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Abstract: In this paper, we develop homology groups for digital images based on cubical singular homology theory for
topological spaces. Using this homology, we obtain two main results that make this homology different from already-
existing homologies of digital images. We prove digital analog of Hurewicz theorem for digital cubical singular homology.
We also show that the homology functors developed in this paper satisfy properties that resemble the Eilenberg–Steenrod
axioms of homology theory, in particular, the homotopy and the excision axioms. We finally define axioms of digital
homology theory.
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1. Introduction
Digital topology is a developing research area, where topological properties of digital images are explored. In
this area, digital images are mostly defined as subsets of Zd , equipped with certain adjacency relations. Though
digital images are discrete in nature, they model continuous objects of the real world. Researchers are trying
to understand whether or not digital images show similar properties as their continuous counterparts. The
main motivation behind such studies is to develop a theory for digital images that is similar to the theory of
topological spaces in classical topology. Due to discrete nature of digital images, it is difficult to get results that
are analogous to those in classical topology.

Several notions that are well-studied in general topology and algebraic topology have been developed
for digital images, which include continuity of functions [2, 19], Jordan curve theorem [18, 21], covering spaces
[14], fundamental group [3, 12], homotopy (see [4, 5]), homology groups [1, 6, 7, 11, 15], cohomology groups [7],
H-spaces [8], and fibrations [9].

The idea of digital fundamental group was first introduced by Kong [12]. Boxer [3] adopted a classical
approach to define and study digital fundamental group, which was closer to the methods of algebraic topology.
Digital simplicial homology groups were introduced by Arslan et al. [1] and extended by Boxer et al. [6].
Eilenberg–Steenrod axioms for digital simplicial homology groups of digital images were investigated by Ege
and Karaca in [7], where it was claimed that homotopy and excision axioms do not hold in digital simplicial
setting. They demonstrate using an example that Hurewicz theorem does not hold in case of digital simplicial
homology groups.
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Karaca and Ege [11] developed the digital cubical homology groups in a similar way to the cubical
homology groups of topological spaces in algebraic topology. Unlike the case of algebraic topology, digital
cubical homology groups are in general not isomorphic to digital simplicial homology groups studied in [6].
Furthermore, Mayer–Vietoris theorem fails for cubical homology on digital images, which is another contrast to
the case of algebraic topology. In [15], singular homology group of digital images were developed, where digital
analogs of Hurewicz theorem and Eilenberg–Steenrod axioms of homology theory were not proven.

In this paper, we introduce digital cubical singular homology groups for digital images, based on cubical
singular homology groups of topological spaces [16]. We found out that unlike digital simplicial homology group,
digital cubical homology group, and digital singular homology group, the digital cubical singular homology group
relates to the digital fundamental group [3], in the same way as in algebraic topology. Furthermore, the digital
cubical singular homology groups also satisfy digital analogs the Eilenberg–Steenrod axioms of homology theory,
which makes it different from other three homologies developed for digital images.

This paper is organized as follows. We review some of the basic concepts of digital topology in Section 2.
We develop homology groups of digital images based on cubical singular homology of topological spaces as given
in [16] in Section 3, and give some basic results including the functoriality, additivity, and homotopy invariance
of cubical singular homology groups. In Section 4, we show that the digital fundamental group (given by [3])
is related to our first homology group, and obtain a result that is analogous to Hurewicz theorem of algebraic
topology. In Section 5, we prove a result for cubical singular homology on digital images (Theorem 5.6) similar
to the excision theorem of algebraic topology except that our result holds only in dimensions less than 3. This
result is then generalized and we call this generalization ‘Excision-like property’ for cubical singular homology
on digital images (Theorem 5.10). Cubical singular homology groups satisfy properties that are much similar
to the Eilenberg–Steenrod axioms of homology theory.

We define digital homology theory in Section 6, the axioms of which can be regarded as digital version
of Eilenberg–Steenrod axioms in algebraic topology and show that digital cubical singular homology is a digital
homology theory. Throughout this paper, we consider finite binary digital images, though most of the results
also hold for infinite case.

2. Preliminaries
2.1. Basic concepts of digital topology

Let Zd be the Cartesian product of d copies of set of integers Z , for a positive integer d . A relation that is
symmetric and irreflexive is called an adjacency relation. A digital image is a subset of Zd , with an adjacency
relation.

In digital images, adjacency relations give a concept of proximity or closeness among its elements, which
allows some constructions in digital images that closely resemble those in topology and algebraic topology. The
adjacency relations on digital images used in this paper are defined below.

Definition 2.1 [4] Consider a positive integer l , where 1 ≤ l ≤ d . The points p, q ∈ Zd are said to be
cl -adjacent if they are different and there are at most l coordinates of p and q that differ by one unit, while
the rest of the coordinates are equal.

Usually the notation cl is replaced by number of points κ that are cl -adjacent to a point. For Z2 , there are 4

points that are c1 -adjacent to a point and there are 8 points that are c2 -adjacent to a point, thus c1 = 4 and
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c2 = 8 . Two points that are κ -adjacent to each other are said to be κ -neighbors of each other. For a, b ∈ Z ,
a < b , a digital interval denoted as [a, b]Z is a set of integers from a to b , including a and b . The digital image
X ⊆ Zd equipped with adjacency relation κ is represented by the ordered pair (X,κ) .

Definition 2.2 [12][3] Let (X,κ) and (Y, λ) be digital images.

(i) The function f : X → Y is (κ, λ)-continuous if for every pair of κ-adjacent points x0 and x1 in X ,
either the images f(x0) and f(x1) are equal or λ-adjacent.

(ii) Digital image (X,κ) is said to be (κ, λ)-homeomorphic to (Y, λ) , if there is a (κ, λ)-continuous bijection
f : X → Y , which has a (λ, κ)-continuous inverse f−1 : Y → X .

(iii) A κ-path in (X,κ) is a (2, κ)-continuous function f : [0,m]Z → X . We say f is κ-path of length m

from f(0) to f(m) . For a given κ-path f of length m , we define reverse κ-path f : [0,m]Z → X defined
by f(t) = f(m− t) . A κ-loop is a κ-path f : [0,m]Z → X , with f(0) = f(m) .

(iv) A subset A ⊂ X is κ-connected if and only if for all x, y ∈ A , x 6= y , there is a κ-path from x to y . A
κ-component of a digital image is the maximal κ-connected subset of the digital image.

Definition 2.3 Consider digital images (X,κ) and (Y, κ) with X,Y ⊂ Zd .

• We say that (X,κ) is κ-connected with (Y, κ) if there is x ∈ X and y ∈ Y such that x and y are
κ-adjacent in Zd .

• If (X,κ) is not κ-connected with (Y, κ) , we say that (X,κ) is κ-disconnected with (Y, κ) .

Proposition 2.4 [3] If f : X → Y is a (κ, λ)-continuous function, with A ⊂ X a κ-connected subset, then
f(A) is λ-connected in Y .

Definition 2.5 [3]

(i) Let f, g : X → Y be (κ, λ)-continuous functions. Suppose there is a positive integer m and a function
H : [0,m]Z ×X → Y such that:

• for all x ∈ X , H(0, x) = f(x) and H(m,x) = g(x) ,

• for all x ∈ X , the function Hx : [0,m]Z → Y defined by Hx(t) = H(t, x) for all t ∈ [0,m]Z is
(2, λ)-continuous,

• for all t ∈ [0,m]Z , the function Ht : X → Y defined by Ht(x) = H(t, x) for all x ∈ X is (κ, λ)-
continuous.

Then H is called (κ, λ)-homotopy from f to g and f and g are said to be (κ, λ)-homotopic, denoted as
f '(κ,λ) g . If g is a constant function, H is a null-homotopy and f is null-homotopic.

(ii) Two digital images (X,κ) and (Y, λ) are homotopically equivalent, if there is a (κ, λ)-continuous function
f : X → Y and (λ, κ)-continuous function g : Y → X such that g ◦ f '(κ,λ) 1X and f ◦ g '(λ,κ) 1Y ,
where 1X and 1Y are identity functions on X and Y , respectively.
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(iii) Let H : [0,m]Z × [0, n]Z → X be a homotopy between κ-paths f, g : [0, n]Z → X in (X,κ) . The homotopy
H is said to hold the end-points fixed if f(0) = H(t, 0) = g(0) and f(n) = H(t, n) = g(n) for all
t ∈ [0,m]Z .

2.2. Digital fundamental group

The concept of digital fundamental group of a digital image was first given by [12], but a more classical approach
to define and study digital fundamental group was adopted by Boxer [3]. We briefly explain digital fundamental
group as defined in the latter paper.

Definition 2.6 [3]

(i) A pointed digital image is a pair (X, p) , where X is a digital image and p ∈ X . A pointed digital image
(X, p) can be represented as ((X, p), κ) , if one wishes to emphasize the adjacency relation of the digital
image X .

(ii) Let f and g be κ-paths of lengths m1 and m2 , respectively, in the pointed digital image (X, p) , such that
g starts where f ends, i.e. f(m1) = g(0) . The ‘product’ f ∗ g of two paths is defined as follows:

(f ∗ g)(t) =

{
f(t), if t ∈ [0,m1]Z

g(t−m1), if t ∈ [m1,m1 +m2]Z.

The concept of trivial extension allows stretching the domain of a loop, without changing its homotopy class
and thus allows to compare homotopy properties of paths even when the cardinalities of their domain differ.

Definition 2.7 [3]

(i) Let f and f ′ be κ-paths in a pointed digital image (X, p) . We say that f ′ is a trivial extension of f , if
there exist sets of κ-paths {f1, f2, . . . , fk} and {f ′

1, f
′
2, . . . , f

′
n} in X such that

• 0 < k ≤ n

• f = f1 ∗ f2 ∗ · · · ∗ fk

• f ′ = f ′
1 ∗ f ′

2 ∗ · · · ∗ f ′
n

• there are indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that:

• f ′
ij
= fj , 1 ≤ j ≤ k and

• i /∈ {i1, i2, . . . , ik} implies f ′
i is a constant κ-path.

(ii) Two κ-loops f and g with the same basepoint p ∈ X belong to the same loop class, if there exist trivial
extensions of f and g , which have homotopy between them that holds the end-points fixed.

Definition 2.8 [3] Let Πκ
1 (X, p) be the set of loop classes in (X, p) with basepoint p . Let [f ]Π denote the loop

class of κ-loop f in (X,κ) . The product operation ∗ defined as:

[f ]
Π
∗ [g]

Π
= [f ∗ g]

Π
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is well defined on Πκ
1 (X, p) as well as associative [3]. The loop class [c]Π of the constant loop is identity in

Πκ
1 (X, p) with respect to taking product. For every loop class [f ]Π the loop class [f ]Π , where f is the reverse

path of f , is the inverse of [f ]Π with respect to taking product ∗ . Thus, Πκ
1 (X, p) is a group under ∗ and called

the digital fundamental group of the pointed digital image (X, p) .

3. Cubical singular homology on digital images

Consider digital interval I = [0, 1]Z . Let In be the Cartesian product of n copies of I for n > 0 . We shall
consider In as a digital image (In, 2n) . By definition, I0 is a digital image consisting of single point. For an
integer n ≥ 0 , a digitally singular n -cube or briefly a digital n -cube in (X,κ) is a (2n, κ) -continuous map
T : In → X .
For an integer n ≥ 0 , let dQn,κ(X) denote the free Abelian group generated by the set of all digitally singular
n -cubes in (X,κ) . We write dQn(X) for dQn,κ(X) , when the adjacency relation is clear from the context. An
element of dQn(X) is a finite formal linear combination of digital n -cubes. The basis of the group dQ0(X) can
be identified with X itself, and one can denote the elements of dQ0(X) as

∑
i mixi , where xi ∈ X . A digitally

singular n -cube T : In → X is degenerate if there is an integer i , 1 ≤ i ≤ n such that T (t1, t2, . . . , tn) does
not depend on ti . Let dDn,κ(X) , or simply dDn(X) , denote the subgroup of dQn(X) generated by the set
of all degenerate digitally singular n -cubes in (X,κ) . Let dCn,κ(X) , or simply dCn(X) , denote the quotient
group dQn(X)/dDn(X) . We say dCn(X) is the group of digitally cubical singular n -chains in (X,κ) and the
elements of dCn(X) are n -chains in (X,κ) . For any digital image X , dCn(X) can be shown as free Abelian
group generated by nondegenerate digital n -cubes in X .
We define faces of a digitally singular n -cube as follows: For a digital n -cube T : In → X and i = 1, 2, . . . , n ,
we define digital (n− 1) -cubes AiT,BiT : In−1 → X as

AiT (t1, t2, . . . , tn−1) = T (t1, t2, . . . , ti−1, 0, ti, . . . , tn−1),

and BiT (t1, t2, . . . , tn−1) = T (t1, t2, . . . , ti−1, 1, ti, . . . , tn−1).

AiT and BiT are called front i -face and back i -face of T , respectively.
We define the boundary operator ∂n on the basis element of dQn(X) as ∂n(T ) =

∑n
i=1(−1)i(AiT − BiT )

and extend it by linearity (see [20], for the definition of extension by linearity) to get the homomorphism
∂n : dQn(X) → dQn−1(X) , n ≥ 1 . One may write ∂ for ∂n if n is clear from the context. For n < 0 , let
dQn(X) = dCn(X) = 0 and for n ≤ 0 , let ∂n = 0 . It can be shown that ∂n−1∂n = 0 , for all integers n (see [16]
for details). A cubical singular complex of the digital image (X,κ) , denoted as (C•,κ(X), ∂) or (dC•(X), ∂) ,
is the following chain complex:

· · ·
∂n+1 // dCn(X)

∂n // dCn−1(X)
∂n−1 // · · ·

Let dZn(X) denote the kernel of ∂n and dBn(X) denote the image of ∂n+1 , for all integers n . The elements
of dZn(X) and dBn(X) are called n -cycles and n -boundaries of (X,κ) , respectively. We define nth cubical
singular homology group of the digital image (X,κ) , as dHn,κ(X) = Hn(dC•, ∂) = dZn(X)/dBn(X) , for all
non-negative integers n . If the adjacency relation κ is clear from context, we shall simply write dHn(X) for
dHn,κ(X) .
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κ-path and digital 1-cubes: A digital 1 -cube T : I → X in a digital image (X,κ) can be considered
a κ -path of length 1. A κ -path f of length m can be “subdivided” into smaller paths of length 1 or digital
1 -cubes. For a κ -path f of length m , we can associate an element

∑m
j=1 fj of dQ1(X) to f , where fj : I → X

as fj(t) = f(j+ t−1) . We say that the element
∑m

j=1 fj is subdivision of f . The following are some properties

of subdivision
∑m

j=1 fj of f :

1. fj are degenerate, whenever f(j − 1) = f(j)

2. If f is a nonconstant path then
∑m

j=1 fj is not degenerate, and so
∑m

j=1 fj is a nontrivial element in
dC1(X) , where some fj might be 0 in dC1(X) .

3. ∂
(∑m

j=1 fj

)
= f(m)− f(0) .

4. If f is a κ -loop then
∑m

j=1 fj is a 1 -cycle.

Proposition 3.1 If (X,κ) be a nonempty κ-connected digital image, then dH0(X) ≈ Z .

Proof Consider the map ε : dC0(X) → Z defined as
∑

i mixi 7→
∑

i mi . Now for
∑

i niTi ∈ dC1(X) ,
we have ε ◦ ∂(

∑
i niTi) = ε(

∑
i ni(B1T − A1T )) =

∑
i(ni − ni) = 0 . Thus, dB0(X) ⊂ ker(ε) . The

reverse relation also holds for the following reason. Consider
∑

i mixi ∈ ker(ε) . We have
∑

i mi = 0 .
Consider x ∈ X (X is non-empty) and κ -paths fi (X is κ -connected) from x to xi . These paths can
be subdivided to form elements

∑
j fij ∈ dC1(X) for each i . It can be verified that ∂(

∑
j fij) = xi − x .

Thus, ∂(
∑

i,j mifij) =
∑

i mixi − (
∑

i mi)x =
∑

i mixi , implying
∑

i mixi ∈ dB0(X) . From first isomorphism
theorem of groups dH0(X) = dZ0(X)/dB0(X) = dC0(X)/dB0(X) ≈ Z . 2

Proposition 3.2 Let {Xα|α ∈ Λ} be the set of κ-components of the digital image (X,κ) . Then dHn(X) ≈⊕
α dHn(Xα) .

Proof The groups dQn(X) , dDn(X) and dCn(X) break up to
⊕

α dQn(Xα) ,
⊕

α dDn(Xα) and
⊕

α dCn(Xα) ,
respectively, because the image of each digital n -cube T lies entirely in one κ -component of (X,κ) (see Sec-
tion 2). We also have dZn(X) =

⊕
α dZn(Xα) and dBn(X) =

⊕
α dBn(Xα) ; hence, dHn(X) =

⊕
α dHn(Xα) ,

because the boundary map ∂n : dCn(X) → dCn−1(X) maps dCn(Xα) to dCn−1(Xα) . 2

Proposition 3.3 For any digital image (X,κ) , dH0(X) is a free Abelian group with rank equal to the number
of κ-components of (X,κ) .

Proof Follows from Propositions 3.1 and 3.2. 2

Proposition 3.4 The cubical singular homology group dHn(−) is a functor from Dig to Ab .

Proof We define dHn(−) on morphisms of Dig as follows: Consider a (κ, λ) -continuous function f : X → Y

from digital image (X,κ) to digital image (Y, λ) . For a digital n -cube T : In → X in dQn(X) , we have
f ◦ T ∈ dQn(Y ) . We define functions f# : dQn(X) → dQn(Y ) as T 7→ f ◦ T and extending by linearity, for
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integers n ≥ 0 . Since f#(T ) is degenerate, if T ∈ dDn(X) , the map f# induces f# : dCn(X) → dCn(Y ) , for
integers n ≥ 0 . It can be shown that f# is a chain map that sends n -cycles to n -cycles and n -boundaries to
n -boundaries, and therefore induces a map f∗ = dHn(f) : dHn(X) → dHn(Y ) defined as [T ] 7→ [f#(T )] .

Furthermore, it can be easily shown that for an identity map id : X → X the induced map id∗ =

dHn(id) : dHn(X) → dHn(X) is an identity map. Also for functions f : X → Y and g : Y → Z , which are
(κ, λ) - and (λ, γ) -continuous, we have (g ◦ f)∗ = g∗ ◦ f∗ : dHn(X) → dHn(Z) , because (g ◦ f)# = g# ◦ f# :

dQn(X) → dQn(Z) . 2

The following can be easily proved.

Proposition 3.5 Let (X,κ) and (Y, λ) be (κ, λ)-homeomorphic digital images, then dHn(X) = dHn(Y ) , for
all n .

Proposition 3.6 If X = {x0} is a one-point digital image, then

dHn(X) =

{
Z, if n = 0

0, otherwise.

Theorem 3.7 Let f, g : X → Y be (κ, λ)-homotopic maps from digital image (X,κ) to the digital image
(Y, λ) . Then f and g induce the same maps on homology group dHn(X) , i.e. f∗ = g∗ .

Proof Let F : [0,m]Z × X → Y be the homotopy from f to g . The homotopy F can be subdivided into
functions Fj : I ×X → Y defined as Fj(t, x) = F (j + t − 1, x) for j ∈ [1,m]Z . Observe that F1(0, x) = f(x)

and Fm(1, x) = g(x) . In order to show that f∗ = g∗ , we follow the standard method of algebraic topology,
which is, to construct a map Φn : dQn(X) → dQn+1(Y ) that contains similar information as the Homotopy F ,
and satisfies:

g# − f# = ∂n+1Φn +Φn−1∂n (3.1)

Define Φn : dQn(X) → dQn+1(Y ) as T 7→
∑m

j=1 Fj(id × T ) and extending by linearity, where id :

[0, 1]Z → [0, 1]Z is identity function. We need to compute the boundary ∂Φ to verify eq. 3.1. One can observe
the following:

A1ΦnT = f#(T ) +

m∑
j=2

Fj(0, T ) and B1Φn(T ) =

m−1∑
j=1

Fj(1, T ) + g#(T ) (3.2)

AiΦn(T ) = Φn−1Ai−1T, and BiΦn(T ) = Φn−1Bi−1T, i ∈ [2, n+ 1]Z (3.3)

Fj(1, T ) = Fj+1(0, T ), j ∈ [1,m− 1]Z (3.4)
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Using these equations we can calculate the boundary of Φ :

∂Φn(T ) =

n+1∑
i=1

(−1)i(AiΦn(T )−BiΦn(T ))

=g#(T )− f#(T ) +

n+1∑
i=2

(−1)i(AiΦn(T )−BiΦn(T ))

using eqs. 3.2 and 3.4, for i = 1, and using eqs. 3.3

and substituting j = i− 1 for i > 1

=g#(T )− f#(T )− Φn−1∂T by definition of ∂(T )

It can be shown that Φ maps degenerate digital n -cubes in (X,κ) to degenerate digital (n+1) -cubes in (Y, λ) ,
inducing a homomorphism ϕn : dCn(X) → dCn+1(Y ) . If we choose T to be a nondegenerate n -cycle, i.e.
T ∈ dZn(X) , then we get g#(T )− f#(T ) ∈ dBn(Y ) . Therefore, in dHn(Y ) we have,

[g#(T )− f#(T )] = g∗([T ])− f∗([T ]) = 0 ⇒ g∗ = f∗

2

Corollary 3.8 If (X,κ) and (Y, λ) be homotopically equivalent digital images, then dHn(X) ≈ dHn(Y ) .

Proof Follows from Proposition 3.7, and functoriality of dHn . 2

Example 3.9 A digital image is said to be κ-contractible [3], if its identity map is (κ, κ)-homotopic to a
constant function cp for some p ∈ X . For a κ-contractible digital image (X,κ) , one can compute the homology

groups using Propositions 3.6 and 3.7 as dHn(X) =

{
Z, if n = 0

0, otherwise,
because a κ-contractible digital image is

homotopy equivalent to a point [3].

4. Digital Hurewicz theorem

Lemma 4.1 Let (X, p, κ) be a digital image with basepoint p and κ-adjacency relation and Πκ
1 (X, p) be the

digital fundamental group. Then there is a homomorphism ϕ : Πκ
1 (X, p) → dH1(X) given by [f ]

Π
7→
[∑m

j=1 fj

]
,

where
∑m

j=1 fj is the subdivision of κ-loop f .

Proof Well-defined: We need to show that ϕ is a well-defined. Consider κ -loops f and g of lengths m1 and
m2 , respectively, both based at point p ∈ X such that [f ]

Π
= [g]

Π
∈ Πκ

1 (X, p) . Now f and g are in the same
loop class implies that there are trivial extensions f ′ and g′ of f and g , respectively such that there exists a
homotopy H : [0,m]Z × [0,M ]Z → X from f ′ to g′ that holds the end points fixed. Subdivide H into digital
2 -cubes j, k : I2 → X defined as (s, t) 7→ H(j + s − 1, k + t − 1) , for j ∈ [1,m]Z and k ∈ [1,M ]Z (see Figure

1). We shall show that the boundary ∂
(∑

j,k Hj,k

)
is equal to the difference of

∑m1

j=1 fj and
∑m2

j=1 gj , which

implies that the classes of these subdivisions are equal in the homology group dH1(X) .
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Figure 1. Domain of H (proof of Lemma 4.1). (a) Subdivision of H into digital 2 -cubes Hjk (b) digital 1 -cubes
involved in ∂(Hjk).

Before computing ∂
(∑

j,k Hj,k

)
, note that the following equations hold:

M∑
k=1

A1H1,k =

M∑
j=1

f ′
j =

m1∑
j=1

fj and
M∑
k=1

B1Hm,k =

M∑
j=1

g′j =

m2∑
j=1

gj (4.1)

The only difference between f and its trivial extension f ′ is that f ′ pauses more frequently for rest than f

and whenever a path pauses for rest, its subdivision is trivial at that point in dC1(X) (being degenerate in
dQ1(X)). Further, it can be noted that:

A1Hj,k = B1Hj−1,k, j ∈ [2,m]Z, k ∈ [1,M ]Z

and A2Hj,k = B2Hj,k−1, j ∈ [1,m]Z, k ∈ [2,M ]Z (4.2)

A2Hj,1 = B2Hj,M = cp, j ∈ [1,m]Z, (4.3)

where cp is the constant path of length 1 at basepoint p ∈ X . Using eqs. 4.1 to 4.3, it can be shown that

∂
(∑

j,k Hj,k

)
=
∑m2

j=1 gj −
∑m1

j=1 fj ∈ dC1(X) . This proves that ϕ is well-defined.

Homomorphism: Consider κ -loops f and g of lengths m1 and m2 , respectively, both based at point
p ∈ X . Then

ϕ([f ]
Π
∗ [g]

Π
) = ϕ([f ∗ g]

Π
) =

m1+m2∑
j=1

(f ∗ g)j

 =

m1∑
j=1

(f ∗ g)j +
m1+m2∑
j=m1+1

(f ∗ g)j


=

m1∑
j=1

fj +

m2∑
j=1

gj

 =

m1∑
j=1

fj

+

m2∑
j=1

gj

 = ϕ([f ]
Π
) + ϕ([g]

Π
)

2

We say that the map ϕ defined in Lemma 4.1 is Digital Hurewicz map.
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Lemma 4.2 Let (X,κ) be a digital image.

1. Consider a digital 1-cube T ∈ dC1(X) and let T denote the ‘reverse’ of T , i.e. T ∈ dC1(X) ,
T (t) = T (1− t) . Then class of T + T is trivial in dH1(X) .

2. Consider digital 2-cube T ∈ dCn(X) and define κ-paths T0, T1, T2 and T3 to be A1T,A2T,B1T and
B2T , respectively. Then there is a trivial extension of T0 homotopic to T1 ∗ T2 ∗ T3 .

Proof dd

1. Let S : I2 → X be a basis element of dC2(X) defined as S(t, 0) = T (t) and S(t, 1) = T (0) , for t = 0, 1

(see Figure 2a). Note that the back 1 -face B1S = T (see Figure 2a) and thus the boundary ∂S = T + T

in dC1(X) making the class of T + T trivial in dH1(X) .

2. Consider the homotopy H defined as H : [0, 3]Z × I → X as
H(0, 0) = T1(0) , H(1, 0) = T2(0) , H(2, 0) = T3(1) , H(3, 0) = T3(0) ,
H(0, 1) = H(1, 1) = T0(0) , H(2, 1) = H(3, 1) = T0(1) (see Figures 2b and 2c).
Clearly, H(t, 0) = T1 ∗ T2 ∗ T3(t) and H(t, 1) is a trivial extension of T0 .

2

The following Lemma (quoted from [20] with some minor changes) is required in the proof of digital
Hurewicz theorem (Theorem 4.4).

Figure 2. (a) Digital 2 -cube S , and (b) faces of digital 2 -cube T , (c) Homotopy H (proof of Lemma 4.2). (a) Domain
of S with images labeled on each pixel (b) Schematic representation of T (c) Domain of H with images labeled on each
pixel.

Lemma 4.3 Substitution principle
Let F be a free Abelian group with basis B , let x0, x1, . . . , xN be a list of elements in B , possibly with repetitions
and assume that

∑k
i=0 mixi =

∑N
i=k+1 mixi , where mi ∈ Z and 0 ≤ k < N . If G is any Abelian group and

y0, y1, . . . , yN is a list of elements in G such that xi = xj ⇒ yi = yj , then
∑k

i=0 miyi =
∑N

i=k+1 miyi in G .

Proof Define a function η : B → G with η(xi) = yi for all i = 1, 2, . . . , N and η(x) = 0 , otherwise
(η is well-defined because of the given hypothesis). Extend the map η by linearity to η : F → G . Thus,

0 = η
(∑k

i=0 mixi −
∑N

i=k+1 mixi

)
=
∑k

i=0 miyi −
∑N

i=k+1 miyi . 2
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Theorem 4.4 Digital Hurewicz theorem
If (X,κ) is a κ-connected digital image with p ∈ X then the digital Hurewicz map (defined in Lemma 4.1) is
surjective with kerϕ as commutator subgroup of the digital fundamental group Πκ

1 (X, p) . Hence, Abelianized
digital fundamental group is isomorphic to dH1(X) .

Proof Surjectivity: Consider [z] ∈ dH1(X) , with z =
∑m

i=0 niTi , where Ti : I → X is a nondegenerate digital
1 -cube, for all i . Though ni ∈ Z , we can assume, without loss of generality, that ni = 1,∀i , for the following
reason: If ni = 0 , no contribution is made to z by niTi and if ni < 0 then we can replace niTi by −niTi

without changing the class [z] , using Lemma 4.2(1). Thus, we can assume ni > 0,∀i , but then each niTi can
be written as Ti + Ti + · · ·+ Ti (ni terms). Therefore, z =

∑m
i=0 Ti . Since z is a cycle, we have

∂z = ∂

(
m∑
i=0

Ti

)
= 0 ⇒

m∑
i=0

(B1Ti −A1Ti) = 0. (4.4)

For every i ∈ [0,m]Z , there exists j ∈ [0,m]Z and B1Ti = A1Tj , so that the sum in eq. 4.4 is 0, but i 6= j ,
because in case i = j , Ti would be degenerate. Let ρ be the permutation on elements of [0,m]Z , satisfying the
condition that A1Tρ(i+1) = B1Tρ(i) for all i ∈ [0,M ]Z , where arguments of ρ are read mod (M +1) . We can
take product of κ -paths Tρ(i) to get a κ -loop

∏m
i=0 Tρ(i) based at point Tρ(0)(0) ∈ X . Since the digital image

(X,κ) is κ -connected, we can take κ -path σ from p to Tρ(0)(0) . We get:

ϕ

([
σ ∗

m∏
i=0

Tρ(i) ∗ σ

]
Π

)
=

[
M∑
l=1

σl +

m∑
i=0

Tρ(i) +

M∑
l=1

σl

]

=

[
M∑
l=1

σl +

m∑
i=0

Tρ(i) −
M∑
l=1

σl

]
, using Lemma 4.2(1)

=

[
m∑
i=0

Ti

]
= [z].

Kernel of ϕ : Let Π′ denote the commutator subgroup of Πκ
1 (X, p) and Π denote the Abelianized digital

fundamental group, i.e. Π is the quotient group Πκ
1 (X, p) modulo the commutator subgroup Π′ . Since

dH1(X) is an Abelian group, Π′ ⊂ kerϕ . We claim that the reverse inequality also holds. Consider a κ -
loop f of length m such that [f ]

Π
∈ kerϕ . It suffices to show that JfK is identity in Π , where JfK ∈ Π . Since

ϕ([f ]Π) = 0 , the cycle
∑m

j=1 fj lies in the boundary group dB1(X) , i.e. there is
∑N

i=1 niTi ∈ dC2(X) such

that
∑m

j=1 fj = ∂(
∑N

i=1 niTi) , where ni ∈ Z and Ti : I
2 → X are digital 2 -cubes. We assume without loss of

generality that ni = 1,∀i . Let us denote A1Ti, A2Ti, B1Ti , and B2Ti as Ti0, Ti1, Ti2 , and Ti3 , respectively,
for i ∈ [1, N ]Z . We get

m∑
j=1

fj =

M∑
i=1

(−Ti0 + Ti2 + Ti1 − Ti3) (4.5)

This equation has basis elements of the free Abelian group dC1(X) on both sides. We shall apply substitution
principle (Lemma 4.3) to obtain an analogous equation in Π . We need for each term in eq. 4.5, an element
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in Π , satisfying the hypothesis of substitution principle. For each x ∈ X , choose a κ -path from p to x ,
denoted by βx , such that for the base point p , βp = cp is a constant κ -path at p . For each j ∈ [0,m]Z , define
κ -loops, L′

j = βf(j−1) ∗fj ∗βf(j) based at p corresponding to each fj (see Figure 3a). Similarly, define κ -loops

Liq = βTiq(0) ∗ Tiq ∗ βTiq(1) based at p , corresponding to each Tiq (see Figure 3b). We get the following in
Πκ

1 (X, p) :[
Li0 ∗ Li1 ∗ Li2 ∗ Li3

]
Π

= [βTi0(1) ∗ Ti0 ∗ βTi0(0) ∗ βTi1(0) ∗ Ti1 ∗ βTi1(1) ∗ βTi2(0) ∗ Ti2 ∗ βTi2(1) ∗ βTi3(1) ∗ Ti3 ∗ βTi3(0)]Π

=
[
βTi0(1) ∗ Ti0 ∗ Ti1 ∗ Ti2 ∗ Ti3 ∗ βTi3(0)

]
Π

=
[
βTi0(1) ∗ Ti0 ∗ Ti0 ∗ βTi3(0)

]
Π

, using Lemma 4.2(2)

=
[
βTi0(1) ∗ βTi3(0)

]
Π
= [cp]

Π
(4.6)

Second equality above follows because Ti0(0) = Ti1(0) ⇒ βTi0(0) = βTi1(0) , Ti1(1) = Ti2(0) ⇒ βTi1(1) = βTi2(0) ,
Ti2(1) = Ti3(1) ⇒ βTi2(1) = βTi3(1) and Ti3(0) = Ti0(1) ⇒ βTi3(0) = βTi0(1) (see Figure 3b) and for any κ -path
% , the loop % ∗ % is homotopic to constant loop at %(0) (see Theorem 4.13 in [3]).

Figure 3. Schematic representation of paths βx (proof of Theorem 4.4). Paths βx are shown in blue color (a) from p
to Ti0(1) , Ti1(0) , Ti2(0) and Ti3(1) , and (b) from p to f(j), j ∈ [0,m− 1]Z .

Similarly,
[∏m

j=1 βf(j−1) ∗ fj ∗ βf(j)

]
Π

=
[∏m

j=1 fj

]
Π

= [f ]
Π

in Πκ
1 (X, p) , because βf(0) = βf(m) is the

constant path cp at p . Therefore, we get the following in Π ,

JfK =
uv m∏

j=1

fj

}~ =

uv m∏
j=1

βf(j−1) ∗ fj ∗ βf(j)

}~
=

t
M∏
i=1

Li0 ∗ Li1 ∗ Li2 ∗ Li3

|
,

by applying substitution principle (Lemma 4.3) to eq. 4.5 for the free Abelian group dC1(X) and the
multiplicative Abelian group Π . Using eq. 4.6, JfK is trivial in Π and [f ]

Π
∈ Π′ . Therefore, the kernel
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of the digital Hurewicz map is the commutator of Πκ
1 (X, p) , and Π ≈ dH1(X) , using first isomorphism theorem

of groups. 2

5. Relative homology and excision

For a digital image (X,κ) and A ⊂ X , (A, κ) is a digital image in its own right. Let ((X,A), κ) or briefly,
(X,A) denote digital image pair with κ -adjacency. A map of pairs f : (X,A) → (Y,B) between digital image
pairs ((X,A), κ) and ((Y,B), λ) is a map f : X → Y , with f(A) ⊂ B . We say that f : (X,A) → (Y,B)

is (κ, λ) -continuous if f : X → Y is (κ, λ) -continuous. It can be verified that ∂n : dCn(X) → dCn−1(X)

maps dCn(A) to dCn−1(A) . If dCn(X,A) denotes the quotient group dCn(X)/dCn(A) , then ∂n induces
homomorphism ∂n : dCn(X,A) → dCn−1(X,A) satisfying ∂n−1 ◦ ∂n = 0 , and making up a chain complex
(dC•(X,A), ∂) , given as:

· · ·
∂n+1 // dCn(X,A)

∂n // dCn−1(X,A)
∂n−1 // · · ·

Let us denote the homology of this chain complex as dHn(X,A) , i.e.

dHn(X,A) =
ker(∂n : dCn(X,A) → dCn−1(X,A))

Im(∂n+1 : dCn+1(X,A) → dCn(X,A))
.

We say that dHn(X,A) is nth -relative cubical singular homology group of the digital image pair (X,A) . Clearly,
dHn(X) = dHn(X, ∅) .

Definition 5.1 Let (X,κ) be a digital image. We define operators
Intκ : P(X) → P(X) and Clκ : P(X) → P(X) as follows:

Intκ(A) = {x ∈ A | Nκ(x,X) ⊂ A},
Clκ(A) = {x ∈ X | Nκ(x,X) ∩A 6= ∅},

where Nκ(x,X) = {y ∈ X | x is κ-adjacent or equal to y}.

We say that Intκ(A) is κ-interior of A in (X,κ) and Clκ(A) is κ-closure of A in (X,κ) and the set Nκ(x,X)

is neighborhood of x in (X,κ) .

Notions similar to above appear in [13] and [10] and also, the κ -interior and κ -closure operators defined above
are very closely related to dilation and erosion operators, respectively, used in [10]. The following proposition
shows that these operators satisfy many relations that are similar to those satisfied by their counterparts in
topology.

Proposition 5.2 Let (X,κ) be a digital image, A,B ⊂ X and x, y ∈ X . Then:

(i) A ⊂ Clκ(A) , Intκ(A) ⊂ A

(ii) Intκ(X −A) = X − Clκ(A) , X − Intκ(A) = Clκ(X −A)

(iii) A ⊂ B ⇒ Clκ(A) ⊂ Clκ(B) and Intκ(A) ⊂ Intκ(B)
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(iv) X = Intκ(A) ∪ Intκ(B) ⇔ Clκ(X −B) ⊂ Intκ(A)

Proof The proofs are simple and follow easily from Definitions 5.1. 2

The κ -interior and κ -closure operators for digital images are not idempotent, i.e. Intκ ◦ Intκ 6= Intκ

and Clκ ◦ Clκ 6= Clκ , unlike interior and closure operators in topology, as shown in the following example.

Example 5.3 Consider the digital image (X, 4) and A ⊂ X shown in Figure 4a. The interiors Int4(A)

and Int24(A) = Int4(Int4(A)) are shown in Figures 4b and 4c, respectively, and the closures Cl4(A) and
Cl24(A) = Cl4(Cl4(A)) in X in Figures 5a and 5b, respectively. Clearly, Int4 ◦ Int4(A) 6= Int4(A) and
Cl4 ◦ Cl4(A) 6= Cl4(A) .

Figure 4. (a) Digital image (X, 4) , its subset A and (b) Int4(A) , (c) Int24(A) . Digital image X , A and interiors are
shown in blue, dark blue and gray color, respectively.

Figure 5. (a) Cl4(A) (b) Cl24(A) in (X, 4) Closures are shown in dark blue color, where digital image (X, 4) and
A ⊂ X are shown in Figure 4a.

Lemma 5.4 Let (X,κ) be a digital image, with subsets A and B such that X = Intκ(A) ∪ Intκ(B) . Then
for n ∈ {0, 1, 2} and for every digital n-cube T , either Im(T ) ⊂ A or Im(T ) ⊂ B .

Proof Consider a digital n -cube T : In → X and the following cases for n ∈ {0, 1, 2} :
Case: n = 0 In this case Im(T ) consists of single element, say x0 , of X . Thus, x0 ∈ Intκ(A) or x0 ∈ Intκ(B) ,
implying Im(T ) ⊂ A or Im(T ) ⊂ B .
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Case: n = 1 In this case, the set Im(T ) ⊂ X comprises two elements, namely, T (0) and T (1) . We can assume
without loss of generality that the element T (0) ∈ Intκ(A) . By definition of Intκ operator, κ -neighbors of
T (0) are in A , which implies T (1) ∈ A . Since Intκ(A) ⊂ A (Proposition 5.2 (i)), we get Im(T ) ⊂ A .
Case: n = 2 In this case, the set Im(T ) ⊂ X comprises at most four distinct elements, namely, T (0, 0) , T (0, 1) ,
T (1, 0) and T (1, 1) . We can assume without loss of generality that the element T (0, 0) ∈ Intκ(A) . By definition
of Intκ operator, κ -neighbors of T (0, 0) are in A , which implies T (0, 1), T (1, 0) ∈ A . Now T (1, 1) may or
may not lie in A . If T (1, 1) ∈ A , then Im(T ) ⊂ A . If T (1, 1) ∈ X − A , then we claim that Im(T ) ⊂ B . Our
claim follows from the following argument: From the definition of Clκ operator, T (1, 1) ∈ X −A implies that
T (0, 1) and T (1, 0) both lie in Clκ(X − A) , which is a subset of Intκ(B) by Proposition 5.2 (iv). Therefore,
T (0, 1), T (1, 0) ∈ Intκ(B) ⇒ T (0, 0) ∈ B ⇒ Im(T ) ⊂ B. 2

We show in the following example that the above Lemma fails for n -cubes with n > 2 .

Example 5.5 Consider the digital image (X, 4) shown in Figure 6, where in parts (a) and (b), the subsets A

and B of X , respectively, are shown in darker shades of blue. Elements of interiors Int4(A) and Int4(B) in
(X, 4) are shown in part (c) of Figure 6 as gray-shaded pixels and with double-line borders, respectively. Clearly,
X = Int4(A)∪Int4(B) . In these figures, we have labeled some elements of X as a, b, c and d . Define a digital 3-
cube T as follows: T (0, 0, 0) = a , T (1, 0, 0) = T (0, 1, 0) = T (0, 0, 1) = b , T (1, 1, 0) = T (0, 1, 1) = T (1, 0, 1) = c ,
T (1, 1, 1) = d . It is clear that neither Im(T ) ⊂ A nor Im(T ) ⊂ B .

Figure 6. (a) Digital image (X, 4) with its subset A , (b) subset B ⊂ X (c) interiors Int4(A) and Int4(B) in (X, 4) .
Parts (a) and (b) show subsets A and B of X in darker shades of blue, respectively, while part (c) shows the interior
Int4(A) in gray and the interior Int4(B) with double-line borders.

The following theorem is similar to Excision axiom of homology theory except that it holds only for n

less than 2.

Theorem 5.6 Let (X,κ) be a digital image.

• For subsets A,W ⊂ X such that Clκ(W ) ⊂ Intκ(A) , the inclusion (X −W,A −W ) → (X,A) induces
isomorphisms dHn(X −W,A−W ) → dHn(X,A) , for n < 2 .

Equivalently,

• For subsets A,B ⊂ X such that X = Intκ(A) ∪ Intκ(B) , the inclusion (B,A ∩ B) → (X,A) induces
isomorphisms dHn(B,A ∩B) → dHn(X,A) , for n < 2 .
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Proof The equivalence of the two statements follows from Proposition 5.2 (iv) by taking B = X −W , which
implies W = X −B and A−W = A ∩B .
One can verify that for all n , dCn(A)∩dCn(B) = dCn(A∩B) and for n ≤ 2 , dCn(X) = dCn(A)+dCn(B) using

Lemma 5.4. Furthermore, the map dCn(B)
dCn(A)∩dCn(B) →

dCn(A)+dCn(B)
dCn(A) induced by inclusion is an isomorphism by

second isomorphism theorem of groups. Therefore, we get:

dCn(B,A ∩B) =
dCn(B)

dCn(A ∩B)
≈ dCn(A) + dCn(B)

dCn(A)
=

dCn(X)

dCn(A)
= dCn(X,A),

where only the second last equality is restricted to n ≤ 2 . It follows that dHn(X,A) ≈ dHn(B,A ∩ B) , for
integers n < 2 .

2

Theorem 5.6 is restricted to n < 2 .
The first of the two versions of Theorem 5.6 states that there is no change in the nth -relative homology

groups of the digital image pair (X,A) , when n < 2 , if we excise out a subset W , which is contained ‘well-inside’
A . In order to extend this idea to higher homology groups (n ≥ 2), we need the subset W to be contained
deeper inside A . This can be done by iterative applications of interior and closure operators. This gives rise to
the following definitions and results similar to those in Proposition 5.2.

Definition 5.7 Let (X,κ) be a digital image and A ⊂ X . We define the operators
Intiκ : P(X) → P(X) and Cliκ : P(X) → P(X) , for nonnegative integers i , recursively, as follows:

Int0κ(A) = A, Intiκ(A) = Intκ(Int
i−1
κ (A)), for positive integer i,

Cl0κ(A) = A, Cliκ(A) = Clκ(Cli−1
κ (A)), for positive integer i.

Proposition 5.8 Let (X,κ) be a digital image, A,B ⊂ X and x, y ∈ X . Then:

(i) Cliκ(A) ⊂ Cli+1
κ (A) , Inti+1

κ (A) ⊂ Intiκ(A)

(ii) Intiκ(X −A) = X − Cliκ(A) , X − Intiκ(A) = Cliκ(X −A)

(iii) X = Intiκ(A) ∪ Intiκ(B) ⇔ Cliκ(X −B) ⊂ Intiκ(A)

Proof The proofs are simple and follow easily from Definitions 5.1 and 5.7, and Proposition 5.2.
2

We give a generalization of Lemma 5.4, using Definitions 5.7 and Proposition 5.8.

Lemma 5.9 Let (X,κ) be a digital image, with subsets A and B such that there is a positive integer i with
X = Intiκ(A) ∪ Intiκ(B) . Then for n ≤ i+ 1 and for every digital n-cube T , Im(T ) ⊂ A or Im(T ) ⊂ B .

Proof Consider a digital n -cube T : In → X , n ∈ {0, 1, . . . , i+ 1} . The set Im(T ) ⊂ X can be partitioned
into sets Sj for j = 0, 1, . . . , n defined as follows:

Sj = {T (x1, x2, . . . , xn) | Σn
i=1xi = j}
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Note that for j ∈ {1, 2, . . . , n− 1} , elements of Sj are κ -neighbors of elements of Sj+1 and Sj−1 and that S0

and Sn are singletons.
Case: n = 0 In this case, the partition of Im(T ) consists of single set S0 ⊂ X . Thus, S0 ⊂ Intiκ(A) or
S0 ⊂ Intiκ(B) , implying Im(T ) ⊂ A or Im(T ) ⊂ B .
Case: 0 < n < i+ 1 We can assume without loss of generality that the singleton S0 ⊂ Intiκ(A) . Then by
definition of Intiκ operator, Sj ⊂ Inti−j

κ (A) , for j = 1, 2, . . . , n . Thus, for all j , Sj ⊂ A , since Intiκ(A) ⊂ A

from Proposition 5.8 (i). Therefore, Im(T ) ⊂ A .
Case: n = i+ 1 Again, we can assume without loss of generality that the set S0 ⊂ Intiκ(A) . From the definition
of Intiκ , for j = 1, 2, . . . , n − 1 , Sj ⊂ Inti−j

κ (A) . Now Im(T ) − Sn ⊂ A and Sn may or may not lie in A . If
Sn ⊂ A , then Im(T ) ⊂ A , which completes the proof.
However, if Sn ⊂ X − A , then we claim that Im(T ) ⊂ B , which also completes the proof. Our claim follows
from the following argument: From the definition of Clκ operator, Sn ⊂ X − A implies Sn−1 is contained in
Clκ(X −A) . Using Proposition 5.8, we get the following:

X −A ⊂ Clκ(X −A) ⊂ Cliκ(X −A) ⊂ Intiκ(B),

⇒ Sn−1 ⊂ Intiκ(B) ⇒ Sn−j ⊂ Inti−j+1
κ (B), for j = 2, 3, . . . , n ⇒ Im(T ) ⊂ B.

2

Theorem 5.10 [Excision-like property]
Let (X,κ) be a digital image.

• For subsets A,W ⊂ X such that there is a positive integer i , with Cliκ(W ) ⊂ Intiκ(A) , the inclusion
(X−W,A−W ) → (X,A) induces isomorphisms dHn(X−W,A−W ) → dHn(X,A) , for integers n < i+1 .

Equivalently,

• For subsets A,B ⊂ X such that there is a positive integer i , with X = Intiκ(A) ∪ Intiκ(B) , the inclusion
(B,A ∩B) → (X,A) induces isomorphisms dHn(B,A ∩B) → dHn(X,A) , for integers n < i+ 1 .

Proof The equivalence of the two statements follows from Proposition 5.8 (iii) as in the proof of Theorem
5.6. Rest of the proof is also similar to the proof of Theorem 5.6 except that the equality (dCn(A) +

dCn(B))/dCn(A) = dCn(X)/dCn(A) holds for n ≤ i+ 1 from Lemma 5.9. 2

The following result states the condition under which Excision-like property for nth -digital cubical-
singular homology holds for all n .

Corollary 5.11 Let (X,κ) be a digital image.

• For subsets A,W ⊂ X such that W ⊂ A , Clκ(W ) = W and Intκ(A) = A , the inclusion (X −W,A −
W ) → (X,A) induces isomorphisms dHn(X −W,A−W ) → dHn(X,A) , for all n .

Equivalently,

• For subsets A,B ⊂ X such that X = A∪B , Intκ(A) = A and Intκ(B) = B , the inclusion (B,A∩B) →
(X,A) induces isomorphisms dHn(B,A ∩B) → dHn(X,A) , for all n .
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Proof The equivalence of the statements can be shown in a similar way as in the proof of Theorem 5.6.
Using the hypothesis of first statement, one can show that for all integers i , Cliκ(W ) = W and Intiκ(A) = A ;
therefore, Cliκ(W ) ⊂ Intiκ(A) also holds for all integers i . Rest follows from Theorem 5.10. 2

6. Digital homology theory
In this section, we show that digital cubical singular homology satisfies digital analogs of Eilenberg–Steenrod
axioms of homology theory. Other homologies for digital images have not been proven to exhibit this coherence
with homology theory of topological spaces.

We define category of digital-image pairs Dig2 with digital-image pairs as objects and (κ, λ) -continuous
maps of pairs as morphisms. It can be shown that dHn(−,−) is a functor from Dig2 to Ab in a similar way as
in Proposition 3.4.

Definition 6.1 We say that (κ, λ)-continuous maps of pairs f, g : (X,A) → (Y,B) are (κ, λ)-homotopic as
maps of pairs, if H : [0,m]Z ×X → Y is (κ, λ)-homotopy from f : X → Y to g : X → Y and H(t, A) ⊂ B,

∀t ∈ [0,m]Z .

Definition 6.2 Digital homology theory consists of functors dHn(−,−) from the category of digital image pairs
Dig2 to the category of Abelian groups Ab along with natural transformations ∂∗ : dHn(X,A) → dHn−1(A) ,
(where dHn−1(A, ∅) is denoted as dHn−1(A)) satisfying following axioms:

[Homotopy axiom]
If f, g : (X,A) → (Y,B) are homotopically equivalent, then f∗, g∗ : dHn(X,A) → dHn(Y,B) are equal
maps.

[Exactness axiom]
For each digital image pair (X,A) , and inclusion maps i : A ↪→ X and j : (X, ∅) ↪→ (X,A) , there is a
long-exact sequence:

· · · ∂∗ // dHn(A)
i∗ // dHn(X)

j∗ // dHn(X,A)
∂∗ // dHn−1(A)

i∗ // · · ·

[Excision axiom]
For a digital image pair (X,A) and a subset W ⊂ A such that there is a positive integer i with Cliκ(W ) ⊂
Intiκ(A) , the inclusion (X−W,A−W ) → (X,A) induces isomorphism dHn(X−W,A−W ) → dHn(X,A)

for 0 ≤ n ≤ i+ 1 .

[Dimension axiom]
If X = {x0} is a one-point digital image, dHn(X) = 0 , for all n > 0 .

[Additivity axiom]
If {(Xα, κ) | α ∈ Λ} is a collection of mutually κ-disconnected digital images with Xα ⊂ Zd and (X,κ)

is the digital image X =
∪

α Xα , then dHn(X) ≈
⊕

α dHn(Xα) .

Theorem 6.3 The relative cubical singular homology groups dHn(−,−) form a digital homology theory.
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Proof We prove the axioms of digital homology theory one-by-one:

[Homotopy axiom] It can be shown using Theorem 3.7 that if f, g : (X,A) → (Y,B) are homotopically
equivalent, then f and g induce the same map f∗ = g∗ from dHn(X,A) to dHn(Y,B) .

[Exactness axiom] For a digital image pair (X,A) , we have chain complexes (dC•(A), ∂) , (dC•(X), ∂) and
(dC•(X,A), ∂) . We also have chain maps i∗ : dCn(A) → dCn(X) and j∗ : dCn(X) → dCn(X,A) ,
induced by inclusions i : A ↪→ X and j : (X, ∅) ↪→ (X,A) . This gives the following short exact sequence
of chain-complexes.

0 // dC•(A)
i∗ // dC•(X)

j∗ // dC•(X,A) // 0

The above short-exact sequence induces the following long-exact sequence of homology groups:

· · · ∂∗ // dHn(A)
i∗ // dHn(X)

j∗ // dHn(X,A)
∂∗ // dHn−1(A)

i∗ // · · ·

by zig-zag lemma ([17], Lemma 24.1). The zig-zag lemma also asserts the existence and uniqueness of the
homomorphism ∂∗ : dCn(X,A) → dCn−1(A) .

[Excision axiom] , see Theorem 5.10.

[Dimension axiom] can be easily proved using Proposition 3.6.

[Additivity axiom] , see Proposition 3.2.

2

7. Conclusion
In digital topology, researchers are interested in exploring topological properties of digital images. Some
researchers have attempted to develop a theory for digital images which parallels with general topology, thereby
defining digital continuity, digital connectedness, digital homotopy equivalence, digital fundamental group, and
homology groups for digital images using various approaches (simplicial, cubical, and singular). This work
extends the research in this direction by introducing concepts and proving results for digital images that are
in line with algebraic topology and homology. Although some researchers have already defined homology for
digital images (simplicial, cubical, and singular), there were two important gaps that are filled in by this piece
of work. Firstly, cubical singular homology for digital images have not been defined previously. Secondly, the
already-available approaches to homology (simplicial, cubical, and singular) had failed to produce results that
may be considered digital analogs of Hurewicz theorem, homotopy invariance and excision property of homology
groups that are found in algebraic topology, while digital Hurewicz theorem (Theorem 4.4), Proposition 3.7,
and excision-like theorem (Theorem 5.10) fill in this gap using digital cubical singular homology.

Computability of digital cubical singular homology groups of various digital images is still a challenge not
accomplished in this work. It is well-known that singular homology for topological spaces is in general difficult
to compute and similar difficulty carries over to the case of cubical singular homology for digital images. More
theoretical study is required to make computations possible to some extent. Furthermore, it can be explored
whether it is possible to develop an algorithm to compute these groups for a given digital image. Such an
algorithm can be used to further explore the applicability of digital homology in the fields such as digital image
processing, image analysis and computer vision.
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The work presented and proposed in this document can be extended in various directions. Cohomology
theory for digital images can be developed. Our work is restricted to black-and-white digital images, one might
extend this work to develop homology theory for gray-scale and colored digital images and for unbounded digital
images.
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