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Abstract: In this paper, oscillation criteria are obtained for higher-order neutral-type nonlinear delay difference equa-
tions of the form

∆(rn(∆
k−1(yn + pnyτn)) + qnf(yσn) = 0, n ≥ n0, (0.1)

where rn, pn, qn ∈ [n0,∞), rn > 0 , qn > 0 ; 0 ≤ pn ≤ p0 < ∞ ; lim
n→∞

τn = ∞ , lim
n→∞

σn = ∞ ; σn ≤ n , σn is

nondecreasing; ∆τn ≥ τ0 > 0 ; τσ = στ ; f(u)
u

≥ m > 0 for u ̸= 0 . Moreover, we provide some examples to illustrate our
main results.
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1. Introduction
In recent years, the methods used to construct the solutions and wide applications of the theory of difference
equations have been intensively studied ([l-4,12] and the references therein). Especially, neutral difference
equations find numerous applications in natural sciences and technology. For instance, they are frequently used
for the study of distributed networks containing lossless transmission lines. Recently, much researches have
been carried out on the oscillatory and asymptotic behaviour of solutions of higher-order neutral type delay and
advanced difference equations ([5,6,8–12,14–18]). In these studies, the authors considered the case of n− τ ≤ n

or τn ≤ n for higher order neutral type linear delay difference equations of the form

∆m(yn + pnyτn) + qnyσn
= 0, m ≥ 2,

and they obtained many results on this assumption. Only in [7], the authors considered the differential equation

(r(t)(x(t) + p(t)x(τ(t)))(n−1))
′
+ q(t)x(σ(t)) = 0

which is the continuity analogue of linear form of the equation (0.1) where τ(t) ≥ t and σ(t) < t .
In this paper, we investigate the asymptotic and oscillation behavior of solutions of a certain higher-order

neutral-type nonlinear difference equation

∆
(
rn∆

k−1(yn + pnyτn)
)
+ qnf(yσn

) = 0 (1.1)

under the cases τn ≥ n and τn ≤ n where n ∈ N , k ∈ N2 = {2, 3, ...} and the following conditions hold:
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(H1) rn > 0 , qn > 0 ; 0 ≤ pn ≤ p0 < ∞ on Nn0 = {n0, n0 + 1, ...}.

(H2) τn and σn are defined on N and lim
n→∞

τn = lim
n→∞

σn = ∞ ; σn ≤ n , σn is nondecreasing.

(H3) τσn = στn .

(H4)
f(u)
u ≥ m > 0 for u ̸= 0 .

For our further references, we assume that

Rn =

n−1∑
s=n0

1

rs
→ ∞ as n → ∞,

zn = yn + pnyτn , a = min{|σn| , |τn| : n ∈ N} and I0 = [a, n0] . A function yn is called the solution of Eq. (1.1)
with yn = φn when n ∈ I0 , or it satisfies Eq. (1.1) for n ≥ n0 , or zn and rn∆

k−1zn are defined on Nn0
. We

consider only those solutions yn of Eq. (1.1) which satisfy sup{|yn| : n ≥ n0 ∈ N} > 0 for all n ≥ n0 . Then,
the solution yn of Eq. (1.1) is said to be nonoscillatory if it is either eventually positive or eventually negative,
and otherwise it is oscillatory. An equation is said to be oscillatory if all of its solutions are oscillatory.

2. Main results
Let yn be a positive solution of Eq.(1.1). Then, we say the sequence zn = yn + pnyτn is of degree l if

∆izn > 0, for 0 ≤ i ≤ l, (2.1)

(−1)i−1∆izn > 0, for l < i ≤ k − 1, (2.2)

∆(rn∆
k−1zn) < 0 (2.3)

eventually.
For our incoming references, we will denote by Nl the set of sequences zn of degree l .

Lemma 2.1 If yn is a positive solution of Eq.(1.1), then the set N of all corresponding sequences zn =

yn + pnyτn has the following structure:

N = N0 ∪N2 ∪ ... ∪Nk−1 if k is odd

and
N = N1 ∪N3 ∪ ... ∪Nk−1 if k is even.

Proof Since yn is a positive solution of Eq. (1.1),

∆(rn∆
k−1zn) = −qnf(yτn) < 0.

Thus, rn∆
k−1zn is decreasing; moreover, all differences ∆izn , 0 ≤ i ≤ k − 1, are the fixed signs eventually.

Hence, our assertion is a consequence of the well-known Knesser’s lemma and its proof can be seen in [2].
Therefore, we omit it in here. 2
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For our following references, we denote

Qn = inf{qn, qτn}, n ≥ n1

where n1 is large enough. Then, we define

I1n = Rn −Rn1
; Iin =

n∑
s=n1

Ii−1
s , 2 ≤ i ≤ k − 1

J2
n =

∞∑
u=n

1

ru

∞∑
s=u

Qs; J i
n =

∞∑
s=n

J i−1
s , 3 ≤ i ≤ k.

where we write Ii(n) and Ji(n) are indicated by Iin and J i
n , respectively. Hence, we can define the functions

Qi
n = Qi(n) that will be used as the coefficients of the supply difference equations. In here, we find

Qk−1
n = QnI

k−1
σn

(2.4)

and for k ≥ 4 , we get

Qi
n =

(σn − n1)
i

i!
Jk−1−i
n , 1 ≤ i ≤ k − 3. (2.5)

Theorem 2.2 Let τn ≥ n . Assume that
Jk
n0

= ∞ (2.6)

and the first order difference equations

∆xn +
1

1 + p0
Qi

nxσn
= 0 (Ei)

are oscillatory for i = 2, 4, ..., k − 1 if k is odd, and for i = 1, 3, ..., k − 1 if k is even. Then, either Eq. (1.1)
is oscillatory for even k or every nonoscillatory solution yn of Eq.(1.1) satisfies lim

n→∞
yn = 0 for odd k .

Proof Without losing generality, assume that yn is a positive solution of Eq. (1.1). Then the corresponding
sequence zn satisfies

zσn
= yσn

+ pσn
yτσn

≤ yσn
+ p0yστn

(2.7)

in view of hypotheses (H1) and (H3) .
On the other hand, Eq. (1.1) can be written as

∆(rn∆
k−1zn) + qnf(yσn

) = 0 (2.8)

and also we have

0 = p0∆(rτn∆
k−1zτn) + p0qτnf(yστn

) ≥ p0∆(rτn∆
k−1zτn) + p0qτnmyστn

(2.9)

from using (H3) and (H4) . Combining (2.8) and (2.9) , and considering (2.7), we are led to

0 ≥ ∆(rn∆
k−1zn) + p0∆(rτn∆

k−1zτn) + qnf(yσn
) + p0mqτnyστn

≥ ∆(rn∆
k−1zn) + p0∆(rτn∆

k−1zτn) + qnmyστn
+ p0mqτnyστn

≥ ∆(rn∆
k−1zn) + p0∆(rτn∆

k−1zτn) +mQnzσn

(2.10)
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In addition, it follows from Lemma 2.1 that zn is of degree l , where l ∈ {0, 2, ..., k − 1} if k is odd, and
l ∈ {1, 3, ..., k − 1} if k is even. Firstly, assume that l = k − 1 i.e.

zn > 0, ∆zn > 0, ..., rn∆
k−1zn > 0, ∆(rn∆

k−1zn) < 0.

Then, since wn = rn∆
k−1zn > 0 is decreasing, we are led to

∆k−2zn ≥ ∆k−2zn −∆k−2zn1

=

n−1∑
s=n1

1

rs

[
rs∆

k−1zs
]

≥ wn

n−1∑
s=n1

1

rs

≥ wn [Rn −Rn1
] .

Repeating k − 2 times sum from n1 to n− 1 , we obtain zn ≥ wnI
k−1
n . That is,

zσn
≥ wσn

Ik−1
σn

. (2.11)

Combining (2.11) together with (2.10) , we see that wn is a positive solution of the inequalities

∆(wn + p0wτn) +mQk−1
n wσn ≤ 0. (2.12)

Let us denote xn = wn + p0wτn . Since wn is decreasing and τn ≥ n , one can see that xn ≤ wn + p0wn =

wn(1 + p0), that is,

wσn ≥ 1

1 + p0
xσn ,

which together with (2.12) gives that xn is a positive solution of the inequalities

∆xn +
m

1 + p0
Qk−1

n xσn ≤ 0.

Finally, by a well-known result (see [13, p. 186, Corollary 7.6.1]), we conclude that the corresponding equation
(Ek−1) has also an eventually positive solution. This contradicts to oscillation of (Ek−1) . Therefore, l ̸= k−1 .

Now, assume that l ≥ 1 . That is,

zn > 0, ∆zn > 0, ..., ∆lzn > 0, ∆l+1zn < 0, ∆l+2zn > 0, ..., ∆(rn∆
k−1zn) < 0.

Since ∆lzn is decreasing, we can verify that

∆l−1zn ≥ ∆l−1zn −∆l−1zn1 =

n−1∑
s=n1

∆lzs ≥ (n− n1)∆
lzn.

Repeating this procedure l − 1 times, one leads to zn ≥ (n−n1)
l

l! ∆lzn , which implies that

zσn
≥ ∆lzσn

(σn − n1)
l

l!
. (2.13)
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Furthermore, summing (2.10) from n to ∞ , we obtain that

∆

∞∑
s=n

rs∆
k−1zs + p0∆

∞∑
s=n

(rτs∆
k−1zτs) ≤ −m

∞∑
s=n

Qszσs

and

−
∞∑

s=n+1

rs∆
k−1zs +

∞∑
s=n

rs∆
k−1zs − p0

∞∑
s=n+1

rτs∆
k−1zτs + p0

∞∑
s=n

rτs∆
k−1zτs ≥ m

∞∑
s=n

Qszσs
.

Therefore, we obtain that

rn∆
k−1zn + p0rτn∆

k−1zτn ≥ m

∞∑
s=n

Qszσs . (2.14)

Since rn∆
k−1zn is decreasing, zσn

is increasing for l ≥ 1 and τn ≥ n , we have

rn∆
k−1zn(1 + p0) ≥ m

∞∑
s=n

Qszσs
≥ mzσn

∞∑
s=n

Qs.

If we multiply this inequality by 1/rn and then getting sum from n to ∞ , we are led to

∆

∞∑
u=n

∆k−2zu ≥ m

1 + p0
zσn

∞∑
u=n

1

ru

∞∑
s=u

Qs

and we get

−∆k−2zn ≥ m

1 + p0
zσnJ

2
n.

If k ≥ 4 , then repeating k − 3− l times sum from n to ∞ , we obtain that

−∆l+1zn ≥ m

1 + p0
zσnJ

k−1−l
n . (2.15)

Combining (2.15) together with (2.13) , we get that xn = ∆lzn > 0 is a positive solution of

∆xn +
m

1 + p0
Ql

nxσn ≤ 0.

Consequently, by a well-known result (see [13, p. 186, Corollary 7.6.1]), we see that the corresponding equation
(El) has also a positive solution. This contradicts our assumption. So that for k is even, we have eliminated
all possible cases for zn and we conclude that Eq.(1.1) is oscillatory. If k is odd, then there is the only one case
remaining l = 0 . That is,

zn > 0, ∆zn < 0, ∆2zn > 0, ..., rn∆
k−1zn > 0,∆(rn∆

k−1zn) < 0 (2.16)

which implies that there exists lim
n→∞

zn = c ≥ 0 . If we take c > 0 , then summing (2.10) from n to ∞ , we get

rn∆
k−1zn + p0rτn∆

k−1zτn ≥
∞∑
s=n

mQszσs
≥ mc

∞∑
s=n

Qs. (2.17)
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Noting that rn∆
k−1zn is decreasing and τn ≥ n , then it follows from (2.17) that

rn∆
k−1zn ≥ mc

1 + p0

∞∑
s=n

Qs.

Multiplying this inequality by 1/rn and then summing from n to ∞ , we have

−∆k−2zn ≥ mc

1 + p0
J2
n.

Repeating k − 3 times sum from n to ∞ , we obtain that

−∆zn ≥ mc

1 + p0
Jk−1
n .

Now, summing from n1 to n− 1 and considering (2.6) , we have

zn1 ≥ mc

1 + p0

n∑
s=n1

Jk−1
s → ∞ as n → ∞

and this is a contradiction. Thus, lim
n→∞

zn = c = 0 . Hence, it follows from 0 ≤ yn ≤ zn that lim
n→∞

yn = 0 . 2

Example 2.3 Consider the difference equation for k = 3

∆
(
rn∆

2(yn + pnyτn)
)
+ qnf(yσn) = 0 (2.18)

where rn = 1, pn = 1
2 , qn = 3222n−15 , τn = n + 2, σn = n − 3 , and f(u) = u3 . Since Rn =∑n−1

s=n0

1
rs

=
∑n−1

s=n0
1 → ∞ as n → ∞ , Qn = inf{qn, qτn} = inf{3222n−15, 3222n−11} = 3222n−11 , n ≥ n1 , and

J2
n =

∑∞
u=n

1
ru

∑∞
s=u Qs =

∑∞
u=n

∑∞
s=u 3

222s−15 = ∞ . We easily see that all conditions of the Theorem 2.2 are

satisfied. Therefore, all solutions of equation (2.18) are nonoscillatory. One of the such solutions is yn = ( 12 )
n

that tends to zero as n → ∞ .

Example 2.4 Consider the difference equation for k = 2

∆2(yn +
1

2
yn+2) +

34

214
4ny3n−3 = 0 (2.19)

where rn = 1, pn = 1
2 , qn = 3422n−14 , τn = n + 2, σn = n − 3 , and f(u) = u3 . Since Rn =∑n−1

s=n0

1
rs

=
∑n−1

s=n0
1 → ∞ as n → ∞ , Qn = inf{qn, qτn} = inf{3422n−14, 3422n−10} = 3422n−14 , n ≥ n1 , and

J2
n =

∑∞
u=n

1
ru

∑∞
s=u Qs =

∑∞
u=n

∑∞
s=u 3

422s−14 = ∞ , it is easily seen that all conditions of the Theorem 2.2
are satisfied. Therefore, for k = 2 , all solutions of equation (2.19) are oscillatory. One of such solutions is
yn = (− 1

2 )
n.

Corollary 2.5 Let τn ≥ n and (2.6) hold. Assume that

lim
n→∞

inf

n∑
s=σn

Qi
s >

1 + p0
e

(2.20)

734



KÖPRÜBAŞI et al./Turk J Math

for i = 2, 4, ..., k − 1 if k is odd and for i = 1, 3, ..., k − 1 if k is even. Then either Eq. (1.1) is oscillatory for
even k or every nonoscillatory solution yn of Eq. (1.1) satisfies lim

n→∞
yn = 0 for odd k.

Proof According to [2, p. 423, Theorem 6.20.5], we see that (2.20) guarantees that (Ei) are oscillatory and
our assertion follows from Theorem 2.2. 2

Now, consider the case of when τn is delay argument, that is τn ≤ n . We use the notation τ−1
n for the

inverse function of τn . For our further references, let us denote

J∗2
n =

∞∑
u=n

1

rτu

∞∑
s=u

Qs; J∗i
n =

∞∑
s=n

J∗i−1
s , 3 ≤ i ≤ k.

We put
Q∗k−1

n = QnI
k−1
σn

(2.21)

and if k ≥ 4 , we set

Q∗i
n =

(τ−1
σn

− n1)
i

i!
J∗k−1−i

τ−1
n

, 1 ≤ i ≤ k − 3. (2.22)

Theorem 2.6 Let σn ≤ τn ≤ n . Assume that

J∗k
n = ∞ (2.23)

and the first order difference equations

∆yn +
1

1 + p0
Q∗i

n yτ−1
σn

= 0 (E∗
i )

are oscillatory for i = 2, 4, ..., k − 1 if k is odd and for i = 1, 3, ..., k − 1 if k is even. Then either Eq. (1.1) is
oscillatory for k even or every nonoscillatory solution yn of Eq. (1.1) satisfies lim

n→∞
yn = 0 for k odd.

Proof Assume that yn is a positive solution of Eq. (1.1). Then using the same arguments as in the proof of
Theorem 2.2, we verify that the corresponding function zn is of degree l , where l ∈ {0, 2, ..., k − 1} if k is odd
and l ∈ {1, 3, ..., k−1} if k is even. If we assume that l = k−1 , then wn = rn∆

k−1zn > 0 satisfies (2.12) . Let
us denote vn = wn + p0wτn . Since wn is decreasing and τn ≤ n , it can be easily seen that vn ≤ wτn(1 + p0) ,
and then

wσn
≥ 1

1 + p0
vτ−1

σn

which together with (2.12) yields that vn is a positive solution of

∆vn +
1

1 + p0
Qk−1

n vτ−1
σn

≤ 0.

Therefore, the equation
(
E∗

n−1

)
has also a positive solution which contradicts our assumption. Therefore, we

get that l ̸= k − 1 . Now, assume that l ≥ 1 . Then zn satisfies (2.13) and (2.14) . Considering rn∆
k−1zn is

decreasing and τn ≤ n , it follows from (2.14) that

rτn∆
k−1zτn(1 + p0) ≥

∞∑
s=n

Qszσs
≥ zσn

∞∑
s=n

Qs.
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If we multiply by 1/rτn and then summing from n to ∞ , we get

−∆k−2zτn ≥ 1

1 + p0
zσn

∞∑
u=n

1

rτu

∞∑
s=u

Qs =
1

1 + p0
zσn

J∗2
n .

For k ≥ 4 , repeating k − 3− l times sum from n to ∞ , we provide

−∆l+1zτn ≥ 1

1 + p0
zσn

J∗k−1−l
n . (2.24)

Combining (2.22) together with (2.13) , we get vn = ∆lzn > 0 which satisfies

∆vτn +
1

1 + p0

(σn − n1)
l

l!
J∗k−1−l
n vσn

≤ 0. (2.25)

Since τσn = στn implies ττ−1
n

= τ−1
τn = n , then vn is a positive solution of

∆vn +
1

1 + p0
Q∗l

n vτ−1
σn

≤ 0

by (2.23) . This means that (E∗
l ) has also a positive solution, but it is impossible. So that for k is even, we

have eliminated all possible cases for zn and we conclude that Eq. (1.1) is oscillatory. If k is odd, then we have
only one case l = 0 . Hence, (2.16) holds and so lim

n→∞
zn = c ≥ 0 . If c > 0 , then a sum of (2.10) from n to ∞

leads to (2.16) . Since rn∆
k−1zn is decreasing and τn ≤ n , then

rτn∆
k−1zτn ≥ c

1 + p0

∞∑
s=n

Qs

by (2.17) . Thus, we get

zτn1
≥ c

1 + p0

n∑
s=n1

J∗k−1
s → ∞ as n → ∞

which contradicts (2.21) ; thus, lim
n→∞

zn = 0 . Finally, since 0 ≤ vn ≤ zn , we conclude that lim
n→∞

vn = 0 . 2

Example 2.7 Consider the difference equation for k = 2

∆(rn∆(yn + pnyτn)) + qnf(yσn) = 0 (2.26)

where rn = ( 14 )
n, pn = 1

2 , qn = 34

213 , τn = n− 2, σn = n− 3 , and f(u) = u3 . Then it can be easily seen that
all conditions of the Theorem 2.6 are satisfied. Therefore, all solutions of equation (2.26) are oscillatory for
k = 2 . One of the such solutions is yn = (− 1

2 )
n.

Example 2.8 Consider the difference equation for k = 3

∆
(
rn∆

2(yn + pnyτn)
)
+ qnf(yσn

) = 0 (2.27)

where rn = ( 14 )
n, pn = 1

2 , qn = 21
214 , τn = n − 2, σn = n − 3 , and f(u) = u3 , then it is easily seen that all

conditions of the Theorem 2.6 are satisfied. Therefore, all solutions of equation (2.27) are nonoscillatory. One
of such solutions is yn = ( 12 )

n that tends to zero as n → ∞ .
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Remark 2.9 The oscillation of solutions for (2.18), (2.19), (2.26), and (2.27) cannot be determined by using
the techniques considered in the literature. Indeed, it can be easily figured out that Eq. (1.1) reduces to equations
in [5,6,9] and similar results contained there when r(n) = 1 . However, these similar results cannot be found
under the conditions r(n) = 1 and τn ≥ n . Moreover, for r(n) ̸= 1 , our results are completely different from
those in [10,11,15,17,18] by the condition τn ≥ n .

3. Conclusion
In this paper we have introduced new oscillation theorems for the investigation of the oscillation of Eq. (1.1).
For this, we have considered both cases of τn ≥ n and τn ≤ n in a certain higher order neutral type nonlinear
difference equation of the form

∆
(
rn∆

k−1(yn + pnyτn)
)
+ qnf(yσn

) = 0.

We have also provided some examples to illustrate our main results.
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