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Abstract: In the most general case of ω -weights, some normed functional spaces Xp
ω(a, b)(1 ≤ p ≤ ∞) , ACn

γ,ω[a, b] and
a generalization of the fractional integro-differentiation operator are introduced and analyzed. The boundedness of the
ω -weighted fractional operator over Xp

ω(a, b) is proved. Some theorems and lemmas on the properties of the invertions of
the mentioned operator and several representations of functions from ACn

γ,ω[a, b] are established. A general ω -weighted
Caputo fractional derivative of order α is studied over ACn

γ,ω[a, b] . Some representations and other properties of this
fractional derivative are proved. Some conclusions are presented.

Key words: ω -weighted fractional derivatives and integrals, functional spaces, representations, absolutely
continuous functions

1. Introduction
Recently, many researchers are dealing with some well-known equations by means of some generalized fractional
integro-differential operators, see, e.g., [5, 8, 10, 15]. These kind of extensions imply several expected and
unexpected properties of the solutions of the considered equation, we refer to [3, 6, 18]. Besides, in many
papers some special classes of functions have been introduced to apply the apparatus of the fractional integro-
differential equations in different fields of knowledge: engineering, physics, chemistry, mathematics, etc., see,
e.g., [4, 12, 17]. This is the base for studying in this paper more general fractional derivatives. These derivatives
will be considered for functions belonging to several spaces ACn

γ,ω[a, b] , which are some subsets of the set AC[a, b]

of absolutely continuous functions on [a, b] , see, e.g., [13, 18]. Notice that that the space AC[a, b] coincides
with the space of primitives of Lebesgue summable functions, see, e.g., [18, p. 3], then absolutely continuous
functions have a summable derivative f ′(z) almost everywhere. The converse is no true. Indeed, this is one of
the most important facts of the theory of fractional calculus to define fractional integro-differentiation operators
with good enough representations and properties. In general terms, this paper gives some ω -weighted extensions
of the results in [18, Chapter 1. Sec. 2] and [12, 13]. Furthermore, we give some other new results that appear
naturally while it was proving the ω -extension.

The paper is organized as follows: In Section 2 we give some definitions on the fractional integro-
differentiation operators. Section 3 is devoted to the representation of any function f ∈ ACn

γ,ω[a, b] in
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terms of ω -weighted fractional integrals. Besides, it shows that if f ∈ ACn
γ,ω[a, b] then Iαa,ωf ∈ ACn

γ,ω[a, b] .
Section 4 gives the original contribution of the paper on representations and properties of some general ω -
Caputo fractional derivatives over ACn

γ,ω[a, b] . Some theorems on inverse properties of the ω -Caputo fractional
derivatives and fractional integrals are established. In Section 5 we give a boundedness result on ω -weighted
fractional integral in a weighted space Xp

ω(a, b) , while in Section 6 we finish the paper with some conclusions.
The goal of this paper is to present and study some properties of a Caputo fractional derivative with

respect to another function. With this idea, we generalize some previous works dealing with the Caputo
fractional derivatives. We study the main properties of this operator.

2. ω -weighted fractional integrals and derivatives
Below we recall some classical definitions on fractional integration and fractional derivative of a function.

Definition 2.1 Let a, b ∈ R , a < b , α > 0 and f ∈ L1 (a, b) , then

(Jα
a+f) (x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a, (2.1)

and

(Jα
b−f) (x) =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, b > x. (2.2)

These integrals are called right-sided and left-sided Riemann–Liouville fractional integrals respectively, see, e.g.,
[7, 15, 18].

Moreover, other kind of fractional integrals and derivatives of a function f with respect to another function
h have been defined and studied in different articles and books, see, e.g., [3, 15, 18]. In this article, we will
consider the same form of fractional integro-differentiation operators, but with respect to a weight ω that turns
into those in [3, 7, 15, 17, 18] for some particular weights. The consideration of these weights ω will bring out
more expected and unknown results. These kind of generalized fractional integrals and derivatives are partially
studied in more general settings in [1, 3, 12, 16, 17] and the references therein.

From now on, we assume that Ω is the class of those absolutely continuous functions ω(x) on (a, b) , such that
ω′(x) ̸= 0 for any x ∈ (a, b) and −∞ < a < b < +∞ . Besides, N is the set of natural numbers, C is the set of
complex numbers and ⌈x⌉ is the ceiling function.

Below we introduce the ω -weighted fractional integro-differentiation operators and give some examples
of them.

Definition 2.2 If ω ∈ Ω , α ∈ C (Reα > 0) and f ∈ L(a, b) , we define the left-sided (right-sided) fractional
integrals of order α and the left-sided (right-sided) fractional derivatives of order α of a function f with respect
to a weight ω as: (

Iαa,ωf
)
(x) =

1

Γ(α)

∫ x

a

(
ω(x)− ω(t)

)α−1
ω′(t)f(t)dt, x ≥ a, (2.3)

(
Iαω,bf

)
(x) =

1

Γ(α)

∫ b

x

(
ω(t)− ω(x)

)α−1
ω′(t)f(t)dt, x ≤ b, (2.4)
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and setting γ = 1
ω′(x)

d
dx , n = ⌈Reα⌉(
Dα

a,ωf
)
(x) = γn

(
In−α
a,ω f

)
(x) and

(
Dα

ω,bf
)
(x) = (−γ)n

(
In−α
ω,b f

)
(x). (2.5)

We assume that I0a,ωf = I0ω,bf = f.

Notice that in the above definition we are not taking α ∈ C with Reα ∈ N , since n = ⌈Reα⌉ = Reα
and hence n − α = −i Imα , then the fractional integral

(
In−α
a,ω f

)
(x) is not defined due to Reα = 0 . While

for the case α ∈ N in (2.5) we simply get
(
Dα

a,ωf
)
(x) = γn

(
In−α
a,ω f

)
(x) = γn(I0a,ωf)(x) = γn(f)(x) and(

Dα
b,ωf

)
(x) = (−γ)n

(
In−α
a,ω f

)
(x) = (−γ)n

(
I0a,ωf

)
(x) = (−γ)n(f)(x) . Hence, below we always distinguish both

cases just setting α ∈ N or n = ⌈Reα⌉ .

Semigroup and commutative properties hold for Reα,Reβ > 0 :

Iαa,ωI
β
a,ωf(x) = Iα+β

a,ω f(x) and Iαω,bI
β
ω,bf(x) = Iα+β

ω,b f(x),

Iαa,ωI
β
a,ωf(x) = Iβa,ωI

α
a,ωf(x) and Iαω,bI

β
ω,bf(x) = Iβω,bI

α
ω,bf(x).

For proving the above properties is just necessary to take into account the change of integration region and
Beta’s function representation.

Now some examples. First, we recall the Pochhammer k -symbol [9].

Definition 2.3 Let x ∈ C , k ∈ R and n ∈ N+ , the Pochhammer k -symbol is given by

(x)n,k = x(x+ k)(x+ 2k) . . . (x+ (n− 1)k).

Example 2.4 If ω ∈ Ω , α, β ∈ C with Reα > 0 , Reβ > 0 and n = ⌈Reα⌉ , then

(
Dα

a,ω(ω(t)− ω(a))β−1
)
(x) = (β − α− 1)

Γ(β)(β − α)n,1
Γ(n− α− β)

(ω(x)− ω(a))β−α−1, (2.6)

(
Dα

ω,b(ω(b)− ω(t))β−1
)
(x) = (β − α− 1)

Γ(β)(β − α)n,1
Γ(n− α− β)

(ω(b)− ω(x))β−α−1,

(
Dα

a,ω(ω(t)− ω(a))α−j
)
(x) = 0, j = 1, . . . , n− 1, (2.7)(

Dα
ω,b(ω(b)− ω(t))α−j

)
(x) = 0, j = 1, . . . , n− 1.

Proof By definition 2.2 and the substitution u = ω(t)−ω(a)
ω(x)−ω(a) , we have

(
Dα

a,ω(ω(t)− ω(a))β−1
)
(x) =

γn
(
(ω(x)− ω(a))n−α+β−1

)
Γ(n− α)

∫ 1

0

(1− u)n−α−1uβ−1du.

Thus, formula (2.6) follows straightforward by the calculus of γn
(
(ω(x)− ω(a))n−α+β−1

)
. Indeed, γn

(
(ω(x)−

ω(a))n−α+β−1
)
= (β − α− 1)(β − α)n,1(ω(x)− ω(a))β−α−1 . Besides, it is clear that

(
Dα

a,ω(ω(t)− ω(a))α−j
)
(x) =

γn
(
(ω(x)− ω(a))n−j

)
Γ(n− α)

∫ 1

0

(1− u)n−α−1uα−jdu = 0.
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The other formulas are proved in the same way.

Notice also that if Reβ > Reα and the property (x)n,1 = Γ(x+n)
Γ(x) [9, Prop. 6] for Rex > 0 we get

(
Dα

a,ω(ω(t)− ω(a))β−1
)
(x) =

Γ(β)

Γ(β − α− 1)
(ω(x)− ω(a))β−α−1,

(
Dα

ω,b(ω(b)− ω(t))β−1
)
(x) =

Γ(β)

Γ(β − α− 1)
(ω(b)− ω(x))β−α−1.

2

Some classical weights can be taken to give illustrative operators. For instance, if we take ω(x) = x , we
get for any f ∈ L(a, b) (

Iαa,ωf
)
(x) =

(
Jα
a+f

)
(x) and

(
Iαω,bf

)
(x) =

(
Jα
b−f

)
(x).

Besides, if ω(x) =
xρ+1

ρ+ 1
for any ρ ∈ R \ {−1} , we obtain

(
Iαa,ωf

)
(x) = (Jα

a+,ρf)(x) and
(
Iαω,bf

)
(x) = (Jα

b−,ρf)(x).

Also, (
Iα0,ωω

)
(x) =

(ω(x)− ω(0))α

Γ(α+ 2)
[ω(x) + αω(0)].

Furthermore setting f(x) = xµ , g(x) = 1 and ω(x) = xρ+1

ρ+1 for x > 0 , α > 0 , ρ ≥ 0 and µ > −1 we get

(
Iα0,ωx

µ
)
(t) =

(ρ+ 1)−αΓ(ρ+µ+1
ρ+1 )

Γ(α+ ρ+µ+1
ρ+1 )

tα(ρ+1)+µ and
(
Iα0,ω1

)
(t) =

(ρ+ 1)
−α

Γ (α+ 1)
tα(ρ+1).

3. Preliminary results

We begin this section introducing the spaces of functions that will be considered through this paper.

Definition 3.1 We define

ACn
γ,ω[a, b] :=

{
f : [a, b] → C | γn−1f ∈ AC[a, b], γ =

1

ω′(x)

d

dx

}
,

where ω ∈ Ω and n ∈ N .

It is easy to see that under some suitable weights ω , the above space coincide with those define and treat
in [12, 13, 15, 18].

Below we give a characterization of any function over the space ACn
γ,ω[a, b] .

665



AKKURT et al./Turk J Math

Theorem 3.2 If ω ∈ Ω , then any function f ∈ ACn
γ,ω[a, b] if and only if f can be represented as

f(x) =
1

(n− 1)!

∫ x

a

(
ω(x)− ω(t)

)n−1
(γnf)(t)ω′(t)dt

+

n−1∑
k=0

(γn−k−1f)(a)

(n− k − 1)!

(
ω(x)− ω(a)

)n−k−1
,

= Ina,ω(γ
nf)(x) +

n−1∑
k=0

(γn−k−1f)(a)

(n− k − 1)!

(
ω(x)− ω(a)

)n−k−1
,

where (γnf)(x)ω′(x) ∈ L1(a, b) .

Proof Let f ∈ ACn
γ,ω[a, b] . Then γn−1f ∈ AC[a, b] ; hence, the derivative of γn−1f(x) exist almost everywhere

on (a, b) ; thus, for any x ∈ (a, b)

(
1

ω′ (x)

d

dx

)n−1

f (x) =

∫ x

a

d

dt

((
1

ω′ (t)

d

dt

)n−1

f (t)

)
dt+ (γn−1f)(a)

=

∫ x

a

ω′(t)

((
1

ω′ (t)

d

dt

)n

f (t)

)
dt+ (γn−1f)(a)

=

∫ x

a

(γnf)(t)ω′(t)dt+A0, (3.1)

where A0 = (γn−1f)(a) . Multiplying both sides of (3.1) by ω′ (x) and integrating over (a, x) , we obtain

(
1

ω′ (x)

d

dx

)n−2

f (x) =

∫ x

a

ω′ (t)

(∫ t

a

(γnf)(y)ω′ (y) dy +A0

)
dt

=

∫ x

a

(γnf)(y)ω′ (y)

(∫ x

y

ω′ (t) dt

)
dy +A0

(
ω(x)− ω(a)

)
+A1

=

∫ x

a

(
ω (x)− ω (y)

)
(γnf)(y)ω′ (y) dy +A0

(
ω (x)− ω (a)

)
+A1,

where A1 = (γn−2f)(a) . Again, multiplying both sides of the above equation by ω′ (x) and integrating over
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(a, x) , we get (
1

ω′ (x)

d

dx

)n−3

f (x) =

=

∫ x

a

ω′ (t)

(∫ t

a

(
ω (t)− ω (y)

)
(γnf)(y)ω′ (y) dy

)
dt

+A0

∫ x

a

(
ω (t)− ω (a)

)
ω′ (t) dt+A1

∫ x

a

ω′ (t) dt+A2

=

∫ x

a

(γnf)(y)ω′ (y)

(∫ x

y

(
ω (t)− ω (y)

)
ω′ (t) dt

)
dy

+A0

(
ω (x)− ω (a)

)2
2

+A1

(
ω (x)− ω (a)

)
+A2

=

∫ x

a

(
ω (x)− ω (y)

)2
2

(γnf)(y)ω′ (y) dy +A0

(
ω (x)− ω (a)

)2
2

+A1

(
ω (x)− ω (a)

)
+A2,

where A2 = (γn−3f)(a) . If the same process is repeated n− 3 times, we arrive at

f(x) =

∫ x

a

(
ω(x)− ω(y)

)n−1

(n− 1)!
(γnf)(y)ω′(y)dy +

n−1∑
k=0

Ak

(
ω(x)− ω(a)

)n−k−1

(n− k − 1)!
,

where Ak = (γn−k−1f)(a) . Another implication follows by the application of γn−1 over the representation. It is

just to remember the Leibniz’s rule for differentiation under the integral sign and γn−1
(
ω(x)−ω(a)

)n−k−1
= 0

for any k = 1, . . . , n− 1. 2

Remark 3.3 Under the same conditions of Theorem 3.2, it can be proved similarly that f ∈ ACn
γ,ω[a, b] if and

only if f is of the form

f(x) =
1

(n− 1)!

∫ b

x

(
ω(t)− ω(x)

)n−1
((−γ)nf)(t)ω′(t)dt

+

n−1∑
k=0

((−γ)n−k−1f)(b)

(n− k − 1)!

(
ω(b)− ω(x)

)n−k−1
,

= Inω,b((−γn)f)(x) +

n−1∑
k=0

((−γ)n−k−1f)(b)

(n− k − 1)!

(
ω(b)− ω(x)

)n−k−1
,

where
(
(−γn)f

)
(x)ω′(x) ∈ L1(a, b) .

Theorem 3.4 If ω ∈ Ω , α ∈ C with Reα > 0 , f ∈ ACn
γ,ω[a, b] and n = ⌈Reα⌉ , then Iαa,ωf ∈ ACn

γ,ω[a, b] .

Proof By the representation of Theorem 3.2 we can write Iαa,ωf as follows

Iαa,ωf(x) = Iαa,ω
(
Ina,ω(γ

nf)
)
(x) +

n−1∑
k=0

(γn−k−1f)(a)

(n− k − 1)!
Iαa,ω

((
ω(t)− ω(a)

)n−k−1)
(x).
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By the semigroup properties of Iαa,ω and the calculation of the second fractional integral above by means of the

substitution u = ω(t)−ω(a)
ω(x)−ω(a) and taking into account that 1 − u = ω(x)−ω(t)

ω(x)−ω(a) and the properties of the Beta’s

function we obtain

Iαa,ωf(x) = Iα+n
a,ω (γnf)(x) +

n−1∑
k=0

(γn−k−1f)(a)

Γ(α+ n− k)

(
ω(x)− ω(a)

)α+n−k−1)
. (3.2)

Under the last representation it remains to prove that γn−1
(
Iαa,ωf

)
(x) ∈ AC[a, b] . We now calculate the first

term of (3.2). Indeed, by the Leibniz’s rule for differentiation under the integral sign we have

γn−1
(
Iα+n
a,ω (γnf)

)
(x)=γn−1

(
1

Γ(α+ n)

∫ x

a

(
ω(x)− ω(t)

)α+n−1
ω′(t)(γnf)(t)dt

)
=γn−2

(
1

Γ(α+ n− 1)

∫ x

a

(
ω(x)− ω(t)

)α+n−2
ω′(t)(γnf)(t)dt

)
=γn−3

(
1

Γ(α+ n− 2)

∫ x

a

(
ω(x)− ω(t)

)α+n−3
ω′(t)(γnf)(t)dt

)
...

=
1

Γ(α+ 1)

∫ x

a

(
ω(x)− ω(t)

)α
ω′(t)(γnf)(t)dt.

Notice that ∣∣∣∣ 1

Γ(α+ 1)

∫ x

a

(
ω(x)− ω(t)

)α
ω′(t)(γnf)(t)dt

∣∣∣∣
≤ 1

|Γ(α+ 1)|
max

a≤x≤b;a≤s≤b
|ω(x)− ω(s)|Re α

∫ x

a

d

dt
(γn−1f)(t) < ∞,

since f ∈ ACn
γ,ω[a, b] (i.e. (γn−1f) ∈ AC[a, b]) . This implies that the first term of (3.2) belongs to AC[a, b] .

On the other hand, for the second term of (3.2) we just need to estimate γn−1
((
ω(x) − ω(a)

)α+n−k−1) for
k = 0, . . . , n− 1 since the other terms are constants. Indeed,

γn−1
((
ω(x)− ω(a)

)α+n−k−1)
= (α− k)n,1

(
ω(x)− ω(a)

)α−k

and
(
ω(x)− ω(a)

)α−k ∈ AC[a, b] for any k = 0, . . . , n− 1 since k ≤ n− 1 ≤ Reα . 2

4. Main results
We begin this section showing the representations of the fractional derivative Dα

a,ωf(x) and Dα
ω,bf(x) for any

function in the space ACn
γ,ω[a, b] .
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Theorem 4.1 If ω ∈ Ω , f ∈ ACn
γ,ω[a, b] , α ∈ C with Reα > 0 and n = ⌈Reα⌉ , then

Dα
a,ωf(x) =

1

Γ(n− α)

∫ x

a

(
ω(x)− ω(y)

)n−α−1
ω′(y)(γnf)(y)dy

+

n−1∑
k=0

(γn−k−1f)(a)(2n− α− k − 1)n,−1

Γ(2n− k − α)
(ω(x)− ω(a))n−k−α−1, (4.1)

Dα
ω,bf(x) =

(−1)n

Γ(n− α)

∫ b

x

(
ω(y)− ω(x)

)n−α−1
ω′(y)(γnf)(y)dy

+

n−1∑
k=0

((−γ)n−k−1f)(b)(2n− α− k − 1)n,−1

Γ(2n− k − α)
(ω(b)− ω(x))n−k−α−1, (4.2)

exist almost everywhere on [a, b] .

Proof Let f ∈ ACn
γ,ω[a, b] . By (2.5) and Theorem 3.2 we obtain

Dα
a,ωf(x) =

γn

(∫ x

a

∫ t

a

(
ω(x)− ω(t)

)n−α−1(
ω(t)− ω(y)

)n−1
(γnf)(y)ω′(t)ω′(y)

(n− 1)! Γ(n− α)
dydt

)

+ γn

(
n−1∑
k=0

(γn−k−1f)(a)

Γ(n− α) (n− k − 1)!

∫ x

a

(ω(x)− ω(t))n−α−1(ω(t)− ω(a))n−k−1ω′(t)dt

)
.

To calculate the first integral, we have to change the integration region and use the substitution u = ω(t)−ω(y)
ω(x)−ω(y) ,

after that we just need to use the property of Beta’s function B(r, s) = Γ(r)Γ(s)
Γ(r+s) for Re r,Re s > 0 ; while the

second one follows by the substitution s = ω(t)−ω(a)
ω(x)−ω(a) and we use the property of Beta’s function. Thus,

Dα
a,ωf(x) =

1

Γ(2n− α)
γn

(∫ x

a

(
ω(x)− ω(y)

)2n−α−1
ω′(y)(γnf)(y)dy

)

+ γn

(
n−1∑
k=0

(γn−k−1f)(a)

Γ(2n− k − α)
(ω(x)− ω(a))2n−k−α−1

)
.

By applying γn to the above integral (Leibniz’s rule for differentiation under the integral sign) and by the
straightforward estimation γn

(
(ω(x) − ω(a))2n−α−k−1

)
= (2n − α − k − 1)n,−1(ω(x) − ω(a))n−α−k−1 , we get

the desired formula (4.1). In the same manner it is proved (4.2). 2

Now, we present a new family of ω -Caputo fractional derivatives of any order α , with α ∈ C such that Reα > 0 .

Definition 4.2 If ω ∈ Ω , α ∈ C with Reα > 0 , n = ⌈Reα⌉ , f ∈ ACn
γ,ω[a, b] and −∞ < a < b < +∞ . Then

we defined the left and right ω -Caputo fractional derivatives of f of order α as

Dα,C
a,ω f(x) = Dα

a,ω

(
f(t)−

n−1∑
k=0

(γn−k−1f)(a)

(n− k − 1)!

(
ω(t)− ω(a)

)n−k−1

)
(x), (4.3)
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and

Dα,C
ω,b f(x) = Dα

b,ω

(
f(t)−

n−1∑
k=0

((−γ)n−k−1f)(b)

(n− k − 1)!

(
ω(b)− ω(t)

)n−k−1

)
(x).

It should be clear that for α ∈ N , Dα,C
a,ω f(x) = (γαf)(x) and Dα,C

ω,b f(x) =
(
(−γα)f

)
(x) since γα

(
ω(t)−

ω(a)
)α−k−1

= (−γ)α
(
ω(b) − ω(t)

)α−k−1
= 0 for any k = 0, 1, . . . , α − 1 , see definition 2.2 or formula (2.5).

Notice that in many particular cases, taking suitable weights ω , the above derivatives generalize and extend
those derivatives introduced in [12, 13, 15, 17, 18] and some others.

Below, we give a characterization of any ω -Caputo fractional derivative in terms of the fractional integrals
Iαa,ωf or Iαb,ωf .

Theorem 4.3 If ω ∈ Ω , α ∈ C with Reα > 0 and f ∈ ACn
γ,ω[a, b] , then:

1. If n = ⌈Reα⌉ ,

Dα,C
a,ω f(x) =

1

Γ(n− α)

∫ x

a

(
ω(x)− ω(y)

)n−α−1
ω′(y)(γnf)(y)dy, (4.4)

Dα,C
ω,b f(x) =

1

Γ(n− α)

∫ b

x

(
ω(y)− ω(x)

)n−α−1
ω′(y)((−γ)nf)(y)dy. (4.5)

2. If α ∈ N

Dα,C
a,ω f(x) =

(
γαf

)
(x) and Dα,C

ω,b f(x) =
(
(−γ)αf

)
(x). (4.6)

Proof The representations (4.4) and (4.5) follow by Theorems 3.2 and 4.1. For the case α ∈ N , formulas in
(4.6) are obvious. 2

Remark 4.4 Notice that representations (4.4), (4.5), and (4.6) can be written as

Dα,C
a,ω f(x) = In−α

a,ω

(
γnf

)
(x) and Dα,C

ω,b f(x) = In−α
ω,b

(
(−γ)nf)

)
(x),

while for α ∈ N ,

Dα,C
a,ω f(x) = I0a,ω

(
γnf

)
(x) =

(
γnf

)
(x) and Dα,C

ω,b f(x) =
(
(−γ)nf

)
(x).

Now we show some classical examples of these derivatives.

Lemma 4.5 If ω ∈ Ω , α, β ∈ C with Reα > 0 , n = ⌈Reα⌉ and Reβ > n , then

(
Dα,C

a,ω (ω(t)− ω(a))β−1
)
(x) = (β − 1)n,−1

Γ(β − n)

Γ(β − α)
(ω(x)− ω(a))β−α−1, (4.7)

(
Dα,C

ω,b (ω(b)− ω(t))β−1
)
(x) = (β − 1)n,−1

Γ(β − n)

Γ(β − α)
(ω(b)− ω(x))β−α−1,

(
Dα,C

a,ω (ω(t)− ω(a))j
)
(x) = 0, j = 1, . . . , n− 1, (4.8)(

Dα,C
ω,b (ω(b)− ω(t))j

)
(x) = 0, j = 1, . . . , n− 1.
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Proof By Theorem 4.3 and the substitution u = ω(t)−ω(a)
ω(x)−ω(a) , it follows (4.7). Moreover, as γn

(
(ω(x)−ω(a))j

)
=

0 for any j = 0, 1, . . . , n−1 , and the equality (4.8) becomes obvious. Similarly, the other formulas can be proved.
2

In the Figure, we plot (4.7) for the various values of the parameters. Some theorems on inverse properties
of the ω -Caputo fractional derivatives and fractional integrals.
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Figure . Graph of Dα,C

0+,ω
f (x) , for the kernels ω (x) = x .

Theorem 4.6 If ω ∈ Ω , α ∈ C with Reα > 0 , n = ⌈Reα⌉ and f ∈ ACn
γ,ω[a, b] . Then

Dα,C
a,ω Iαa,ωf(x) = f(x) and Dα,C

ω,b I
α
ω,bf(x) = f(x).

Proof By Theorem 3.4 we have that Iαa,ωf ∈ ACn
γ [a, b] since f ∈ ACn

γ [a, b] . Hence, by Theorem 4.3, Remark
4.4, Leibniz’s rule for differentiation under the integral sign and the semigroup properties of Iαa,ωf we obtain

Dα,C
a,ω

(
Iαa,ωf

)
(x) = In−α

a,ω

(
γn(Iαa,ωf)

)
(x) = In−α

a,ω

(
Iα−n
a,ω f

)
(x) = I0a,ωf(x) = f(x).

The other formula is proved in the same way. 2

Theorem 4.7 If ω ∈ Ω , α ∈ C with Reα > 0 , n = ⌈Reα⌉ and f ∈ ACn
γ,h[a, b] , then

Iαa,ω
(
Dα,C

a,ω f
)
(x) = Ina,ω

(
γnf

)
(x) = f(x)−

n−1∑
k=0

(γn−k−1f)(a)

(n− k − 1)!

(
ω(x)− ω(a)

)n−k−1
,

and

Iαω,b

(
Dα,C

ω,b f
)
(x)=Inω,b

(
(−γn)f

)
(x)=f(x)−

n−1∑
k=0

((−γ)n−k−1f)(b)

(n− k − 1)!

(
ω(b)− ω(x)

)n−k−1
.
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Proof By Theorem 4.3, Remark 4.4, and the semigroup properties of Iαa,ωf we can arrive at

Iαa,ω
(
Dα,C

a,ω f
)
(x) = Iαa,ω

(
In−α
a,ω (γnf)

)
(x) = Ina,ω

(
γnf

)
(x).

To complete the proof we just have to recall that in virtue of Theorem 3.2 we have

f(x) = Ina,ω(γ
nf)(x) +

n−1∑
k=0

(γn−k−1f)(a)

(n− k − 1)!

(
ω(x)− ω(a)

)n−k−1
.

Analogously, the other formula can be proved. 2

5. Further results
In this section we consider a ω -weighted space of Lp(a, b) , which will be denoted by Xp

ω(a, b) and we are going
to prove boundedness of

(
Iαa,ωf

)
(x) as an operator from Xp

ω(a, b) to Xp
ω(a, b) .

Definition 5.1 Let 1 ≤ p < ∞ and ω(x) ∈ Ω) . We define the space Xp
ω(a, b) of those real-valued Lebesgue

measurable functions f on (a, b) for which

||f ||Xp
ω
=

 b∫
a

|f(t)|p |ω′(t)|dt


1
p

< ∞.

It is clear that this is a norm. Notice now that when ω(x) = x the space Xp
ω(0,∞) coincides with

the well-known Lp(0,∞)−space. Besides, if we take ω(x) =
xk+1

k + 1
(1 ≤ p < ∞, k ≥ 0) the space Xp

ω(0,∞)

becomes Lp,k(0,∞)− space. Moreover, if ω(x) = xcp

cp for c ∈ R and 1 ≤ p < ∞ , we get that space Xp
ω(a, b)

coincides with the space Xp
c (a, b) introduced in [14]. Moreover, under some suitable weights the considered

space Xp
ω(a, b) turns into those spaces introduced and studied in [2, 13].

Now we prove the boundedness of the operator Iαa,ω .

Theorem 5.2 Let α ∈ C with Reα > 0 , 1 ≤ p < +∞ , −∞ < a < b < +∞ . Then the operator Iαa,ω defined
from Xp

ω(a, b) to Xp
ω(a, b) , is bounded and

∥Iαa,ωf∥Xp
ω

∥f∥Xp
ω

≤ M < ∞,

where

M =

(
(b− a)p−1 max

a≤s≤b

{∣∣ω′(s)
∣∣p−1∣∣ω(b)− ω(s)

∣∣(Reα−1)p+1
})1/p

|Γ(α)|
(
(Reα− 1)p+ 1

)1/p .

672



AKKURT et al./Turk J Math

Proof By definition 5.1, Jensen’s inequality and changing of integration region we get

∥Iαa,ωf∥
p
Xp

ω

≤ 1

|Γ(α)|p

∫ b

a

(t− a)p
(

1

t− a

∫ t

a

∣∣ω(t)− ω(τ)
∣∣Re α−1|ω′(τ)f(τ)|dτ

)p

|ω′(t)|dt

≤ (b− a)p−1

|Γ(α)|p

∫ b

a

(∫ t

a

∣∣ω(t)− ω(τ)
∣∣(Re α−1)p|ω′(τ)f(τ)|pdτ

)
|ω′(t)|dt

≤ (b− a)p−1

|Γ(α)|p

∫ b

a

|f(τ)ω′(τ)|p
(∫ b

τ

∣∣ω(t)− ω(τ)
∣∣(Re α−1)p|ω′(t)|dt

)
dτ

≤
(b− a)p−1 max

a≤s≤b

{∣∣ω′(s)
∣∣p−1∣∣ω(b)− ω(s)

∣∣(Re α−1)p+1
}

|Γ(α)|p
(
(Reα− 1)p+ 1

) ∫ b

a

|f(τ)|p|ω′(τ)|dτ.

Thus, the proof is completed. 2

The following result on an inverse property involving the fractional integral operator Iαa,ω and the
fractional derivative Dα

a,ω , over the space Xp
ω(a, b) .

Theorem 5.3 If ω ∈ Ω and 0 < Reβ ≤ Reα . Then the following formulas hold:

Dβ
a,ωI

α
a,ωf = Iα−β

a,ω f and Dβ
ω,bI

α
ω,bf = Iα−β

ω,b f, (5.1)

Dα
a,ωI

α
a,ωf = f and Dα

ω,bI
α
ω,bf = f, (5.2)

for any f ∈ Xp
ω (a, b) .

Proof Below, we prove the first formula of (5.1) and the second one we leave to the reader. Hence, we sketch
the proof into two cases. For β = m a positive integer (α ≥ m), it follows by (2.5) and Leibniz integral rule
that

Dβ
a,ωI

α
a,ωf(x) =

(
1

ω′(x)

d

dx

)m(
1

Γ(α)

∫ x

a

(
ω(x)− ω(t)

)α−1
ω′(t)f(t)dt

)
= γm

(
1

Γ(α)

∫ x

a

(
ω(x)− ω(t)

)α−1
ω′(t)f(t)dt

)
= γm−1

(
1

Γ (α− 1)

∫ x

a

(
ω(x)− ω(t)

)α−2
ω′(t)f(t)dt

)
= γm−2

(
1

Γ (α− 2)

∫ x

a

(
ω(x)− ω(t)

)α−3
ω′(t)f(t)dt

)
...

=
1

Γ (α−m)

∫ x

a

(
ω(x)− ω(t)

)α−m−1
ω′(t)f(t)dt

= Iα−β
a,ω f(x).
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For the case m = ⌈β⌉ , we get by (2.5), the semigroup properties of Iαa,ω and the first case that

Dβ
a,ω

(
Iαa,ωf

)
(x) = γm

(
Im−β
a,ω

(
Iαa,ωf

))
(x) = γm

(
Iα+m−β
a,ω f

)
(x) =

(
Iα−β
a,ω f

)
(x).

Notice that formulas in (5.2) follow by (5.1) and the fact that I0a,ωf = I0ω,bf = f. 2

6. Conclusions
Most of the results of this article have been many special results of [11–13] in some particular cases. On the other
hand, the consideration of some fractional derivative operators over good enough spaces of functions leads to
some representations and properties, as that can be seen in the referred works. This paper gives some ideas for
the future consideration of some initial value problems for nonlinear fractional differential equations involving
the ω -Caputo fractional derivatives, i.e. the problem of the existence and uniqueness of the solutions of these
equations, studied in terms of some standard fixed point theorems. For instance, the following Cauchy type
initial value problem is natural to study under some initial conditions:(

Dα,C
a,ω g

)
(x) = f(x, g(x)).

It will be natural to consider the Picard iteration method for numerically solving the latter problem, as one can
see in [3–5, 10, 15].
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