduction
The concept of statistical convergence was first introduced by Fast ([20]) and Steinhaus in 1951 ([46]). For
scalar sequences, this concept was treated as an almost everywhere convergence by Zygmund in the monograph
[50], where it was introduced in the context of pointwise convergence of the Fourier series of summable function.
This theory was further developed by Schoenberg [44], Peterson [39], Brown and Freedman [13], Connor [16],
Erdös and Tenenbaum [19], Freedman and Sember [25], Fridy [26], Fridy and [27], Kuchukaslan et al. [33],
Maddox [35], Maharam [36], etc. (see also [41]) Statistical convergence has important applications in different
areas of mathematics, such as summation theory, number theory, probability theory, and approximation theory.
Statistical convergence is related to the concept of statistical fundamentals, considered first by Fridy [26], who
established the equivalence of these concepts for numerical sequences. Maio and Kocinac [37] proved that,
in uniform spaces, the statistical convergence implies the statistical fundamentals. Statistical convergence in
arbitrary metric and uniform topological spaces was studied in [5–8, 33–37]. The equivalence of the concepts of
statistical convergence and statistical fundamentals in metric spaces was established in [5]. Continuous analog
of statistical convergence was considered in [8].

Lately, there have been great interests in various nonstandard spaces in the context of applications in
different areas of mathematics. Among those spaces, we can mention Lebesgue spaces with variable summability
index, Morrey spaces, grand-Lebesgue spaces, etc. These spaces have been considered by many authors such
as Xianling and Dun [47], Sharapudinov [45], Zorko [49], Morrey [38], Cruz-Uribe and Fiorenza [17], Adams
[1], Samko [42], Kokilashvili et al. [30], Bilalov and Guseynov [3, 4], Fiorenza and Krbec [23], Castilo and
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Rafeiro [15], Fiorenza and Karadzhov [22], Capone and Fiorenza [14], Samko and Umarkhadzhiev [43], Zeren
[48], etc. Note that Iwaniec and Sbordone [29] were first to introduce the concept of grand-Lebesgue space
in 1992. A lot of research articles, reviews, and monographs have been dedicated to these spaces since then
([18, 21, 24, 28, 31, 32, 40]).

Korovkin theorems are important tools in approximation theory. They help to establish the convergence
of the sequence of linear positive operators to the identity operator in the space C([0; 1]] . When solving the
problems of the theory of differential equations in grand-Lebesgue space, you have to consider some subspaces
of it in which the space of continuous functions is dense. It is of interest to study the analogs of Korovkin
theorems and their statistical versions in such subspaces.

This work deals with Korovkin type Korovkin theorems in grand-Lebesgue spaces and their statistical
versions. The paper is organized as follows. In introduction, the grand-Lebesgue space Lp)(−π;π) is defined.
This space is nonseparable. Using shift operator, the subspace Gp)(−π;π) ⊂ Lp)(−π;π) is constructed, where
the set of continuous functions is dense. Classical Korovkin theorems on the approximation by positive operators
are stated. Some concepts and facts concerning statistical convergence are also stated in Section 3, the density of
infinitely differentiable finite on (−π;π) functions in Gp)(−π;π) is proved. The analogs of Korovkin theorems
in the spaces Gp)(−π;π) are also established in this section. In Section 3, statistical versions of the theorems
obtained in Section 2 are proved.

2. Preliminaries and some related results
Let us state some concepts from the theories of grand-Lebesgue spaces and statistical convergence in metric
spaces. Let Lp)(−π;π) , 1 < p < +∞ be a grand-Lebesgue space of measurable functions f on [−π;π] , which
satisfy the condition

∥f∥p) = sup
0<ε<p−1

(
ε

2π

∫ π

−π

|f(t)|p−ε
dt

) 1
p−ε

< +∞.

The space Lp)(−π;π) is a nonseparable complete normed space with the norm ∥f∥p) . In fact, consider a family
of functions

fα(t) =

{
0, 0 ≤ t ≤ α,

(t− α)−
1
p , α < t ≤ 1,

.

α ∈ [0; 1) . We have {fα} ⊂ Lp)(0; 1) . In fact,

∥fα∥p) = sup
0<ε<p−1

(
ε

∫ 1

α

(t− α)−1+ ε
p dt

) 1
p−ε

=

= sup
0<ε<p−1

(
p(t− α)

ε
p |1α
) 1

p−ε

= sup
0<ε<p−1

(
p(1− α)

ε
p

) 1
p−ε

< +∞.

For any different α, β ∈ [0; 1) with α < β we have

∥fα − fβ∥p) ≥ sup
0<ε<p−1

(
ε

∫ β

α

(t− α)−1+ ε
p dt

) 1
p−ε

= sup
0<ε<p−1

(
p(t− α)

ε
p |βα
) 1

p−ε

=
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= sup
0<ε<p−1

(
p(β − α)

ε
p

) 1
p−ε ≥ lim

ε→+0

(
p(β − α)

ε
p

) 1
p−ε

= p
1
p .

This directly implies the nonseparability of the space Lp)(0; 1) .

Similar to Morrey space (see [9–12, 49]) we construct the needed separable subcpace of Lp)(−π, π) as
follows. For ∀f ∈ Lp)(−π;π) and ∀δ > 0 we set

Tδf(x) =

{
f(x+ δ), x+ δ ∈ [−π;π]
0, x+ δ ∈ R\[−π;π]

.

By G̃p)(−π;π) we denote a linear manifold of the functions f ∈ Lp)(−π;π) , which satisfy the condition

∥Tδf − f∥p) → 0, δ → 0.

Let Gp)(−π;π) be a closure of G̃p)(−π;π) in Lp)(−π;π) .
Let us state some concepts from the theory of positive operators [see 45]. Let (X, ρ) and (Y, d) be metric

spaces, F (X) be a linear space of functions f : X → R , F (Y ) be a linear space of functions f : Y → R and E

be a subspace of F (X) . Linear functional µ : E → R is said to be positive if for ∀f ∈ E from f ≥ 0 it follows
µ(f) ≥ 0 . Linear operator T : E → F (Y ) is said to be positive if for ∀f ∈ E from f ≥ 0 it follows T (f) ≥ 0 .

Now let us state well-known Korovkin theorems which have important applications in the study of
approximation problems in the spaces of continuous functions as well as in Lebesgue spaces ([2]).

Theorem 2.1 (Korovkin’s first theorem) Let {Ln}n∈N be a sequence of positive operators from C([0; 1]) into
F ([0; 1]) , satisfying the condition

lim
n→∞

∥Lng − g∥∞ = 0,∀g ∈
{
1, t, t2

}
.

Then
lim
n→∞

∥Lnf − f∥∞ = 0,∀f ∈ C([0; 1]),

where ∥f∥∞ = sup
[0;1]

|f(x)| .

Using this theorem for the sequence of operators generated by the Kantorovich polynomials of the form

Kn(f)(x) =

n∑
k=0

(
(n+ 1)

∫ k+1
n+1

k
n+1

f(t)dt

)(
n
k

)
xk(1− x)n−k, (2.1)

0 ≤ x ≤ 1,∀f ∈ Lp([0; 1]), it is easy to prove its analog in the spaces Lp([0; 1]) . The following is valid:

Theorem 2.2 Let 1 ≤ p < +∞ and {Kn}n∈N be a sequence of operators generated by the polynomials (2.1).
Then Kn is a positive operator acting from Lp([0; 1]) into Lp([0; 1]) and the relation

lim
n→∞

∥Lnf − f∥p = 0,∀f ∈ Lp([0; 1]),

holds, where ∥f∥p =
(∫ 1

0
|f(t)|p dt

) 1
p .
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By C2π(R) we denote a space of 2π -periodic continuous functions on R , and by Lp
2π(R) , 1 ≤ p ≤ +∞ , we

denote a space of 2π -periodic functions from Lp(R) .
The following Korovkin theorem is true in the space C2π(R) .

Theorem 2.3 (Korovkin’s second theorem) Let {Ln}n∈N be a sequence of positive operators from C2π(R) into
F (R) , satisfying the condition

lim
n→∞

∥Lng − g∥∞ = 0,∀g ∈ {1, sin, cos} .

Then
lim
n→∞

∥Lnf − f∥∞ = 0,∀f ∈ C2π(R).

A sequence {φn}n∈N ⊂ L1
2π(R) is called a positive periodic kernel if φn ≥ 0 , ∀n ∈ N , almost everywhere

and

lim
n→∞

1

2π

∫ π

−π

φn(t)dt = 1. (2.2)

Every positive periodic kernel {φn}n∈N ⊂ L1
2π(R) generates a sequence of linear operators {Ln}n∈N in L1

2π(R)

by the formula

Ln(f)(x) = (f ∗ φn)(x) =
1

2π

∫ π

−π

f(x− t)φn(t)dt =

=
1

2π

∫ π

−π

f(t)φn(x− t)dt. (2.3)

From Hölder’s inequality it follows that if f ∈ Lp
2π(R) , 1 < p < +∞ , then Ln(f) ∈ Lp

2π(R) . Moreover, the
inequalities

∥Ln(f)∥p ≤ ∥φn∥1 ∥f∥p , f ∈ C2π(R), (2.4)

∥Ln(f)∥∞ ≤ ∥φn∥1 ∥f∥∞ , f ∈ C2π(R) (2.5)

hold.
A positive periodic kernel {φn}n∈N is called identically approximative if ∀δ ∈ (0;π) the equality

lim
n→∞

[∫ −δ

−π

φn(t)dt+

∫ π

δ

φn(t)dt

]
= 0

holds.
The next theorem presents the equivalent conditions which provide the validity of Korovkin theorem for

a sequence of operators defined by (2.3) in the spaces C2π(R) and Lp
2π(R) , 1 ≤ p < +∞ .

Theorem 2.4 Let {φn}n∈N ⊂ L1
2π(R) be a positive periodic kernel and {Ln}n∈N be a sequence of operators

defined by (2.3). Let

βn =
1

2π

∫ π

−π

φn(t) sin
2 t

2
dt. (2.6)
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Then the following properties are equivalent:
i) for every 1 ≤ p < +∞ and f ∈ Lp

2π(R) , the relation

lim
n→∞

∥Lnf − f∥p = 0

holds, and
lim
n→∞

∥Lnf − f∥∞ = 0,∀f ∈ C2π(R);

ii) lim
n→∞

βn = 0;

iii) {φn}n∈N is identically approximative.
Let the positive periodic kernel {φn}n∈N have the form of

φn =

{
sin2 (n+1)t

2

(n+1) sin2 t
2

, t ̸= 2πk, k ∈ Z

n+ 1, t = 2πk, k ∈ Z
.

For this kernel we have βn = 1
2(n+1) . Then, by Theorem 2.4, the relations

lim
n→∞

∥Fnf − f∥p = 0

and
lim

n→∞
∥Fnf − f∥∞ = 0,∀f ∈ C2π(R),

hold for the Fejer convolution operator Fn given by

Fn(f)(x) =
1

2π

∫ π

−π

f(t)φn(x− t)dt. (2.7)

Similar assertions hold true for the Abel-Poisson convolution operator

Pr(f)(x) =
1

2π

∫ π

−π

f(t)P (r, x− t)dt, (2.8)

where

P (r, t) =
1− r2

1− 2r cos t+ r2
, t ∈ R, 0 ≤ r < 1,

is a Poission kernel for unit ball. Namely, in this case

βr =
1− r

2
,

and, consequently, by Theorem 2.4 we obtain

lim
r→1−0

∥Prf − f∥p = 0,

and
lim

r→1−0
∥Prf − f∥∞ = 0, ∀f ∈ C2π(R).
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Let us recall some auxiliary concepts and facts concerning statistical convergence in metric spaces (see
[18]). Let (X, ρ) be a metric space, A ⊂ N and

δn(A) =
1

n

n∑
k=1

χA(k).

If there exists a limit δ(A) = lim
n→∞

δn(A) , then the number δ(A) is called a statistical density of the set A . The

sequence {xn}n∈N ⊂ X is called statistically convergent to x ∈ X (st− lim
n→∞

xn = x), if

∀ε > 0, δ(Aε) = 0, where Aε = {n ∈ N : ρ(xn, x) ≥ ε} .

The sequence {xn}n∈N ⊂ X is called statistically fundamental (st− fundamental ) if

∀ε > 0, ∃nε, ∀n ≥ nε : δ(∆nε) = 0,

where ∆nε = {n ∈ N : ρ(xn, xnε) ≥ ε} .
We set K = {A ⊂ N : δ(A) = 1} .
The following is valid:

Theorem 2.5 ([5]) Let (X, ρ) be a metric space and {xn}n∈N ⊂ X . The following conditions are equivalent:
i) ∃st− lim

n→∞
xn = x;

ii) {xn}n∈N is st-fundamental;
iii) ∃ {yn}n∈N ⊂ X : ∃ lim

n→∞
yn = x, {n ∈ N : xn = yn} ∈ K .

This theorem has the following corollary.

Corollary 2.6 Let (X, ρ) be a metric space and the sequence {xn}n∈N ⊂ X be such that ∃st − lim
n→∞

xn = x .

Then
∃ {nk}k∈N ∈ K (n1 < n2 < ... < nk < ...) : lim

k→∞
xnk

= x.

3. Korovkin theorems in the spaces Gp)(−π;π)

Let Lp)(−π;π) , 1 < p < +∞ , be a grand-Lebesgue space. We extend some function from Lp)(−π;π) by zero
and consider the closure in Lp)(−π;π) of the linear manifold of functions f ∈ Lp)(−π;π) such that

∥f(·+ δ)− f(·)∥Lp) → 0, δ → 0.

Denote this subspace by Gp)(−π;π) . We prove the following.

Lemma 3.1 The space C∞
0 [−π;π] is dense in Gp)(−π;π) .

Proof Consider an arbitrary number η > 0 and an arbitrary function f ∈ Gp)(−π;π) . Denote by ωη(t) the
following kernel

ωη(t) =

{
cη exp(− η2

η2−t2 ), |t| ≤ η,

0, |t| > η,
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where the constant cη is such that
∫ +∞
−∞ ωη(t)dt = 1 . Let the function fη(·) be a convolution with a kernel

ωη(·) , i.e.

fη(t) =

∫ +∞

−∞
f(t− s)ωη(s)ds =

∫ +∞

−∞
ωη(t− s)f(s)ds.

Correctness of such definition follows from the inclusion Lp)(−π;π) ⊂ L1(−π;π) . It is clear that fη(t) is an
infinitely differentiable function. Using Minkowski’s inequality, we obtain

∥f − fη∥p) =
∥∥∥∥∫ +∞

−∞
f(·)ωη(s)ds−

∫ +∞

−∞
f(· − s)ωη(s)ds

∥∥∥∥
p)

=

=

∥∥∥∥∫ +∞

−∞
[f(· − s)− f(·)]ωη(s)ds

∥∥∥∥
p)

=

= sup
0<ε<p−1

(
ε

2π

∫ π

−π

∣∣∣∣∫ +∞

−∞
[f(t− s)− f(t)]ωη(s)ds

∣∣∣∣p−ε

dt

) 1
p−ε

≤

≤
∫ +∞

−∞
ωη(s) sup

0<ε<p−1

(
ε

2π

∫ π

−π

|f(t− s)− f(t)|p−ε
dt

) 1
p−ε

ds ≤

≤ (p− 1) sup
|s|≤η

∥f(· − s)− f(·)∥p) → 0, η → 0.

Consequently, C∞[−π;π] is dense in Gp)(−π;π) . Consider an arbitrary η > 0 and an arbitrary function
f ∈ Gp)(−π;π) . As C∞[−π;π] is dense in Gp)(−π;π) , there exists g ∈ C∞[−π;π] such that

∥f − g∥p) <
η

3
. (3.1)

Choose the number δ > 0 such that δ < π
(

η
3(p−1)∥g∥∞

)p
. Consider the intervals E+

δ = (π − δ;π) and

E−
δ = (−π;−π + δ) of length δ and define the function

gδ(t) =

{
g(t), t ∈ (−π;π)\(E+

δ

⋃
E−

δ ),
0, t ∈ E+

δ

⋃
E−

δ .

We have

∥g − gδ∥p) = sup
0<ε<p−1

(
ε

2π

∫
E+

δ

∪
E−

δ

|g(t)|p−ε
dt

) 1
p−ε

≤

≤ ∥g∥∞ sup
0<ε<p−1

( ε

2π
2δ
) 1

p−ε

<
∥g∥∞ (p− 1)δ

1
p

π
1
p

<
η

3
. (3.2)

Let

gδ,τ (t) =

∫ +∞

−∞
gδ(t− s)ωτ (s)ds, τ ∈ R.
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Obviously, for τ < δ
2 we have gδ,τ ∈ C∞

0 [−π;π] . As ∥gδ − gδ,τ∥p) → 0 for τ → 0 , there exists τ < δ
2 such that

∥gδ − gδ,τ∥p) <
η

3
. (3.3)

Consequently, using (3.1), (3.2), and (3.3), we obtain

∥f − gδ,τ∥p) ≤ ∥f − g∥p) + ∥g − gδ∥p) + ∥gδ − gδ,τ∥p) <
η

3
+

η

3
+

η

3
= η,

i.e. C∞
0 [−π;π] is dense in Gp)(−π;π) . The lemma is proved. 2

The next theorem is an analog of Korovkin theorem in the spaces Gp)(0; 1) .

Theorem 3.2 Let {Ln}n∈N be a sequence of positive linear operators on Gp)(0; 1) , 1 < p < +∞ , satisfying
the condition

lim
n→∞

∥Lng − g∥∞ = 0, ∀g ∈
{
1, t, t2

}
.

Then the relation
lim

n→∞
∥Lnf − f∥p) = 0, ∀f ∈ Gp)(0; 1),

holds if and only if sup
n

∥Ln∥ = c < +∞ .

Proof Necessity follows from the Banach–Steinhaus theorem. We prove the sufficiency. Let η > 0 be an
arbitrary number. Consider an arbitrary function f ∈ Gp)(0; 1) . From Lemma 3.1 it follows that there exists
g ∈ C[0; 1] such that

∥f − g∥p) < η. (3.4)

By Theorem 2.1, there exists nη such that for ∀n > nη

∥Lng − g∥∞ < η. (3.5)

For ∀f ∈ C([0; 1]) we have

∥f∥p) = sup
0<ε<p−1

(
ε

∫ 1

0

|f(t)|p−ε
dt

) 1
p−ε

≤

≤ sup
0<ε<p−1

ε
1

p−ε ∥f∥∞ = (p− 1) ∥f∥∞ . (3.6)

Applying triangle inequality, we obtain

∥Lnf − f∥p) ≤ ∥Lnf − Lng∥p) + ∥Lng − g∥p) + ∥f − g∥p) .

Hence, using (3.4), (3.5), and (3.6), ∀n > nη we obtain

∥Lnf − f∥p) < c ∥f − g∥p + (p− 1) ∥Lng − g∥∞ + ∥f − g∥p) < (c+ p)η.

Thus, lim
n→∞

∥Lnf − f∥p) = 0 . The theorem is proved. 2

We apply the results obtained here to the sequence of operators generated by the Kantorovich polynomials.
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Theorem 3.3 Let {Kn}n∈N be a sequence of positive linear operators defined by (2.1). Then the following
equality holds

lim
n→∞

∥Knf − f∥p) = 0,∀f ∈ Gp)(0; 1), 1 < p < +∞.

Proof It is known ([49]) that Kn is a positive linear operator acting boundedly in Lp(0; 1) and ∥Kn∥ ≤ 1 ,
∀n ∈ N . We have

∥Knf∥p) = sup
0<ε<p−1

(
ε

∫ 1

0

|(Knf)(t)|p−ε
dt

) 1
p−ε

=

= sup
0<ε<p−1

ε
1

p−ε ∥Knf∥p−ε ≤ ∥f∥p) ,∀f ∈ Gp)(0; 1),

i.e. {Kn}n∈N is uniformly bounded in Gp)(0; 1) . As

lim
n→∞

∥Kng − g∥∞ = 0,∀g ∈
{
1, t, t2

}
,

from Theorem 3.2 it follows that lim
n→∞

∥Knf − f∥p) = 0 , ∀f ∈ Gp)(0; 1) . The theorem is proved. 2

Now let us state the analog of Korovkin’s second theorem in the space Gp)(0; 1) .

Theorem 3.4 Let {Ln}n∈N be a sequence of positive linear operators in Gp)(−π; π) , 1 < p < +∞ , satisfying
the condition

lim
n→∞

∥Lng − g∥∞ = 0,∀g ∈ {1, sin, cos} .

Then the relation
lim

n→∞
∥Lnf − f∥p) = 0,∀f ∈ Gp)(−π;π)

holds if and only if sup
n

∥Ln∥ = c < +∞ .

Proof The necessity follows from the Banach–Steinhaus theorem. We prove the sufficiency. Consider an
arbitrary number η > 0 and an arbitrary function f ∈ Gp)(−π;π) . As C2π(R) is dense in Gp)(−π;π) , we can
find a function g ∈ C2π(R) such that

∥f − g∥p) < η. (3.7)

By Theorem 2.1, there exists nη such that for ∀n > nη

∥Lng − g∥∞ < η. (3.8)

We have

∥f∥p) = sup
0<ε<p−1

(
ε

2π

∫ π

−π

|f(t)|p−ε
dt

) 1
p−ε

≤

≤ sup
0<ε<p−1

ε
1

p−ε ∥f∥∞ = (p− 1) ∥f∥∞ . (3.9)
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Then, taking into account (3.7) , (3.8), and (3.9), we obtain

∥Lnf − f∥p) ≤ ∥Lnf − Lng∥p) + ∥Lng − g∥p) + ∥f − g∥p) <

< (c+ 1)η + (p− 1)η = (c+ p)η.

Thus, lim
n→∞

∥Lnf − f∥p) = 0 , ∀f ∈ Gp)(−π;π) . The theorem is proved. 2

Also, the analog of Theorem 2.4 in the space Gp)(−π;π) is true.

Theorem 3.5 Let {φn}n∈N ⊂ L1
2π(R) be a positive periodic kernel, {Ln}n∈N be a sequence of operators

defined by (2.3), and the sequence of numbers {βn}n∈N be given by the formula (2.6). Then the following
properties are equivalent:

i) for every 1 < p < +∞ and ∀f ∈ Gp)(−π;π)

lim
n→∞

∥Lnf − f∥p) = 0, (3.10)

and also
lim
n→∞

∥Lnf − f∥∞ = 0,∀f ∈ C2π(R); (3.11)

ii) lim
n→∞

βn = 0;

iii) {φn}n∈N is identically approximative.

Proof Obviously, to prove this theorem it suffices to show the validity of the equivalence i) ⇔ ii) . Let the
condition i) hold. As the positive kernel {φn}n∈N is bounded, by (2.6) there exists a number c > 0 such that
∥Ln∥ ≤ c , ∀n ∈ N . Therefore, due to the density of C2π(R) in Lp

2π(R) and the equality (3.11), we obtain

lim
n→∞

∥Lnf − f∥p = 0,∀f ∈ Lp
2π(R).

Consequently, by Theorem 2.4, the condition ii) holds.
Conversely, let the condition ii) hold. By Theorem 2.4, we have

lim
n→∞

∥Lnf − f∥p = 0,∀f ∈ Lp
2π(R),

lim
n→∞

∥Lnf − f∥∞ = 0,∀f ∈ C2π(R).

Taking into account (2.4), for ∀f ∈ Gp)(−π;π) we obtain

∥Ln(f)∥p) = sup
0<ε<p−1

( ε

2π

) 1
p−ε ∥Ln(f)∥p−ε ≤

≤ ∥φn∥1 sup
0<ε<p−1

( ε

2π

) 1
p−ε ∥f∥p−ε = ∥φn∥1 ∥f∥p) .

Consider ∀f ∈ Gp)(−π;π) and ∀η > 0 . Due to the density of C2π(R) in Gp)(−π;π) , there exists g ∈ C2π(R)

such that
∥f − g∥p) < η. (3.12)
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From the condition of the theorem it follows that there exists nη such that for ∀n > nη :

∥Lng − g∥∞ < η. (3.13)

It is clear that sup
n

∥φn∥1 = c < +∞ . Then, taking into account (3.12), (3.9), and (3.10), we obtain

∥Lnf − f∥p) ≤ ∥Lnf − Lng∥p) + ∥Lng − g∥p) + ∥f − g∥p) <

< (c+ 1)η + (p− 1)η = (c+ p)η,

i.e. the relation (3.10) is true. Thus, the condition i) holds. The theorem is proved. 2

The above-proved theorem has the following corollaries, in particular, for Fejer and Abel-Poisson convo-
lution operators.

Corollary 3.6 Let Fn be a linear Fejer convolution operator in Gp)(−π;π) , 1 < p < +∞ , defined by the
formula (2.7). Then ∀f ∈ Gp)(−π;π) the following relation holds:

lim
n→∞

∥Fnf − f∥p) = 0. (3.14)

Proof Consider the sequence {βn}n∈N defined by the formula (2.6). We have

βn =
1

2π

∫ π

−π

φn(t) sin
2 t

2
dt =

1

2(n+ 1)
,

where

φn =

{
sin2 (n+1)t

2

(n+1) sin2 t
2

, t ̸= 2πk, k ∈ Z

n+ 1, t = 2πk, k ∈ Z
.

Consequently, by Theorem 2.4, the relation (3.14) holds. The corollary is proved. 2

Corollary 3.7 Let Pr , 0 ≤ r < 1 , be a linear Abel-Poisson convolution operator in Gp)(−π;π) , 1 < p < +∞ ,
defined by the formula (2.8). Then ∀f ∈ Gp)(−π;π) the following relation holds:

lim
r→1−0

∥Prf − f∥p) = 0. (3.15)

Proof We have

βr =
1

2π

∫ π

−π

P (r, t) sin2
t

2
dt =

1− r

2
,

where P (r, t) = 1−r2

1−2r cos t+r2 . Hence, lim
r→1−0

βr = 0 ; therefore, by Theorem 2.4, the relation (3.15) holds. The

corollary is proved. 2
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4. Statistical versions of Korovkin theorems in the space Gp)(−π;π)

In this section, we establish statistical versions of results obtained in the previous section. We will need the
following easy-to-prove lemma.

Lemma 4.1 If A,B ∈ K , then A
⋂
B ∈ K .

For the proof of this lemma we refer the readers to [5–7].

Theorem 4.2 Let {Ln}n∈N be a sequence of positive linear operators on Gp)(0; 1) ,1 < p < +∞ , such that
sup
n

∥Ln∥ = c < +∞ . If in C([0; 1])

∃st− lim
n→∞

Lng = g, ∀g ∈
{
1, t, t2

}
,

then in Gp)(0; 1)

∃st− lim
n→∞

Lnf = f, ∀f ∈ Gp)(0; 1).

Proof From ∃st− lim
n→∞

Lngi = gi , where gi(t) = ti , i = 0; 1; 2 , by Corollary 2.6, it follows ∃
{
n
(i)
k

}
k∈N

∈ K(
n
(i)
1 < n

(i)
2 < ... < n

(i)
k < ...

)
lim
k→∞

∥∥∥Ln
(i)
k

gi − gi

∥∥∥
∞

= 0, i = 0; 1; 2.

Let {nk} =
⋂

i=0;1;2

{
ni
k

}
, (n1 < n2 < ... < nk < ...) . It follows directly from Lemma 4.1 that δ ({nk}) = 1 .

Obviously,
lim
k→∞

∥Lnk
gi − gi∥∞ = 0, i = 0; 1; 2.

Then, by Theorem 3.2, we have

lim
k→∞

∥Lnk
f − f∥p) = 0,∀f ∈ Gp)(0; 1).

Consequently, by Theorem 2.5, for ∀f ∈ Gp)(0; 1) the sequence {Lnf}n∈N statistically converges to f in

Gp)(0; 1) . The theorem is proved. 2

Corollary 4.3 Let {Kn}n∈N be a sequence of positive linear operators defined by (2.1). Then in Gp)(0; 1)

∃st− lim
n→∞

Knf = f, ∀f ∈ Gp)(0; 1).

Theorem 4.4 Let {Ln}n∈N be a sequence of positive linear operators in Gp)(−π;π) such that Ln : C2π(R) →
C2π(R) and sup

n
∥Ln∥ = c < +∞ . If in C2π(R)

∃st− lim
n→∞

Lng = g, ∀g ∈ {1, sin, cos} ,

then in Gp)(−π;π)

∃st− lim
n→∞

Lnf = f, ∀f ∈ Gp)(−π;π).

1038



ZEREN et al./Turk J Math

Proof Since there exists st − lim
n→∞

Lng = g , ∀g ∈
{
1, t, t2

}
, by Corollary 2.6 and Lemma 4.1 we can find

{nk}k∈N ∈ K (n1 < n2 < ... < nk < ...) such that

lim
k→∞

∥Lnk
g − g∥∞ = 0,∀g ∈ {1, sin, cos} .

Consequently, by Theorem 3.4, we have

lim
k→∞

∥Lnk
f − f∥p) = 0,∀f ∈ Gp)(−π;π).

Thus, by Theorem 2.5, for ∀f ∈ Gp)(0; 1) the sequence {Lnf}n∈N statistically converges to f in Gp)(−π;π) .
The theorem is proved. 2
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