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Abstract: In this paper, oscillation criteria are obtained for higher-order neutral-type nonlinear delay difference equa-

tions of the form

A(Tn(Ak_l(yn + Pnyr,)) + @ f(Yo,) = 0, n > no, (0.1)
where 7n,Pn,qn € [N0,00), Th > 0, ¢gn > 0; 0 < pp, < po < 00; lim 7, = o0, lim op = o0; op < n, oy is
n—o0 n—o0

(w)

u el

nondecreasing; A1, > 19 > 0; 7o = 0+; m > 0 for u # 0. Moreover, we provide some examples to illustrate our

main results.
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1. Introduction

In recent years, the methods used to construct the solutions and wide applications of the theory of difference
equations have been intensively studied ([I-4,12] and the references therein). Especially, neutral difference
equations find numerous applications in natural sciences and technology. For instance, they are frequently used
for the study of distributed networks containing lossless transmission lines. Recently, much researches have
been carried out on the oscillatory and asymptotic behaviour of solutions of higher-order neutral type delay and
advanced difference equations ([5,6,8-12,14-18]). In these studies, the authors considered the case of n —7 <n

or 7, <n for higher order neutral type linear delay difference equations of the form
A" (Yn + PuYr,) + @Yo, =0, m > 2,
and they obtained many results on this assumption. Only in [7], the authors considered the differential equation
(r()(z(t) + p()z(r(1) ") +q(t)a(o(t)) =0

which is the continuity analogue of linear form of the equation (0.1) where 7(¢) > ¢ and o(t) < t.
In this paper, we investigate the asymptotic and oscillation behavior of solutions of a certain higher-order

neutral-type nonlinear difference equation

A (TnAkil(yn +pny7'n)) + an(yan) =0 (1.1)

under the cases 7, > n and 7, <n where n € N, k € Ny = {2,3,...} and the following conditions hold:
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(Hy) >0, g, >0; 0<p, <py <o on Ny, ={ng,no+1,...}.

(H3) 7, and o, are defined on N and lim 7, = lim o, = c0; 0, <n, 0, is nondecreasing.
n— 00 n— o0

(H3) 75, =07

(Hy) ¥2m>0foru§£0.

For our further references, we assume that

n—1

R, S:Znors — 00 as n — 00,
Zn = Yn + PnYr, , @ = min{|o,|, |7n| : n € N} and Iy = [a,ng]. A function y,, is called the solution of Eq. (1.1)
with y, = ¢, when n € Iy, or it satisfies Eq. (1.1) for n > ng, or z, and rpn A1z, are defined on N,,. We
consider only those solutions y, of Eq. (1.1) which satisfy sup{|yn|: n > ng € N} > 0 for all n > ng. Then,
the solution y, of Eq. (1.1) is said to be nonoscillatory if it is either eventually positive or eventually negative,

and otherwise it is oscillatory. An equation is said to be oscillatory if all of its solutions are oscillatory.

2. Main results

Let y,, be a positive solution of Eq.(1.1). Then, we say the sequence z, =y, + pPn¥y-, is of degree [ if

Az, >0, for 0 <i <1, (2.1)
(—1)" 'A%, >0, forl <i<k—1, (2.2)
A(rn,A*12,) <0 (2.3)

eventually.

For our incoming references, we will denote by IN; the set of sequences z, of degree [.

Lemma 2.1 If y, is a positive solution of Eq.(1.1), then the set N of all corresponding sequences z, =

Yn + PnYr, has the following structure:
N = N()UNQU...UN]C,1 ka s odd

and

N =Ny UN3U...UNy_1 if k is even.
Proof Since y,, is a positive solution of Eq. (1.1),
A(TnAkilzn) = —qnf(yr,) <O.

Thus, r,A¥ "1z, is decreasing; moreover, all differences A’z,, 0 < i < k — 1, are the fixed signs eventually.
Hence, our assertion is a consequence of the well-known Knesser’s lemma and its proof can be seen in [2].

Therefore, we omit it in here. O
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For our following references, we denote

Qn = inf{Qna Q‘rn}v n = ng

where n; is large enough. Then, we define

I} = Rn—Rm;IjL:zn:ijl,Qgigk—l
s=ni
D SES ST R o S PPN

where we write I;(n) and J;(n) are indicated by I) and J., respectively. Hence, we can define the functions

Q! = Qi(n) that will be used as the coefficients of the supply difference equations. In here, we find

Qv =Qull! (2.4)
and for k > 4, we get
Q= wtﬂj**i, 1<i<k-3. (2.5)
Theorem 2.2 Let 7, > n. Assume that
JF =00 (2.6)
and the first order difference equations
1 .
Az, + T, =0 E;
1+ po (£)

are oscillatory for i = 2,4, ...k — 1 if k is odd, and for i =1,3,....k — 1 if k is even. Then, either Fq. (1.1)

is oscillatory for even k or every nonoscillatory solution y, of Eq.(1.1) satisfies lim y, =0 for odd k.
n—oo

Proof Without losing generality, assume that y,, is a positive solution of Eq. (1.1). Then the corresponding
sequence z, satisfies
26, = Yo, T Do, Y7o, < Yo, + PoYo ., (27)
in view of hypotheses (H;) and (Hj3).
On the other hand, Eq. (1.1) can be written as

A(r A 2) + 40 f (ys,) = 0 (2.8)
and also we have
0= poA(rr, A" 2 ) + podr, £ (Yo,,) = PoA(rr, A 20) + pogr, My, (2.9)
from using (H3) and (H4). Combining (2.8) and (2.9), and considering (2.7), we are led to

0 A(TnAk_lzn) + poA(rs, Ak_lzm) + @nf(Yo,) + bomqr, Yo,
A(rp AP 2) + poA(rr, A2 ) + omys, 4 Pomar, Yo, (2.10)

A(TnAk_lzn) + pOA(TTn Ak_lzrn) + anzan

IV IV IV
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In addition, it follows from Lemma 2.1 that z, is of degree I, where [ € {0,2,....k — 1} if k is odd, and
1e{l,3,...,k—1} if k is even. Firstly, assume that | =k — 1 i.e.

Zn >0, Azp >0, ..., rpAF 1z, >0, A(rnAkflzn) < 0.
Then, since w, = r,AF "1z, >0 is decreasing, we are led to

k—2 k—2 k—2
APz, > A%z, — ATz,

> w —

> w3
Z Wn, [Rn - Rnl] .

Repeating k — 2 times sum from n; to n — 1, we obtain z, > w,I*~!. That is,

2o, > W, IF7L. (2.11)

On

Combining (2.11) together with (2.10), we see that w, is a positive solution of the inequalities

A(wy, + pow,, ) + meL_lw% <0. (2.12)
Let us denote z, = w, + pow;,. Since w, is decreasing and 7,, > n, one can see that x, < w, + pow, =
wy, (1 + po), that is,
Wy, = ———Tq,
On — 1 +p0 Tn
which together with (2.12) gives that z,, is a positive solution of the inequalities

m
1+po

Az, + QF 1z, <O0.

Finally, by a well-known result (see [13, p. 186, Corollary 7.6.1]), we conclude that the corresponding equation
(Ek—1) has also an eventually positive solution. This contradicts to oscillation of (Ex_1). Therefore, | # k—1.

Now, assume that [ > 1. That is,
Zn >0, Az, >0, ..., Alz, >0, ATz, <0, A2z, >0, ..., A(rnAkflzn) < 0.

Since Az, is decreasing, we can verify that

n—1
Az, > AL Al_lzm = Z Az, > (n— nl)Alzn.

S=nN1

L
Repeating this procedure I — 1 times, one leads to z,, > %Alzn, which implies that

_ l
zo'n Z AlZO'n (O-n l'nl) . (213)
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Furthermore, summing (2.10) from n to oo, we obtain that
oo o0 o0
A Z re ARz 4 poA Z(TTSAk_l,ZTS) < -m Z Qszo,
s=n sS=n sS=n

and

oo o 00 00 oo
- Z 7’:?Akilzs + erAkilzs — Do Z rTSAkilzrs +pOZrTSAkilzrs > mZQsza‘S'
s=n s=n

s=n-+1 s=n—+1 s=n

Therefore, we obtain that

raAFl2 porTnAk_lzTn >m Z Qszo, - (2.14)
s=n

Since r,AF~1z, is decreasing, z, is increasing for [ > 1 and 7,, > n, we have
n I n b

TnAk_lzn<1 +p0) Z mz QSZU'S Z mzg,, Z Qs-

s=n sS=n

If we multiply this inequality by 1/r, and then getting sum from n to oo, we are led to

9] B 00 1 oo
A;Ak 2Zu2 1fpozan;a;Qs

and we get

m
—AF2, > 25 J2.
" l4py

If k> 4, then repeating kK — 3 — [ times sum from n to oo, we obtain that

m

—Al+lZ >0
" T 14po

2g, JET1ITL (2.15)

Combining (2.15) together with (2.13), we get that z,, = Alz, > 0 is a positive solution of

m

l
T, <0.
1+P0Qn "

Az, +

Consequently, by a well-known result (see [13, p. 186, Corollary 7.6.1]), we see that the corresponding equation
(E;) has also a positive solution. This contradicts our assumption. So that for k is even, we have eliminated
all possible cases for z, and we conclude that Eq.(1.1) is oscillatory. If & is odd, then there is the only one case

remaining [ = 0. That is,
2y >0, Az, <0, A%z, >0, ..., AF 12, > 0,A(r,AF12,) <0 (2.16)

which implies that there exists lim z, = ¢ > 0. If we take ¢ > 0, then summing (2.10) from n to oo, we get
n—oo

raAF +p0rTnAk_1zTn > Zszzgs > mcz Qs. (2.17)
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Noting that r,A*~ 'z, is decreasing and 7,, > n, then it follows from (2.17) that

oo
mc
raAF Ty > .

Multiplying this inequality by 1/7, and then summing from n to oo, we have

me

+po

ne

Repeating k — 3 times sum from n to oo, we obtain that

mc Jk:—l

—Az, >
o L+po "

Now, summing from n; to n — 1 and considering (2.6), we have

me
>
1+ po

n
Zn, g JFl 5 0 asn — oo

S=nq

and this is a contradiction. Thus, lim z, = ¢ = 0. Hence, it follows from 0 < y, < z, that lim y, =0. O
n—oo n—oo

Example 2.3 Consider the difference equation for k=3

A (TnAQ(yn + pnyTn)) + an(yan) =0 (218)
where r, = 1, p, = %, qgn = 32" 7 =n+2 o, =n-—3, and f(u) = u*. Since R, =
E;:io L= ZZ;;O 1 =00 as n— o0, Qp =inf{qy,q, } =inf{3222n=15 3292n—11} — 3292n—11 " >, and

J? = S % Yo Qs =2 >, 32225715 = o0, We easily see that all conditions of the Theorem 2.2 are

satisfied. Therefore, all solutions of equation (2.18) are nonoscillatory. One of the such solutions is y, = (%)"

that tends to zero as n — 0o.

Example 2.4 Consider the difference equation for k = 2

1 3t
A% (y, + 5?}71-4—2) + 2@‘1 yp 3 =0 (2.19)
where r, = 1, p, = %7 qgn = 3271 1 =n+2 o0, =n-—3, and f(u) = u*. Since R, =
E;:io L= ZZ;;O 1 =00 as n— o0, Qp =inf{q,q, } =inf{3422n—14 3422n=10y — 349In—=14 " >,  and

JE=30 LS Qs =300 S0 302271 = oo, it is easily seen that all conditions of the Theorem 2.2

are satisfied. Therefore, for k = 2, all solutions of equation (2.19) are oscillatory. One of such solutions is
_ 1\n

Yn = (_5) .

Corollary 2.5 Let 7, > n and (2.6) hold. Assume that

1+ po

lim inf i Q. >

n—oo

(2.20)

s=oy,
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fori=2,4,...k—1if k is odd and for i = 1,3,....k — 1 if k is even. Then either Eq. (1.1) is oscillatory for
even k or every nonoscillatory solution y, of Eq. (1.1) satisfies lim y, =0 for odd k.
n—oo

Proof According to [2, p. 423, Theorem 6.20.5], we see that (2.20) guarantees that (E;) are oscillatory and
our assertion follows from Theorem 2.2. O
Now, consider the case of when 7, is delay argument, that is 7, < n. We use the notation 7,7 ! for the

inverse function of 7,,. For our further references, let us denote

I = Z ZQS, Ty = iJ;”’l,Sgigk.

We put
QT =Qnli ! (2.21)
and if k> 4, we set

-1 _ i ]
Q) = (o —m) - ) ki <i<hos, (2.22)
2! Tn

Theorem 2.6 Let 0, < 1, <n. Assume that

Tk = 0o (2.23)

and the first order difference equations
Ay, + My =0 B
Ynt T On' s (E7)

are oscillatory for i =2,4,....k — 1 if k is odd and for i =1,3,....k — 1 if k is even. Then either Eq. (1.1) is

oscillatory for k even or every nonoscillatory solution y, of Eq. (1.1) satisfies lim y, =0 for k odd.
n—oo

Proof Assume that y, is a positive solution of Eq. (1.1). Then using the same arguments as in the proof of
Theorem 2.2, we verify that the corresponding function z, is of degree [, where | € {0,2,...,k — 1} if k is odd
and [ € {1,3,....,k — 1} if k is even. If we assume that [ = k— 1, then w,, = r,A¥=12, > 0 satisfies (2.12). Let
us denote v, = wy, + pow.,, . Since w,, is decreasing and 7,, < n, it can be easily seen that v, < w,, (1 + po),

and then
1

Wy, > V_—1
“n—1+p0 Ton

which together with (2.12) yields that v,, is a positive solution of

v_-1 <0.

Tg'n

Av, +

Therefore, the equation (E;_l) has also a positive solution which contradicts our assumption. Therefore, we

get that [ # k — 1. Now, assume that [ > 1. Then z, satisfies (2.13) and (2.14). Considering r,A*1z, is
decreasing and 7,, < n, it follows from (2.14) that

Ak 1Zrn (1+4+po) > ZQSZU > Zg, ZQS
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If we multiply by 1/r,, and then summing from n to oo, we get

—Ak”zm Z T 2o, uz: ZQS =1 +p zanJ;:Q.

Tr
v s=u

For k > 4, repeating k — 3 — [ times sum from n to oo, we provide

1
—AT > 2, JIFTITL (2.24)

—1 On“n

DPo

Combining (2.22) together with (2.13), we get v, = Alz, > 0 which satisfies

1 (on—mn)
(On =) juem1et, < (2.25)

Au,
R T =

1

Since 75, = 0., implies 71 = 7" =n, then v, is a positive solution of

by (2.23). This means that (E}) has also a positive solution, but it is impossible. So that for k is even, we
have eliminated all possible cases for z, and we conclude that Eq. (1.1) is oscillatory. If &k is odd, then we have

only one case | = 0. Hence, (2.16) holds and so 1Lm zn =¢>0.If ¢ >0, then a sum of (2.10) from n to co

leads to (2.16). Since r,AF~1z, is decreasing and 7, < n, then

oo
c
r. ARl >
Tn Tn 1+p0;1@s

by (2.17). Thus, we get

Zr J*k1—>ooasn—>oo
np — 1+p0 Sznl
which contradicts (2.21); thus, hm zn = 0. Finally, since 0 <wv, < z,, we conclude that lim v, =0. O
n—oo
Example 2.7 Consider the difference equation for k = 2
A (THA(yn ernyn,,)) + an(yon) =0 (2'26)

where T, = (%)”, Dn = %, Gn = 23%, Th=n—2, 0p=n—3, and f(u) =u>. Then it can be easily seen that

all conditions of the Theorem 2.6 are satisfied. Therefore, all solutions of equation (2.26) are oscillatory for

k=2. One of the such solutions is y,, = (—%)".

Example 2.8 Consider the difference equation for k=3

A (rn A% (yn + puyr,)) + @ f (Yo,) =0 (2.27)

where r, = (%)”, Dp = %, qn = 2%, Tw=n—2, o, =n—3, and f(u) = u>, then it is easily seen that all

conditions of the Theorem 2.6 are satisfied. Therefore, all solutions of equation (2.27) are nonoscillatory. One

of such solutions is y, = (3)" that tends to zero as n — oo.
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Remark 2.9 The oscillation of solutions for (2.18), (2.19), (2.26), and (2.27) cannot be determined by using
the techniques considered in the literature. Indeed, it can be easily figured out that Eq. (1.1) reduces to equations
in [5,6,9] and similar results contained there when r(n) = 1. However, these similar results cannot be found
under the conditions r(n) = 1 and 1, > n. Moreover, for r(n) # 1, our results are completely different from
those in [10,11,15,17,18] by the condition 7, > n.

3. Conclusion
In this paper we have introduced new oscillation theorems for the investigation of the oscillation of Eq. (1.1).
For this, we have considered both cases of 7,, > n and 7, < n in a certain higher order neutral type nonlinear

difference equation of the form

A (ra A Yy + poyr,)) + @nf(Ys,) = 0.

We have also provided some examples to illustrate our main results.

References

[1] Agarwal RP, Wong PJY. Advanced Topics in Difference Equations. Dordrecht, Netherlands: Kluwer Academic
Publishers, 1997.

[2] Agarwal RP. Difference Equations and Inequalities: Theory, Methods and Applications. New York, NY, USA:
Marcel Dekker Inc., 1992.

[3] Agarwal RP, Grace SR, O’Regan D. Oscillation Theory for Difference and Functional Differential Equations.
Dordrecht, Netherlands: Kluwer Academic Publishers, 2000.

[4] Agarwal RP, Grace SR, O’Regan D. Oscillation Theory for Second Order Linear, Half-linear, Superlinear and
Sublinear Dynamic Equations. Dordrecht, Netherlands: Kluwer Academic Publishers, 2002.

[6] Agarwal RP, Grace SR. Oscillation of higher-order nonlinear difference equations of neutral type. Applied Mathe-
matics Letters 1999; 12 (8): 77-83. doi: 10.1016/S0893-9659(99)00126-3

[6] Agarwal RP, Thandapani E, Wong PJY. Oscillations of higher-order neutral difference equations. Applied Mathe-
matics Letters 1997; 10 (1): 71-78. doi: 10.1016,/S0893-9659(96)00114-0

[7] Baculikova B, Dzurina J. Oscillation theorems for higher order neutral differential equations. Applied Mathematics
and Computation 2012; 219: 3769-3778. doi: 10.1016/j.amc.2012.10.006

[8] Bolat Y, Akin O, Yildirim H. Oscillation criteria for a certain even order neutral difference equation with an
oscillating coefficient. Applied Mathematics Letters 2009; 22 (4): 590-594. doi: 10.1016/j.aml1.2008.06.036

[9] Bolat Y, Akin O. Oscillatory behaviour of a higher-order nonlinear neutral type functional difference equation with
oscillating coefficients. Applied Mathematics Letters 2004; 17 (9): 1073-1078. doi: 10.1016/j.aml1.2004.07.011

[10] Bolat Y. Oscillation of higher order neutral type nonlinear difference equations with forcing terms. Chaos, Solitons
and Fractals 2009; 42: 2973-2980. doi: 10.1016/j.chaos.2009.04.006

[11] Bolat Y, Alzabut JO. On the oscillation of higher—order half-linear delay difference equations. Applied Mathematics
& Information Sciences 2012; 6 (3): 423-427.

[12] Elaydi S. An Introduction to Difference Equations. New York, NY, USA: Springer, 2005.

[13] Gyori I, Ladas G. Oscillation Theory of Delay Differential Equations with Applications. Oxford, England: Clarendon
Press, 1991.

[14] Kir I, Bolat Y. Oscillation Criteria for Higher-Order Sublinear Neutral Delay Difference Equations with Oscillating
Coeflicients. International Journal of Difference Equations 2006; 1 (2): 219-223.

737



738

KOPRUBASI et al./Turk J Math

Li WT. Oscillation of higher-order neutral nonlinear difference equations. Applied Mathematics Letters 1998; 11
(4): 1-8. doi: 10.1016,/S0893-9659(98)00047-0

Lin X. Oscillation for higher-order neutral superlinear delay difference equations with unstable type. Computers &
Mathematics with Applications 2005; 50 (5-6): 683-691. doi: 10.1016/j.camwa.2005.05.003

Parhi N, Tripathy AK. Oscillation of a class of nonlinear neutral difference equations of higher order. Journal of
Mathematical Analysis and Applications 2003; 284 (2): 756-774. doi: 10.1016/S0022-247X(03)00298-1

Zhou X, Zhang W. Oscillatory and asymptotic properties of higher order nonlinear neutral difference equations.
Applied Mathematics and Computation 2008; 203 (2): 679-689. doi: 10.1016/j.amc.2008.05.072



	Introduction
	Main results
	Conclusion

