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Abstract: Let M be a discrete-time normal martingale satisfying some mild conditions, S(M) ⊂ L2(M) ⊂ S∗(M)

be the Gel’fand triple constructed from the functionals of M . As is known, there is no usual multiplication in S∗(M)

since its elements are continuous linear functionals on S(M) . However, by using the Fock transform, one can introduce
convolution in S∗(M) , which suggests that one can try to introduce a type of integral of an S∗(M) -valued function with
respect to an S∗(M) -valued measure in the sense of convolution. In this paper, we just define such type of an integral.
First, we introduce a class of S∗(M) -valued measures and examine their basic properties. Then, we define an integral
of an S∗(M) -valued function with respect to an S∗(M) -valued measure and, among others, we establish a dominated
convergence theorem for this integral. Finally, we also prove a Fubini type theorem for this integral.
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1. Introduction
Integration theory was originally developed for real-valued functions with respect to real-valued measures. In
the first half of the last century, real variable theory was extended to functions taking values in vector spaces
[4]. Nowadays, integrals of vector-valued functions with respect to scalar measures, and integrals of scalar-
valued functions with respect to vector measures have been explored extensively using different approaches. For
example, Mitter and Young [6] developed an integration theory with respect to operator-valued measures which
is required in the study of certain convex optimization problems. Rybakov [9] presented a generalization of the
Bochner integral to locally convex spaces. Cao [1] defined the Henstock–Kurzweil integral for Banach space-
valued functions. Sokol [10] defined the Hake–Henstock–Kurzweil and the Hake–McShane integrals of Banach
space- valued functions defined on an open and bounded subset of m -dimensional Euclidean space. However,
integral of vector-valued functions with respect to vector-valued measures is seldom appreciated because of its
abstract nature. The purpose of this paper is to develop an integration theory for the case of vector-valued
functions with respect to vector-valued measures on the space of generalized functionals of discrete-time normal
martingale.

Discrete-time normal martingales [8] play an important role in many theoretical and applied fields. In
recent years, functionals of discrete-time normal martingales have attracted much attention ([3, 5, 7, 11–13]).
Let M = (Mn)n∈N be a discrete-time normal martingale satisfying some mild conditions. Then, by using a
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specific orthonormal basis for the space L2(M) of square integrable functionals of M , Gel’fand triple

S(M) ⊂ L2(M) ⊂ S∗(M),

can be constructed [15], where elements of S(M) are called testing functionals of M , while elements of S∗(M)

are called generalized functionals of M . In paper [11], a transform, called Fock transform has been introduced
for generalized functionals of M . It has been shown that the generalized functionals of M can be characterized
only by growth condition on their Fock transforms. As is known, there is no usual multiplication in S∗(M)

since its elements are continuous linear functionals on S(M) . However, by using the Fock transform, one can
introduce convolution in S∗(M) , which suggests that one can try to introduce a type of integral of an S∗(M) -
valued function with respect to an S∗(M) -valued measure in the sense of convolution. In this paper, we just
define such a type of integral. The main work therein is as follows. In Section 3, S∗(M) -valued measures are
introduced and their basic properties are examined. In Section 4, an integral of an S∗(M) -valued function
with respect to an S∗(M) -valued measure is defined and, among others, a dominated convergence theorem is
established for this integral. In Section 5, a Fubini type theorem is also proved for integral of an S∗(M) -valued
function with respect to an S∗(M) -valued measure.

Throughout this paper, N denotes the set of all nonnegative integers and Γ the finite power set of N ,
namely

Γ = {σ | σ ⊂ N and #(σ) < ∞ }, (1.1)

where #(σ) means the cardinality of σ as a set.

2. Preliminaries
In this section, we briefly recall some notions and results on generalized functionals of discrete time normal
martingales. For details, see [2, 11, 13, 14] and references therein.

Let (Σ,A , P ) be a given probability space with E denoting the expectation with respect to P . We use
L2(Σ,A , P ) denote the usual Hilbert space of square integrable complex-valued functions on (Σ,A , P ) and
use 〈·, ·〉 and ‖ · ‖ to mean its inner product and norm, respectively. By convention, 〈·, ·〉 is conjugate-linear in
its first argument and linear in its second argument.

Let M = (Mn)n∈N be a discrete-time normal martingale on (Σ,A , P ) that has the chaotic representation
property. For brevity, we use L2(M) to mean the space of square integrable functionals of M , namely

L2(M) = L2(Σ,A∞, P ), (2.1)

which shares the same inner product and norm with L2(Σ,A , P ) , namely 〈·, ·〉 and ‖ · ‖ . It is known that
{Zσ | σ ∈ Γ} forms a countable orthonormal basis for L2(M) , where Z∅ = 1 and

Zσ =
∏
i∈σ

Zi, σ ∈ Γ , σ 6= ∅ . (2.2)

where Z = (Zn)n∈N is the discrete-time normal noise associated with M (see [11] for details).

Lemma 2.1 [15] Let σ 7→ λσ be the N-valued function on Γ given by

λσ =

{ ∏
k∈σ(k + 1), σ 6= ∅, σ ∈ Γ;

1, σ = ∅, σ ∈ Γ. (2.3)
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Then, for p > 1 , the positive term series
∑

σ∈Γ λ
−p
σ converges; moreover,

∑
σ∈Γ

λ−p
σ ≤ exp

[ ∞∑
k=1

k−p

]
< ∞. (2.4)

Using the orthonormal basis {Zσ | σ ∈ Γ} and N -valued function defined by (2.3), one can construct a
chain of Hilbert spaces Sp(M) (p ≥ 0) of functionals of M , put

S(M) =

∞⋂
p=0

Sp(M), (2.5)

it is a dense linear subspace of L2(M) , which itself is a countable Hilbert nuclear space and continuously
contained in L2(M) [11]. For p ≥ 0 , we denote by S∗

p (M) the dual of Sp(M) and ‖ · ‖−p the norm of S∗
p (M) .

Let S∗(M) be the dual of S(M) and endow it with the strong topology, then

S∗(M) =

∞⋃
p=0

S∗
p (M). (2.6)

We mention that, by identifying L2(M) with its dual, the Gel’fand triple

S(M) ⊂ L2(M) ⊂ S∗(M),

can be constructed, which is the framework where we will work. Elements of S∗(M) are called generalized
functionals of M , while elements of S(M) are called testing functionals of M .

Definition 2.2 [11] For Φ ∈ S∗(M) , its Fock transform is the function Φ̂ on Γ given by

Φ̂(σ) = 〈〈Φ, Zσ〉〉, σ ∈ Γ, (2.7)

where 〈〈·, ·〉〉 is the canonical bilinear form.

In general, the usual product of two generalized functionals of S∗(M) is no longer a generalized functional
of S∗(M) . This means that the usual product is not a multiplication in S∗(M) . However, by using the Fock
transform, one can introduce convolution in S∗(M) .

For two generalized functionals Φ, Ψ ∈ S∗(M) , denote by Φ ∗Ψ their convolution. Recall that

Φ̂ ∗Ψ(σ) = Φ̂(σ)Ψ̂(σ),

for any σ ∈ Γ .
The following lemma characterizes the generalized functionals of M through their Fock transforms.

Lemma 2.3 [11] Let F be a function on Γ . Then F is the Fock transform of an element Φ of S∗(M) if and
only if it satisfies

|F (σ)| ≤ Cλp
σ, σ ∈ Γ (2.8)
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for some constants C ≥ 0 and p ≥ 0 . In that case, for q > p+ 1
2 , one has

‖Φ‖−q ≤ C

[∑
σ∈Γ

λ−2(q−p)
σ

] 1
2

(2.9)

and in particular Φ ∈ S∗
q (M) .

The next lemma offers a criterion in terms of the Fock transform for checking whether or not a sequence
in S∗(M) is convergent.

Lemma 2.4 [14] Let Φ ∈ S∗(M) , (Φn)n≥1 be a sequence of generalized functionals in S∗(M) . Suppose Φ̂n(σ)

converges to Φ̂(σ) for all σ ∈ Γ ; moreover, there exist constants C ≥ 0 and p ≥ 0 such that

sup
n≥1

|Φ̂n(σ)| ≤ Cλp
σ, σ ∈ Γ. (2.10)

Then (Φn)n≥1 converges weakly to Φ in S∗(M) .

3. Generalized functional-valued measures
Throughout this section we assume that F is the σ -algebra of subsets of a set Ω . In this section, we introduce
a class of S∗(M) -valued measures and examine their basic properties.

Definition 3.1 Let (Ω,F) be a measure space. A set function µ : F → S∗(M) is called a generalized
functional-valued measure if it is countably additive on F , i.e. for every countable disjoint sequence (En) in
F , we have

µ(

∞⋃
n=1

En) =

∞∑
n=1

µ(En), (3.1)

where the sum is convergent in the weak topology on S∗(M) .

Definition 3.2 Let µ : F → S∗(M) be a generalized functional-valued measure. For p ≥ 0 , the p-variation
|µ|p of µ is defined by

|µ|p(E) = sup
π

∑
B∈π

‖µ(B)‖−p, E ∈ F ,

where the supremum is taken over all finite disjoint measurable partition π of E . If |µ|p(Ω) < ∞ , then µ will
be called a generalized functional-valued measure of p-bounded variation.

Theorem 3.3 Let µ : F → S∗(M) be a generalized functional-valued measure of p-bounded variation, then the
p-variation |µ|p is a monotone and finitely additive function on F .
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Proof Let E1 and E2 be disjoint members of F , then for any finite disjoint measurable partition π of
E1 ∪ E2 , {B ∩ E1|B ∈ π} and {B ∩ E2|B ∈ π} are partitions of E1 and E2 , respectively. Thus,∑

B∈π

‖µ(B)‖−p =
∑
B∈π

‖µ(B ∩ E1) + µ(B ∩ E2)‖−p

≤
∑
B∈π

‖µ(B ∩ E1)‖−p +
∑
B∈π

‖µ(B ∩ E2)‖−p

≤ |µ|p(E1) + |µ|p(E2)

Taking the supremum over all finite disjoint measurable partition π of E1 ∪ E2 yields

|µ|p(E1 ∪ E2) ≤ |µ|p(E1) + |µ|p(E2). (3.2)

On the other hand, |µ|p(E1) ≤ |µ|p(Ω) , so there exists a finite disjoint measurable partition π1 of E1 such that
for any ε > 0 , we have

|µ|p(E1)− ε <
∑
B∈π1

‖µ(B)‖−p,

similarly, there exists a finite disjoint measurable partition π2 of E2 such that

|µ|p(E2)− ε <
∑
B∈π2

‖µ(B)‖−p.

It is easy to see that π1 ∪ π2 be a finite disjoint measurable partition of E1 ∪ E2 . Then

|µ|p(E1) + |µ|p(E2)− 2ε

≤
∑
B∈π1

‖µ(B)‖−p +
∑
B∈π2

‖µ(B)‖−p

≤ |µ|p(E1 ∪ E2).

Since this holds for any ε > 0 , we have the reverse inequality

|µ|p(E1) + |µ|p(E2) ≤ |µ|p(E1 ∪ E2),

which together with (3.2) means that |µ|p is finitely additive. It is immediate that |µ|p is monotone. 2

Theorem 3.4 A generalized functional-valued measure µ of p-bounded variation is countably additive with
respect to ‖ · ‖−p if and only if its p-variation |µ|p is also countably additive.

Proof Suppose µ : F → S∗(M) be a generalized functional-valued measure of p -bounded variation. Since
‖µ(E)‖−p ≤ |µ|p(E) for each E ∈ F , it is plain that µ is countably additive with respect to ‖ · ‖−p if |µ|p is
countably additive.

Conversely, suppose that µ : F → S∗(M) is a countably additive measure with respect to ‖ · ‖−p . Let
(En) ⊂ F be a sequence of disjoint sets such ∪∞

n=1En ∈ F and let π be a finite disjoint measurable partition

702



CHEN/Turk J Math

of ∪∞
n=1En . Then ∑

B∈π

‖µ(B)‖−p =
∑
B∈π

‖µ(B ∩ (∪∞
n=1En))‖−p

≤
∞∑

n=1

∑
B∈π

‖µ(B ∩ En)‖−p

≤
∞∑

n=1

|µ|p(En).

Since this holds for any partition π , we have the inequality

|µ|p(
∞⋃

n=1

En) ≤
∞∑

n=1

|µ|p(En).

By Theorem 3.3, |µ|p is a finitely additive and monotone on F . Thus, for any n , we have

n∑
k=1

|µ|p(Ek) = |µ|p(
n⋃

k=1

Ek) ≤ |µ|p(
∞⋃

n=1

En).

This proves the reverse inequality
∑∞

n=1 |µ|p(En) ≤ |µ|p(
⋃∞

n=1 En) and shows that |µ|p is countably additive
on F . 2

Proposition 3.5 Let µ : F → S∗(M) be a generalized functional-valued measure of p-bounded variation. Then
for any p ≥ 0 and E ∈ F , we have

|µ̂(E)(σ)| ≤ λp
σ|µ|p(E),

for all σ ∈ Γ .

Proof Let p ≥ 0 and E ∈ F . If |µ|p(Ω) < ∞ , then we have

‖µ(E)‖−p ≤ |µ|p(E) ≤ |µ|p(Ω) < ∞.

This means µ(E) ∈ S∗
p (M) . By ‖Zσ‖p = λp

σ < ∞ for σ ∈ Γ , we have

|µ̂(E)(σ)| = |〈〈µ(E), Zσ〉〉| ≤ λp
σ‖µ(E)‖−p ≤ λp

σ|µ|p(E).

This completes the proof. 2

4. Bochner-convolution integral

Let (Ω,F) be a measure space as in Section 3, µ : F → S∗(M) be a generalized functional-valued measure.
In this section we define an integral of an S∗(M) -valued function with respect to µ and establish a dominated
convergence theorem for this integral. The integral will be defined by following a approach, that is, we first
define the integral for a class of simple integrands and then we extend it to a larger class of integrands which
are strongly measurable functions on S∗(M) .

703



CHEN/Turk J Math

Definition 4.1 A function Φ : Ω → S∗(M) is called simple if there exists Φ1,Φ2, · · ·,Φn ∈ S∗(M) such that

Φ(ω) =

n∑
i=1

ΦiIEi(ω), ω ∈ Ω,

where E1, E2, · · ·, En is a finite disjoint measurable partition of Ω . A function Φ : Ω → S∗(M) is called strongly
measurable if there exists p ≥ 0 and a sequence of simple functions {Ψn}n≥0 such that

lim
n→∞

‖Φ(ω)−Ψn(ω)‖−p = 0, |µ|p − a.e.

Definition 4.2 For a simple function Φ(ω) =
∑n

i=1 ΦiIEi(ω), ω ∈ Ω , the Bochner-convolution integral∫
Ω
Φ(ω) ∗ dµ is defined by ∫

Ω

Φ(ω) ∗ dµ =

n∑
i=1

Φi ∗ µ(Ei).

From the definition it is clear that Bochner-convolution integrals have the linear operational property,
i.e. for any α, β ∈ R and simple functions Φ,Ψ , we have∫

Ω

[αΦ(ω) + βΨ(ω)] ∗ dµ = α

∫
Ω

Φ(ω) ∗ dµ+ β

∫
Ω

Ψ(ω) ∗ dµ.

Theorem 4.3 Let Φ : Ω → S∗(M) be a simple function, then for q > 2p+ 1
2 , we have

‖
∫
Ω

Φ(ω) ∗ dµ‖−q ≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω

‖Φ(ω)‖−pd|µ|p.

Proof Let Φ(ω) =
∑n

i=1 ΦiIEi
(ω) . We denote by Y =

∫
Ω
Φ(ω) ∗ dµ , then for any σ ∈ Γ ,

Ŷ (σ) = [
̂n∑

i=1

Φi ∗ µ(Ei)](σ) =

n∑
i=1

Φ̂i(σ)µ̂(Ei)(σ),

by Lemma 2.3 and Proposition 3.5, we have

|Ŷ (σ)| ≤
n∑

i=1

|Φ̂i(σ)||µ̂(Ei)(σ)| ≤
n∑

i=1

‖Φi‖−p|µ|p(Ei)λ
2p
σ

≤ λ2p
σ

∫
Ω

n∑
i=1

‖Φi‖−pIEi
(ω)d|µ|p

= λ2p
σ

∫
Ω

‖Φ(ω)‖−pd|µ|p.

Then by Lemma 2.3, for q > 2p+ 1
2 ,

‖Y ‖−q ≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω

‖Φ(ω)‖−pd|µ|p.

This completes the proof. 2
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Theorem 4.4 Let Φ : Ω → S∗(M) be a strongly measurable function, if there exists p ≥ 0 and a sequence of
simple functions {Φn}n≥0 such that

lim
n→∞

∫
Ω

‖Φ(ω)− Φn(ω)‖−pd|µ|p = 0, |µ|p − a.e..

Then for q > 2p+ 1
2 , {

∫
Ω
Φn(ω) ∗ dµ}n≥1 converges with respect to ‖ · ‖−q , that is, there exists a Ψ ∈ S∗

q (M) ,
such that

lim
n→∞

‖Ψ−
∫
Ω

Φn(ω) ∗ dµ‖−q = 0.

Proof By the linear operational property of Bochner-convolution integrals and Theorem 4.3

‖
∫
Ω

Φm(ω) ∗ dµ−
∫
Ω

Φn(ω) ∗ dµ‖−q

= ‖
∫
Ω

[Φm(ω)− Φn(ω)] ∗ dµ‖−q

≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω

‖Φm(ω)− Φn(ω)‖−pd|µ|p

→ 0 (n,m → ∞).

Thus, {
∫
Ω
Φn(ω) ∗ dµ}n≥1 is a Cauchy sequence with respect to ‖ · ‖−q , so there exist Ψ ∈ S∗

q (M) such that

lim
n→∞

‖Ψ−
∫
Ω

Φn(ω) ∗ dµ‖−q = 0.

This completes the proof. 2

Definition 4.5 The generalized functional Ψ in Theorem 4.4 is called Bochner-convolution integral of Φ , we
denote it by ∫

Ω

Φ(ω) ∗ dµ

In this case, Φ is said to Bochner-convolution integrable.

Theorem 4.6 A function Φ : Ω → S∗(M) is Bochner-convolution integrable if and only if Φ is strongly
measurable and there exists p ≥ 0 such that∫

Ω

‖Φ(ω)‖−pd|µ|p < +∞.

In that case, for q > 2p+ 1
2 , one has

‖
∫
Ω

Φ(ω) ∗ dµ‖−q ≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω

‖Φ(ω)‖−pd|µ|p.
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Proof The necessity is obvious, we only show the sufficiency. Take a sequence of simple functions {Φn}n≥0

such that
lim
n→∞

‖Φ(ω)− Φn(ω)‖−p = 0, |µ|p − a.e..

Denote En = {ω : ‖Φn(ω)‖−p ≥ 3
2‖Φ(ω)‖−p} . Let Ψn = ΦnIEn , n ≥ 1 , it is easy to see that Ψn is a sequence

of simple functions, a direct computation gives

‖Ψn(ω)− Φ(ω)‖−p ≤ ‖Ψn(ω))‖−p + ‖Φ(ω)‖−p ≤ 5

2
‖Φ(ω)‖−p

and
‖Ψn(ω)− Φ(ω)‖−p

≤ ‖Ψn(ω)− Φn(ω)‖−p + ‖Φn(ω)− Φ(ω)‖−p

−→ 0(n → ∞), |µ|p − a.e.

By the dominated convergence theorem, we have∫
Ω

‖Ψn(ω)− Φ(ω)‖−pd|µ|p −→ 0(n → ∞), |µ|p − a.e.

by Theorem 4.4, Φ is Bochner-convolution integrable.
For q > 2p+ 1

2 , from the definition and Theorem 4.4 it is clear that

‖
∫
Ω

Φ(ω) ∗ dµ‖−q ≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω

‖Φ(ω)‖−pd|µ|p.

This completes the proof. 2

Theorem 4.7 (Dominated convergence theorem) Let {Φn}n≥1 be a sequence of Bochner-convolution integrable
functions on Ω . If for p ≥ 0 , lim

n→∞
|µ|p{ω ∈ Ω | ‖Φn − Φ‖−p > ε} = 0 for any ε > 0 and if there exists

a real-valued integrable function g(·) on Ω with ‖Φn(ω)‖−p ≤ g(ω) |µ|p -a.e., then Φ is Bochner-convolution
integrable and for q > 2p+ 1

2

lim
n→∞

‖
∫
Ω

Φn(ω) ∗ dµ−
∫
Ω

Φ(ω) ∗ dµ‖−q = 0.

Proof Just apply the scalar Dominate convergence theorem to ‖Φ(ω)−Φn(ω)‖−p with dominating function
2g , Φ is Bochner-convolution integrable. For q > 2p+ 1

2 , by Theorem 4.6

‖
∫
Ω

Φ(ω) ∗ dµ−
∫
Ω

Φn(ω) ∗ dµ‖−q

≤ ‖
∫
Ω

[Φ(ω)− Φn(ω)] ∗ dµ‖−q

≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω

‖Φ(ω)− Φn(ω)‖−pd|µ|p

→ 0 (n → ∞)

706



CHEN/Turk J Math

This completes the proof. 2

Theorem 4.8 Let Φ : Ω → S∗(M) be a strongly measurable function, if Φ is Bochner-convolution integrable,

then for any σ ∈ Γ , the function ω → Φ̂(ω)(σ) is integrable with respect to µ̂(σ) and

[
̂∫

Ω

Φ(ω) ∗ dµ](σ) =
∫
Ω

Φ̂(ω)(σ)dµ̂(σ).

Proof It is easy to see that the function ω → Φ̂(ω)(σ) is measurable and

|Φ̂(ω)(σ)| ≤ ‖Φ(ω)‖−pλ
p
σ, ω ∈ Ω,

by Proposition 3.5,

|
∫
Ω

Φ̂(ω)(σ)dµ̂(σ)| ≤ λ2p
σ

∫
Ω

‖Φ(ω)‖−pd|µ|p, (4.1)

which together with Φ Bochner-convolution integrable means that Φ̂(ω)(σ) is integrable with respect to µ̂(σ) .
On the other hand, Φ is strongly measurable, so there exists a sequence of simple functions {Φn}n≥0

such that
lim
n→∞

‖Φn(ω)− Φ(ω)‖−p = 0, |µ|p − a.e..

by Theorem 4.4, for q > 2p+ 1
2

lim
n→∞

‖
∫
Ω

Φn(ω) ∗ dµ−
∫
Ω

Φ(ω) ∗ dµ‖−q = 0, |µ|p − a.e..

And also
|Φ̂n(ω)(σ)| ≤ ‖Φn(ω)‖−pλ

p
σ, ω ∈ Ω,

by the dominated convergence theorem, we have

[
̂∫

Ω

Φ(ω) ∗ dµ](σ) = lim
n→∞

[
̂∫

Ω

Φn(ω) ∗ dµ](σ)

= lim
n→∞

∫
Ω

Φ̂n(ω)(σ)dµ̂(σ) =

∫
Ω

Φ̂(ω)(σ)dµ̂(σ).

This completes the proof. 2

5. The Fubini theorem
In the present section, we will prove a Fubini type theorem for generalized functional-valued measure using the
Fock transforms of generalized functionals in S∗(M) .

Throughout this section, we suppose that µ is a generalized functional-valued measure defined on a
measurable space (Ω1,F1) , υ is a generalized functional-valued measure defined on another measurable space
(Ω2,F2) . We also suppose that there exists p ≥ 0 such that |µ|p and |υ|p are countably additive measures.
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In the following, we first prove that there exists a convolution measure µ ∗ υ on the product measurable
space (Ω1 × Ω2,F1 ×F2) which satisfies

µ ∗ υ(A×B) = µ(A) ∗ υ(B),

for any A ∈ F1, B ∈ F2 . Therefore, we consider a function F : Γ → R defined by F (σ) = µ̂(σ)× υ̂(σ)(A×B)

for A×B ∈ F1 ×F2 is the Fock transform of an element of S∗(M) .

Theorem 5.1 Let F (σ) = µ̂(σ) × υ̂(σ)(A × B) for A × B ∈ F1 × F2 , then F is the Fock transform of an
element of S∗(M) .

Proof According to the suppose of µ, υ , we have |µ̂(·)(σ)| ≤ λp
σ|µ|p(·) and |υ̂(·)(σ)| ≤ λp

σ|υ|p(·) , then

|F (σ)| = |µ̂(σ)× υ̂(σ)(A×B)| = |
∫
Ω1×Ω2

IA×Bd(µ̂(σ)× υ̂(σ))|

≤ λ2p
σ

∫
Ω1×Ω2

IA×Bd(|µ|p × |υ|p)

= λ2p
σ (|µ|p × |υ|p)(A×B)

By Lemma 2.3, F (σ) is the Fock transform of an element of S∗(M) . 2

Theorem 5.2 Let A × B ∈ F1 × F2 define µ ∗ υ as [ ̂µ ∗ υ(A×B)](σ) = µ̂(σ) × υ̂(σ)(A × B) , then µ ∗ υ is
a unique generalized functional-valued measure of p-bounded variation defined on the product measurable space
(Ω1 × Ω2,F1 ×F2) and satisfies

µ ∗ υ(A×B) = µ(A) ∗ υ(B).

Proof We first prove that µ ∗ υ is countably additive on F1 ×F2 . Let (An ×Bn)n≥1 ⊂ F1 ×F2 be a disjoint
sequence, then

[
̂

µ ∗ υ(
∞⋃

n=1

(An ×Bn))](σ) =

∞∑
n=1

[ ̂µ ∗ υ(An ×Bn)](σ)

= lim
n→∞

n∑
k=1

[ ̂µ ∗ υ(Ak ×Bk)](σ)

= lim
n→∞

[
̂n∑

k=1

µ ∗ υ(Ak ×Bk)](σ)
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On the other hand,

|[
̂n∑

k=1

µ ∗ υ(Ak ×Bk)](σ)| ≤
n∑

k=1

|[ ̂µ ∗ υ(Ak ×Bk)](σ)|

=

n∑
k=1

|µ̂(σ)× υ̂(σ)(Ak ×Bk)|

≤
n∑

k=1

|µ̂(Ak)(σ)||υ̂(Bk)(σ)|

≤ λ2p
σ

n∑
k=1

(|µ|p × |υ|p)(Ak ×Bk))

= λ2p
σ (|µ|p × |υ|p)(

n⋃
k=1

(Ak ×Bk))

by Lemma 2.4,
∑n

k=1 µ ∗ υ(Ak ×Bk) converges weakly to µ ∗ υ(
⋃∞

n=1(An ×Bn)) . By Definition 3.1, µ ∗ υ is a
generalized functional-valued measure. By Lemma 2.3, for q > 2p+ 1

2

‖µ ∗ υ(A×B)‖−q ≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2 (|µ|p × |υ|p)(A×B),

which means that µ ∗ υ is a p -bounded variation measure. Finally, the uniqueness of µ ∗ υ is immediate from
the uniqueness of µ̂(σ)× υ̂(σ) . 2

Definition 5.3 A function Φ : Ω1 × Ω2 → S∗(M) is called strongly measurable if for p ≥ 0 , there exists a
sequence of simple functions {Φn}n≥0 with

lim
n→∞

‖Φ(ω1, ω2)− Φn(ω1, ω2)‖−p = 0, |µ|p × |υ|p − a.e.

Theorem 5.4 Suppose Φ(ω1, ω2) is a strongly measurable function on (Ω1 × Ω2,F1 × F2) . Then both∫
Ω2

Φ(ω1, ·)∗dυ and
∫
Ω1

Φ(·, ω2)∗dµ are strongly measurable, and in addition, they are both Bochner-convolution
integrable.

Proof We only prove the statement for
∫
Ω2

Φ(ω1, ·) ∗ dυ . Let

M = {H ∈ F1 ×F2,

∫
Ω2

IH(ω1, ·) ∗ dυ be strongly measurable}

and
S = {A×B | A ∈ F1, B ∈ F2}.

We can easily prove that M is a monotone class and then the Dynkin’s monotone class theorem tells us that
M ⊃ σ(S) = F1 ×F2 , so

∫
Ω2

Φ(ω1, ·) ∗ dυ is strongly measurable for any simple function Φ , choose a sequence
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of simple functions Φn such that Φn ↑ Φ . Then for any ω1 ∈ Ω1 and q > 2p+ 1
2 ,

‖
∫
Ω2

Φ(ω1, ·) ∗ dυ −
∫
Ω2

Φn(ω1, ·) ∗ dυ‖−q

≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω2

‖Φ(ω1, ·)− Φn(ω1, ·)‖−pd|υ|p

→ 0(n → ∞)

which means that
∫
Ω2

Φ(ω1, ·) ∗ dυ is strongly measurable.

On the other hand, ∫
Ω1

‖
∫
Ω2

Φ(ω1, ·) ∗ dυ‖−qd|µ|p

≤
∫
Ω1

[
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2 [

∫
Ω2

‖Φ(ω1, ·)‖−pd|υ|p]d|µ|p

≤ [
∑
σ∈Γ

λ−2(q−2p)
σ ]

1
2

∫
Ω1×Ω2

‖Φ(ω1, ω2)‖−pd(|µ|p × |υ|p)

< ∞

By Theorem 4.6,
∫
Ω2

Φ(ω1, ·) ∗ dυ is Bochner-convolution integrable. 2

Theorem 5.5 Suppose Φ(ω1, ω2) is a strongly measurable function on (Ω1 × Ω2,F1 × F2) . Then the three
integrals in the following equation exists and satisfies∫

Ω1×Ω2

Φ(ω1, ω2) ∗ d(µ ∗ υ) =
∫
Ω1

[

∫
Ω2

Φ(ω1, ·) ∗ dυ] ∗ dµ =

∫
Ω2

[

∫
Ω1

Φ(·, ω2) ∗ dµ] ∗ dυ (5.1)

Proof The existence of the integrals are guaranteed by the preceding theorem. We only need to prove the
second half of (5.1). By Theorem 4.8, we have

[
̂∫

Ω1×Ω2

Φ(ω1, ω2) ∗ d(µ ∗ υ)](σ) =
∫
Ω1×Ω2

̂Φ(ω1, ω2)(σ)dµ̂(σ)× υ̂(σ)

=

∫
Ω2

[

∫
Ω1

̂Φ(ω1, ω2)(σ)dµ̂(σ)]dυ̂(σ)

=

∫
Ω2

[
̂∫

Ω1

Φ(ω1, ω2) ∗ dµ](σ)dυ̂(σ)

= [
̂∫

Ω2

(

∫
Ω1

Φ(ω1, ω2) ∗ dµ) ∗ dυ](σ)

By Theorem 13 in paper [11], we have∫
Ω1×Ω2

Φ(ω1, ω2) ∗ d(µ ∗ υ) =
∫
Ω2

[

∫
Ω1

Φ(ω1, ω2) ∗ dµ] ∗ dυ.

This completes the proof. 2
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