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Abstract: Let M be a discrete-time normal martingale satisfying some mild conditions, S(M) C L*(M) C S*(M)
be the Gel'fand triple constructed from the functionals of M. As is known, there is no usual multiplication in S*(M)
since its elements are continuous linear functionals on S(M). However, by using the Fock transform, one can introduce
convolution in S*(M), which suggests that one can try to introduce a type of integral of an S*(M)-valued function with
respect to an S*(M)-valued measure in the sense of convolution. In this paper, we just define such type of an integral.
First, we introduce a class of §*(M)-valued measures and examine their basic properties. Then, we define an integral
of an §*(M)-valued function with respect to an S*(M)-valued measure and, among others, we establish a dominated

convergence theorem for this integral. Finally, we also prove a Fubini type theorem for this integral.
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1. Introduction
Integration theory was originally developed for real-valued functions with respect to real-valued measures. In
the first half of the last century, real variable theory was extended to functions taking values in vector spaces
[4]. Nowadays, integrals of vector-valued functions with respect to scalar measures, and integrals of scalar-
valued functions with respect to vector measures have been explored extensively using different approaches. For
example, Mitter and Young [6] developed an integration theory with respect to operator-valued measures which
is required in the study of certain convex optimization problems. Rybakov [9] presented a generalization of the
Bochner integral to locally convex spaces. Cao [1] defined the Henstock—Kurzweil integral for Banach space-
valued functions. Sokol [10] defined the Hake-Henstock-Kurzweil and the Hake-McShane integrals of Banach
space- valued functions defined on an open and bounded subset of m-dimensional Euclidean space. However,
integral of vector-valued functions with respect to vector-valued measures is seldom appreciated because of its
abstract nature. The purpose of this paper is to develop an integration theory for the case of vector-valued
functions with respect to vector-valued measures on the space of generalized functionals of discrete-time normal
martingale.

Discrete-time normal martingales [8] play an important role in many theoretical and applied fields. In
recent years, functionals of discrete-time normal martingales have attracted much attention ([3, 5, 7, 11-13]).

Let M = (M,)nen be a discrete-time normal martingale satisfying some mild conditions. Then, by using a
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specific orthonormal basis for the space L?(M) of square integrable functionals of M, Gel’fand triple
S(M) C L*(M) C S*(M),

can be constructed [15], where elements of S(M) are called testing functionals of M, while elements of S*(M)
are called generalized functionals of M. In paper [11], a transform, called Fock transform has been introduced
for generalized functionals of M. It has been shown that the generalized functionals of M can be characterized
only by growth condition on their Fock transforms. As is known, there is no usual multiplication in §*(M)
since its elements are continuous linear functionals on S(M). However, by using the Fock transform, one can
introduce convolution in §*(M), which suggests that one can try to introduce a type of integral of an S*(M)-
valued function with respect to an S*(M)-valued measure in the sense of convolution. In this paper, we just
define such a type of integral. The main work therein is as follows. In Section 3, S*(M)-valued measures are
introduced and their basic properties are examined. In Section 4, an integral of an S*(M)-valued function
with respect to an S*(M)-valued measure is defined and, among others, a dominated convergence theorem is
established for this integral. In Section 5, a Fubini type theorem is also proved for integral of an S*(M)-valued
function with respect to an S*(M)-valued measure.
Throughout this paper, N denotes the set of all nonnegative integers and I' the finite power set of N,
namely
I'={0c|oCNand #(0) <  }, (1.1)

where #(o) means the cardinality of o as a set.

2. Preliminaries
In this section, we briefly recall some notions and results on generalized functionals of discrete time normal
martingales. For details, see [2, 11, 13, 14] and references therein.

Let (3,47, P) be a given probability space with E denoting the expectation with respect to P. We use
L?(%, o/, P) denote the usual Hilbert space of square integrable complex-valued functions on (¥,.27, P) and
use (-,-) and || || to mean its inner product and norm, respectively. By convention, (-,-) is conjugate-linear in
its first argument and linear in its second argument.

Let M = (M,)nen be a discrete-time normal martingale on (X, .7, P) that has the chaotic representation

property. For brevity, we use L?(M) to mean the space of square integrable functionals of M , namely
LY(M) = L*(3, de, P), (2.1)

which shares the same inner product and norm with L?(¥, e, P), namely (-,-) and ||-||. It is known that

{Z, | o €'} forms a countable orthonormal basis for L?(M), where Zy =1 and

Z(,:HZ“ oel, c#0. (2.2)

i€o
where Z = (Z,)nen is the discrete-time normal noise associated with M (see [11] for details).

Lemma 2.1 [15] Let 0 — A, be the N-valued function on T' given by

_{ Hieo(k+1), 0#0,0€T;
A”_{ Lke c=0,0€eT. (2.3)
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Then, for p > 1, the positive term series ) . \;P converges; moreover,
oo
S AP < exp {Z k} < oo (2.4)
oel k=1

Using the orthonormal basis {Z, | ¢ € '} and N-valued function defined by (2.3), one can construct a
chain of Hilbert spaces S,(M) (p > 0) of functionals of M, put

S(M) = () Sp(M), (2.5)

it is a dense linear subspace of L?(M), which itself is a countable Hilbert nuclear space and continuously
contained in L*(M) [11]. For p > 0, we denote by Sy (M) the dual of S,(M) and || - ||, the norm of S} (M).
Let 8*(M) be the dual of S(M) and endow it with the strong topology, then

S (M) = | 8;(M). (2.6)
p=0

We mention that, by identifying L?(M) with its dual, the Gel’fand triple
S(M) c L*(M) c S*(M),

can be constructed, which is the framework where we will work. Elements of S*(M) are called generalized

functionals of M, while elements of S(M) are called testing functionals of M .

Definition 2.2 [11] For ® € S*(M), its Fock transform is the function ®onl given by

~

(o) = (@, Z,)), o€T, (2.7)
where ((-,-)) is the canonical bilinear form.

In general, the usual product of two generalized functionals of $*(M) is no longer a generalized functional
of §*(M). This means that the usual product is not a multiplication in S*(M). However, by using the Fock
transform, one can introduce convolution in S*(M).

For two generalized functionals ®, ¥ € S*(M), denote by ® % ¥ their convolution. Recall that

—

P x U(o) = D(0)V(0),

for any o € I'.

The following lemma characterizes the generalized functionals of M through their Fock transforms.

Lemma 2.3 [11] Let F be a function on T'. Then F is the Fock transform of an element ® of S*(M) if and
only if it satisfies
|[F(o)| <CXe, o€l (2.8)
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for some constants C >0 and p > 0. In that case, for ¢ > p+ L, one has

27

ol

@] < 0| S azen]” 2.9)

oel

and in particular ® € S;(M).

The next lemma offers a criterion in terms of the Fock transform for checking whether or not a sequence

in §*(M) is convergent.

Lemma 2.4 [14] Let ® € S*(M), (®y)n>1 be a sequence of generalized functionals in S*(M). Suppose @(a)

converges to (/I;(O') for all o € T'; moreover, there exist constants C >0 and p > 0 such that

sup |9, (0)| < CA2, o €T. (2.10)

n>1

Then (®y)n>1 converges weakly to ®© in S*(M).

3. Generalized functional-valued measures

Throughout this section we assume that F is the o-algebra of subsets of a set 2. In this section, we introduce

a class of §*(M)-valued measures and examine their basic properties.

Definition 3.1 Let (2, F) be a measure space. A set function p : F — S*(M) is called a generalized
functional-valued measure if it is countably additive on F, i.e. for every countable disjoint sequence (E,) in

F, we have
M( U En) = ZM(En)v (31)
n=1 n=1
where the sum is convergent in the weak topology on S*(M).

Definition 3.2 Let p: F — S*(M) be a generalized functional-valued measure. For p > 0, the p-variation
|l of w is defined by

|plp(E) = sup Z lu(B)l|-p, E€F,

T Ber

where the supremum is taken over all finite disjoint measurable partition m of E. If |u|p(2) < oo, then p will

be called a generalized functional-valued measure of p-bounded variation.

Theorem 3.3 Let u: F — S*(M) be a generalized functional-valued measure of p-bounded variation, then the

p-variation |p|, is a monotone and finitely additive function on F.
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Proof Let F; and E; be disjoint members of F, then for any finite disjoint measurable partition 7 of
E\UE,, {BNE|Ben} and {BNEy|B € «} are partitions of E; and Fs, respectively. Thus,

Yo MuB)l-p = D In(BNE1) + u(BN Es)l|-p

Bemw Bem
<D BOED| -+ Y (BN E)| -
Bem Bem

< fulp(Br) + [plp(E2)
Taking the supremum over all finite disjoint measurable partition 7 of FE; U Es yields

|ulp(Br U E) < [ulp(Er) + |ulp(E2)- (3.2)

On the other hand, |u|,(E1) < |p|p(£2), so there exists a finite disjoint measurable partition 7, of E; such that

for any € > 0, we have

lulp(Br) = < D u(B) -,

Bem

similarly, there exists a finite disjoint measurable partition mo of Es such that

1lp(B2) = < D u(B)]-p.

Bems
It is easy to see that 7w Umy be a finite disjoint measurable partition of £ U Es. Then
|ilp(E) + [plp(E2) — 2¢

<D eB)ll-p+ D B

Bem Bemsy

< lplp(Er U Ey).
Since this holds for any € > 0, we have the reverse inequality
|ulp(Ev) + |plp(E2) < |plp(Er U Es),

which together with (3.2) means that |u|, is finitely additive. It is immediate that |u|, is monotone. O

Theorem 3.4 A generalized functional-valued measure p of p-bounded variation is countably additive with

respect to || - ||=p if and only if its p-variation |u|, is also countably additive.

Proof Suppose u: F — S*(M) be a generalized functional-valued measure of p-bounded variation. Since
le(E)l=p < |plp(E) for each E € F , it is plain that p is countably additive with respect to || - |-, if |u]p is
countably additive.

Conversely, suppose that p: F — S*(M) is a countably additive measure with respect to || - ||—,. Let

(En) C F be a sequence of disjoint sets such U2, E,, € F and let 7 be a finite disjoint measurable partition
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of UsE,,. Then

Do uB)l—p =D In(B N (U1 Ea))l-

Bem Bem

<3 S uBAED)]-,

n=1 Ben

o0

Z M|p

Since this holds for any partition 7, we have the inequality

|1l ( U Ey) Z |blp(En)-

n=1

By Theorem 3.3, ||, is a finitely additive and monotone on F. Thus, for any n, we have
n

Z lulp(Ex) = |M|p(U Ey) < ‘:u|p(U Ey)
k=1

k=1 n=1

This proves the reverse inequality Y ., |ulp(En) < |plp(U,—; En) and shows that |u|, is countably additive
on F. O

Proposition 3.5 Let u: F — S*(M) be a generalized functional-valued measure of p-bounded variation. Then
for any p>0 and E € F, we have

(E) (o) < 2|l (E),
forall c €T

Proof Let p>0 and E € F. If |u|,(2) < oo, then we have

(BN —p < |plp(B) < [palp(€2) < oo

This means p(FE) € S5(M). By || Zyll, = Ay < oo for 0 € T', we have

[W(E) (o) = [(((E), Zo))| < M I(E)ll-p < Mg lplp(E)-

This completes the proof. O

4. Bochner-convolution integral

Let (©,F) be a measure space as in Section 3, u : F — S*(M) be a generalized functional-valued measure.
In this section we define an integral of an S*(M)-valued function with respect to p and establish a dominated
convergence theorem for this integral. The integral will be defined by following a approach, that is, we first
define the integral for a class of simple integrands and then we extend it to a larger class of integrands which

are strongly measurable functions on S*(M).
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Definition 4.1 A function ® : Q — S*(M) is called simple if there exists ®q, o, -, ®,, € S*(M) such that
= Z@iIEi(w), w e Q,

where Ey, Ea, -+, E,, is a finite disjoint measurable partition of Q. A function ® : Q — S*(M) is called strongly

measurable if there exists p > 0 and a sequence of simple functions {U,},>0 such that
Jim [|@(w) = U (@)l|-p =0, |ulp —

Definition 4.2 For a simple function ®(w) = > ®ilp,(w), w € Q, the Bochner-convolution integral
Jo ®(w) * dp is defined by

A@(w)*duzZ@i*u(E

From the definition it is clear that Bochner-convolution integrals have the linear operational property,

i.e. for any a, 8 € R and simple functions ®, ¥, we have
/[a(I)(w)—i-B\I/(w)]*du:a/ *d,u—f—ﬂ/ w) * dy.
Q

Theorem 4.3 Let @ : Q — S*(M) be a simple function, then for ¢ > 2p Jr we have

7

1
I ] @)l = (30 252020 / 19)l-pell

ocel

Proof Let ®(w) =37, ®;Ip,(w). We denote by Y = [, ®(w) * dyu, then for any o € T,

—

=13 @ w(E)(0) = Y i) u(Er) (o),
=1 i=1

by Lemma 2.3 and Proposition 3.5, we have

|<Z|¢> ) [1(E:) (o |<ZH<I>|| plitlp (i) A

< [ Sl Ta @),
=1
=2 [ 19yl
Q
Then by Lemma 2.3, for ¢ > 2p + %

IV < (3 Ap 202 / 12 (@) pdlp-
ocel’

This completes the proof. O
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Theorem 4.4 Let @ : Q — S*(M) be a strongly measurable function, if there exists p > 0 and a sequence of

simple functions {®,}n>0 such that

lim / 10(w) — @0 ()| _pdlitly = 0, |aly —

Then for q > 2p+ 3, {[o ®n(w) *du}n>1 converges with respect to || - ||—q, that is, there exists a ¥ € S; (M),
such that

lim || O —/ B,y (w) * dp|| g = 0.
Q

n—oo

Proof By the linear operational property of Bochner-convolution integrals and Theorem 4.3

I ) die— [ @afe) vl
Q Q

oy /Q By (@) — B ()] * it g

— - 1
(DA [ 00 0) = @) |-l

oel

— 0 (n,m — o).

Thus, { [, ®n(w) * du}n>1 is a Cauchy sequence with respect to || - ||, so there exist ¥ € S¥(M) such that

n—oo

lim || ¥ — / O, (w) * dpl|—g = 0.

Q
This completes the proof. O
Definition 4.5 The generalized functional V in Theorem 4.4 is called Bochner-convolution integral of ®, we

| @) <

In this case, ® is said to Bochner-convolution integrable.

denote it by

Theorem 4.6 A function ® : Q — S*(M) is Bochner-convolution integrable if and only if ® is strongly

measurable and there exists p > 0 such that

/Q 1©(w)—pdluly < +o0.

In that case, for q > 2p —|— , one has

I ] @) dul -y < (2420201 [ @)yl

ocel
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Proof The necessity is obvious, we only show the sufficiency. Take a sequence of simple functions {®,},>0
such that
Tim ([ $(w) = (@) =0, |uly—

Denote E,, = {w : || Py (w)]|—p > 2H<I> w)||=p}. Let ¥, =, Ig

of simple functions, a direct computation gives

n > 1, it is easy to see that ¥, is a sequence

n

[Vn(w) = @(w)—p < [[¥n(w))ll-p + [P(w)]|-p < gllé(W)H—p
and
[¥n(w) — (w)|-p
< [ ¥n(w) = P (w)l[—p + | Pn(w) — P(w)]—p

— 0(n — 00), |plp —

By the dominated convergence theorem, we have

1) = @l il — 0(n = 0). Il

by Theorem 4.4, ® is Bochner-convolution integrable.

For ¢ > 2p + %, from the definition and Theorem 4.4 it is clear that

1
I @)l < [0 420201 [ 0@l
oel
This completes the proof. O
Theorem 4.7 (Dominated convergence theorem) Let {®,,},>1 be a sequence of Bochner-convolution integrable

functions on Q. If for p > 0, lim |u|,{w € Q| [|®, — @||—p > €} = 0 for any ¢ > 0 and if there exists
n—o0

a real-valued integrable function g(-) on Q with || P, (w)||-p < g(w) |ulp-a.e., then @ is Bochner-convolution

integrable and for q > 2p + %

lim H/ ) * dp — / O(w) * du||—g =0.
n—oo Q

Proof Just apply the scalar Dominate convergence theorem to || ®(w) — @, (w)||-, with dominating function

2g, ® is Bochner-convolution integrable. For ¢ > 2p + %, by Theorem 4.6

I @) wdu— [ @) dul-y
<1 [ ) = @]+ dul-

(DA [ 0(w) = @) -l

el

— 0 (n — o)
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This completes the proof. O

Theorem 4.8 Let & : Q) — S*(M) be a strongly measurable function, if ® is Bochner-convolution integrable,

then for any o € I', the function w — @/(;)(0) is integrable with respect to (o) and

[ / B(w) * du)(0) = / 5(@)(0)di(0).

—

Proof It is easy to see that the function w — ®(w)(o) is measurable and

1D(w)(0)] < [[B(w)]|-pAE, w e Q,

o
by Proposition 3.5,

| / o)dfi()] < NP / 12w —pdlily, (4.1)

which together with ® Bochner-convolution integrable means that CIT(;)(U) is integrable with respect to fi(o).

On the other hand, ® is strongly measurable, so there exists a sequence of simple functions {®,},>0
such that

Jim | @, (w) = P(W)[-p =0, [ulp =

by Theorem 4.4, for ¢ > 2p + %

fim | | @)= [ @) 5 dull g =0, 1l

n—oo

And also
[ (w)(0)| < [[Pn(w)]-pAs, w € Q,

o

by the dominated convergence theorem, we have

—

[/Q (w) * dyu)(o) = lim [ (IDn ) * dp(o)

= Jin_ [ $.G)0)(w) = [ F)(o)dio).

n—oQ O

This completes the proof. O

5. The Fubini theorem
In the present section, we will prove a Fubini type theorem for generalized functional-valued measure using the
Fock transforms of generalized functionals in S*(M).

Throughout this section, we suppose that p is a generalized functional-valued measure defined on a
measurable space (1, F1), v is a generalized functional-valued measure defined on another measurable space

(Q2, F2). We also suppose that there exists p > 0 such that |u|, and |v|, are countably additive measures.
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In the following, we first prove that there exists a convolution measure p* v on the product measurable
space (1 x Qo, F1 x F3) which satisfies

px o(A x B) = p(A)  v(B),

for any A € F1,B € F». Therefore, we consider a function F : I' — R defined by F(o) = ji(o) x ¥(0)(A x B)
for A x B € Fy x Fy is the Fock transform of an element of S*(M).

Theorem 5.1 Let F(o) = (o) X U(0)(A x B) for Ax B € Fy x Fy, then F is the Fock transform of an
element of S*(M).

Proof According to the suppose of pu,v, we have \,17(\)(0)| < X2 plp(-) and |17(\)(U)\ < A2|u|p(-), then

|F(0)| = [u(o) x v(o)(A x B)| = | - Laxpd(1i(o) x v())|

< / Laxsd(uly x [0],)
Q1%

=2 (lulp < [v]p)(A x B)

By Lemma 2.3, F(o) is the Fock transform of an element of S*(M). O

Theorem 5.2 Let A x B € Fi x Fy define pxv as [px* m B)|(0) = ii(o) x 0(0)(A x B), then px*v is
a unique generalized functional-valued measure of p-bounded variation defined on the product measurable space
(1 X Qo, F1 X Fa) and satisfies

pxv(Ax B) = pu(A) xv(B).

Proof We first prove that p*wv is countably additive on Fy x Fo. Let (A, X By)p>1 C F1 X F2 be a disjoint
sequence, then

[0 % v U (An x B))l(0) = > [ v(An x By)l(o)
n=1

= lim Z[M*U(Ak x By)](o)

k=1
= Jlim (37 (A x Bo)(o)
k=1

708



CHEN/Turk J Math

On the other hand,

< NP (Il * [0lp) (Ax x By))

k=1

= N2 (lulp x [vlp)( U Ay X By))

by Lemma 2.4, Y7, pxv(Ax X By) converges weakly to pu*v({J,—, (A, x By)). By Definition 3.1, p*v is a

generalized functional-valued measure. By Lemma 2.3, for ¢ > 2p + 5

s (A x B)|—g <[> A;2@22)2(|ul, x |v],)(A x B),

oel’
which means that p* v is a p-bounded variation measure. Finally, the uniqueness of u * v is immediate from
the uniqueness of fi(o) x U(0). O
Definition 5.3 A function ® : Q1 x Qo — S*(M) is called strongly measurable if for p > 0, there exists a

sequence of simple functions {®y}n>0 with

Jim ([@(wr,w2) = Pplwi,wo)-p =0, fulp x [v]p —ace.

Theorem 5.4 Suppose ®(wy,ws) is a strongly measurable function on (1 X Qo, F1 X Fo). Then both
sz D (wq,-)*xdv and le O(-, wo)xdp are strongly measurable, and in addition, they are both Bochner-convolution

integrable.

Proof We only prove the statement for f% D(wq, ) *xdv. Let

M={H € Fy x ]-"2,/ I (wy, ) * dv be strongly measurable}
Q0

and
GZ{AXB‘AG.Fl,BG.FQ}.

We can easily prove that 91 is a monotone class and then the Dynkin’s monotone class theorem tells us that

M D o(6) =F; X Fa, 80 fQ2 ® (w1, ) * dv is strongly measurable for any simple function ®, choose a sequence
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of simple functions ®,, such that ®,, T ®. Then for any w; € 7 and ¢ > 2p + %,

I @, )« do - / Bp(wr, ) * do]|_g
QQ Q2

<[ [

[@(wi, ) = P (wr, ) —pdlvlp
oel Q2

— 0(n — o0)

which means that fnz D (w1, ) * dv is strongly measurable.

On the other hand,

/Q I @) * dol|_gdlpl,

Qo
< / [ ;2020 / 19 (w1, )| _pdlv]p)dlul,
23 oel Q2

<A / 1@ (wr, w2) | —pd([lp < [v])

oel Ql X Qz
< o0
By Theorem 4.6, fQQ ® (w1, ) * dv is Bochner-convolution integrable. O

Theorem 5.5 Suppose ®(wi,ws) is a strongly measurable function on (1 x Qo, F1 X Fo). Then the three

integrals in the following equation exists and satisfies

/le% Plwn,we) x dlpxv) = /Ql[/% O(wr, ) * dv] *d/z:/m[/gl@(nwg)*du] « dv (5.1)

Proof The existence of the integrals are guaranteed by the preceding theorem. We only need to prove the
second half of (5.1). By Theorem 4.8, we have

—
-

[/Ql><Qz (w1, wa) * d(p*v)](0) = /QlXQZ D (wy,ws)(0)dp(o) x 0(o)
B [22 [/521 (I)(wlyw2)(0')dﬁ(o')]dﬁ(o.)
B /Qz [»/91 Q(WMWQ) * du](a)da(g)

- [/Qz</(:<1:whwz> s+ dpr) + dv)(o)

By Theorem 13 in paper [11], we have

/ D (wy,wo) *d(p*v) = / [/ D (wy,wa) * dp) * dv.
521 XQQ 522 Q1

This completes the proof. O
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